-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
222 lines (183 loc) · 7.48 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import os
import pickle
import random
import time
import numpy as np
import torch
from RTP_CM import RTP_CM
from mask_strategy import Mask
from parameter_parser import parse
from result.data_reader import print_output_to_file, calculate_average, clear_log_meta_model
def train_RTP_CM(train_set, test_set, h_params, vocab_size, device, run_name):
model_path = f"./result/{run_name}_model"
log_path = f"./result/{run_name}_log"
meta_path = f"./result/{run_name}_meta"
print("parameters:", h_params)
if os.path.isfile(f'./results/{run_name}_model'):
try:
os.remove(f"./results/{run_name}_meta")
os.remove(f"./results/{run_name}_model")
os.remove(f"./results/{run_name}_log")
except OSError:
pass
file = open(log_path, 'wb')
pickle.dump(h_params, file)
file.close()
# Construct model
model = RTP_CM(
vocab_size=vocab_size,
area_code_embed_size=h_params['geohash_embed_size'],
area_proportion=h_params['area_proportion'],
feature_embed_size=h_params['embed_size'],
transformer_layers=h_params['transformer_layers'],
transformer_heads=h_params['transformer_heads'],
forward_expansion=h_params['expansion'],
dropout_proportion=h_params['dropout'],
back_step=h_params['back_step'],
mask_strategy=h_params['mask_strategy'],
mask_proportion=h_params['mask_proportion'],
device=h_params['device'])
model = model.to(device)
params = list(model.parameters())
optimizer = torch.optim.Adam(params, lr=h_params['lr'])
loss_dict, recalls, ndcgs, maps = {}, {}, {}, {}
for i in range(0, h_params['epochs']):
begin_time = time.time()
total_loss = 0.
for sample in train_set:
sample_to_device = []
# [(seq1)[((features)[poi_seq],[cat_seq],[user_seq],[hour_seq],[day_seq]),([area_codes 0~5])],[(seq2)],...]
for seq in sample:
features = torch.tensor(seq[:5]).to(device)
area_codes = torch.tensor(seq[5:10]).to(device)
sample_to_device.append((features, area_codes))
loss, _ = model(sample_to_device)
total_loss += loss.detach().cpu()
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Test
recall, ndcg, map = test_RTP_CM(test_set, model)
recalls[i] = recall
ndcgs[i] = ndcg
maps[i] = map
# Record avg loss
avg_loss = total_loss / len(train_set)
loss_dict[i] = avg_loss
print(f"epoch: {i}; average loss: {avg_loss}, time taken: {int(time.time() - begin_time)}s")
# Save model
torch.save(model.state_dict(), model_path)
# Save last epoch
meta_file = open(meta_path, 'wb')
pickle.dump(i, meta_file)
meta_file.close()
log_file = open(log_path, 'wb')
pickle.dump(loss_dict, log_file)
pickle.dump(recalls, log_file)
pickle.dump(ndcgs, log_file)
pickle.dump(maps, log_file)
log_file.close()
print("============================")
def test_RTP_CM(test_set, rec_model, ks=[1, 5, 10]):
def calc_hit_rate(labels, preds, k):
hit = []
i = 0
for label in labels:
predictions = preds[i, :k]
if label in predictions:
hit.append(1.0)
else:
hit.append(0.0)
i += 1
hit_rate = np.mean(hit)
return hit_rate
def calc_recall(labels, preds, k):
equal_count = torch.sum(labels == preds[:, :k], dim=1)
sum_equal_count = torch.sum(equal_count)
labels_shape0 = labels.shape[0]
recall = sum_equal_count / labels_shape0
return recall
def calc_ndcg(labels, preds, k):
exist_pos = (preds[:, :k] == labels).nonzero()[:, 1] + 1
ndcg = 1 / torch.log2(exist_pos + 1)
return torch.sum(ndcg) / labels.shape[0]
def calc_map(labels, preds, k):
exist_pos = (preds[:, :k] == labels).nonzero()[:, 1] + 1
map = 1 / exist_pos
return torch.sum(map) / labels.shape[0]
preds, labels = [], []
for sample in test_set:
sample_to_device = []
# [(seq1)[((features)[poi_seq],[cat_seq],[user_seq],[hour_seq],[day_seq]),([area_codes 0~5])],[(seq2)],...]
for seq in sample:
features = torch.tensor(seq[:5]).to(device)
area_codes = torch.tensor(seq[5:10]).to(device)
sample_to_device.append((features, area_codes))
pred, label = rec_model.predict(sample_to_device)
preds.append(pred.detach())
labels.append(label.detach())
preds = torch.stack(preds, dim=0)
labels = torch.unsqueeze(torch.stack(labels, dim=0), 1)
recalls, NDCGs, MAPs = {}, {}, {}
for k in ks:
recalls[k] = calc_recall(labels, preds, k)
hit_rate = calc_hit_rate(labels, preds, k)
NDCGs[k] = calc_ndcg(labels, preds, k)
MAPs[k] = calc_map(labels, preds, k)
print(f"Recall @{k} : {recalls[k]},\tHR @{k} : {hit_rate},\tNDCG@{k} : {NDCGs[k]},\tMAP@{k} : {MAPs[k]}")
return recalls, NDCGs, MAPs
if __name__ == '__main__':
args = parse()
device = args.device if torch.cuda.is_available() else 'cpu'
# Get parameters
parameters = {
'device': args.device,
'mask_strategy': Mask(args.mask_strategy),
'mask_proportion': args.mask_proportion,
'area_proportion': args.area_proportion,
'embed_size': args.embed_size,
'transformer_layers': args.transformer_layers,
'transformer_heads': args.transformer_heads,
'dropout': args.dropout,
'epochs': args.epochs,
'lr': args.lr,
'expansion': 4}
# Adjust specific parameters for each city
if args.dataset == 'PHO':
parameters['geohash_embed_size'] = {"0": 6, "1": 60, "2": 508, "3": 1075, "4": 1367}
parameters['back_step'] = 1
elif args.dataset == 'NYC':
parameters['geohash_embed_size'] = {"0": 8, "1": 67, "2": 1042, "3": 5310, "4": 12927}
# Keep back_step for a fair comparison with CFPRec
parameters['back_step'] = 2
elif args.dataset == 'SIN':
parameters['geohash_embed_size'] = {"0": 2, "1": 24, "2": 303, "3": 2615, "4": 6273}
parameters['back_step'] = 2
else:
raise NotImplementedError()
# Read training data
file = open(f"./processed_data/{args.dataset}_train", 'rb')
train_set = pickle.load(file)
file = open(f"./processed_data/{args.dataset}_valid", 'rb')
valid_set = pickle.load(file)
# Read meta data
file = open(f"./processed_data/{args.dataset}_meta", 'rb')
meta = pickle.load(file)
file.close()
vocab_size = {
"POI": torch.tensor(len(meta["POI"])).to(device),
"cat": torch.tensor(len(meta["cat"])).to(device),
"user": torch.tensor(len(meta["user"])).to(device),
"hour": torch.tensor(len(meta["hour"])).to(device), # 24
"day": torch.tensor(len(meta["day"])).to(device)} # 2
print(f'Current GPU {args.device}')
for run_num in range(1, 1 + args.run_times):
run_name = f'{args.name} {run_num}'
print(run_name)
train_RTP_CM(train_set, valid_set, parameters, vocab_size, device, run_name=run_name)
print_output_to_file(args.name, run_num, args.epochs)
t = random.randint(1, 9)
print(f"sleep {t} seconds")
time.sleep(t)
clear_log_meta_model(args.name, run_num)
calculate_average(args.name, args.run_times)