-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_preprocessor.py
862 lines (717 loc) · 36.1 KB
/
data_preprocessor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
import math
import os
import pickle
import random
from datetime import timedelta
import h3
import numpy as np
import pandas as pd
import S2.sphere
from map_encoder_tile import latlon2quadkey
# constants
min_seq_len = 3
min_seq_num = 3
min_short_term_len = 5
min_long_term_count = 2
pre_seq_window = 7
random_seed = 2021
# split sequence
def generate_sequence(input_data, min_seq_len, min_seq_num):
"""Split and filter action sequences for each user
Args:
input_data (DataFrame): raw data read from csv file
min_seq_len (int): minimum length for a sequence to be considered valid
min_seq_num (int): minimum no. sequences for a user to be considered valid
Returns:
total_sequences_dict ({user_id: [[visit_id]]}): daily action sequences for each user
total_sequences_meta ([(user)[(timestamp(int),seq_len(int))]]) : date and length for each sequnece
"""
def _remove_consecutive_visit(visit_record):
"""remove duplicated consecutive visits in a sequence
Args:
visit_record (DataFrame): raw sequences
Returns:
clean_sequence (list): sequences with no duplicated consecutive visits
"""
clean_sequence = []
for index, _ in visit_record.iterrows():
clean_sequence.append(index)
return clean_sequence
total_sequences_dict = {} # records visit id in each sequence
total_sequences_meta = [] # records sequence date and length
seq_count = 0 # for statistics only
input_data['Local_sg_time'] = pd.to_datetime(input_data['Local_Time_True'])
for user in input_data['UserId'].unique(): # process sequences for each user
user_visits = input_data[input_data['UserId'] == user]
user_sequences, user_sequences_meta = [], []
unique_date_group = user_visits.groupby([user_visits['Local_sg_time'].dt.date])
for date in unique_date_group.groups: # process sequences on each day
single_date_visit = unique_date_group.get_group(date)
single_sequence = _remove_consecutive_visit(single_date_visit)
if len(single_sequence) >= min_seq_len: # filter sequences too short
user_sequences.append(single_sequence)
user_sequences_meta.append((date, len(single_sequence)))
seq_count += 1
if len(user_sequences) >= min_seq_num: # filter users with too few visits
total_sequences_dict[user] = np.array(user_sequences, dtype=object)
total_sequences_meta.append(user_sequences_meta)
print(f"Generated {seq_count} sequences in total for {len(total_sequences_dict.keys())} users")
return total_sequences_dict, total_sequences_meta
# generate sequences of different features
def _reIndex_3d_list(input_list):
"""Reindex the elements in sequences
Args:
input_list (nd_array: [(all users)[(user list)[(seq list)]]]): a 3d list containing all sequences fofr all users
Returns:
reIndexed_list (3d list): reindexed list
index_map ([id]): each element is an original id, the index of an element is the new index the id
"""
def _flatten_3d_list(input_list):
"""flattern a 3d list to 1d
Args:
input_list (nd_array: [(all users)[(user list)[(seq list)]]]): a 3d list containing all sequences fofr all users
Returns:
1d-list: flattened list
"""
twoD_lists = input_list.flatten()
return np.hstack([np.hstack(twoD_list) for twoD_list in twoD_lists])
def _old_id_to_new(mapping, old_id):
"""convert old_id to new index by mapping given
Args:
mapping ([id]): each element is an original id, the index of an element is the new index the id
old_id (Any): the original token/id in the list
Returns:
int: new index of the token
"""
return np.where(mapping == old_id)[0].flat[0]
flat_list = _flatten_3d_list(input_list) # make 3d list 1d
index_map = np.unique(flat_list) # get
reIndexed_list = []
for user_seq in input_list: # seq list for each user
reIndexed_user_list = []
for seq in user_seq: # each seq
reIndexed_user_list.append([_old_id_to_new(index_map, poi) for poi in seq])
reIndexed_list.append(reIndexed_user_list)
reIndexed_list = np.array(reIndexed_list, dtype=object)
return reIndexed_list, index_map
def generate_POI_sequences(input_data, visit_sequence_dict):
"""generate location transition sequences
Args:
input_data (DataFrame): raw check-in data
visit_sequence_dict ({user_id: [[visit_id]]}): daily action sequences for each user
Returns:
reIndexed_POI_sequences (nd_array: [[[POI_index]]]): daily location transition sequences for each user
POI_reIndex_mapping ([POI_id]): index is the new POI index and element is the original POI id
"""
POI_sequences = []
for user in visit_sequence_dict:
user_POI_sequences = []
for seq in visit_sequence_dict[user]:
single_POI_sequence = []
for visit in seq:
single_POI_sequence.append(input_data['VenueId'][visit])
user_POI_sequences.append(single_POI_sequence)
POI_sequences.append(user_POI_sequences)
reIndexed_POI_sequences, POI_reIndex_mapping = _reIndex_3d_list(np.array(POI_sequences, dtype=object))
return reIndexed_POI_sequences, POI_reIndex_mapping
def generate_category_sequences(input_data, visit_sequence_dict):
"""generate category transition sequences
Args:
input_data (DataFrame): raw check-in data
visit_sequence_dict ({user_id: [[visit_id]]}): daily action sequences for each user
Returns:
reIndexed_cat_sequences (nd_array: [[[cat_index]]]): daily category transition sequences for each user
cat_reIndex_mapping ([cat_name]): index is the new category index and element is the original category name
"""
cat_sequences = []
for user in visit_sequence_dict:
user_cat_sequences = []
for seq in visit_sequence_dict[user]:
single_cat_sequence = []
for visit in seq:
# 用的是大类,一共 10 个类别
# 如果是 Category 的话,有 239 个类别
single_cat_sequence.append(input_data['L1_Category'][visit])
user_cat_sequences.append(single_cat_sequence)
cat_sequences.append(user_cat_sequences)
reIndexed_cat_sequences, cat_reIndex_mapping = _reIndex_3d_list(np.array(cat_sequences, dtype=object))
return reIndexed_cat_sequences, cat_reIndex_mapping
def generate_user_sequences(input_data, visit_sequence_dict):
"""generate time (in hour) transition sequences
Args:
input_data (DataFrame): raw check-in data
visit_sequence_dict ({user_id: [[visit_id]]}): daily action sequences for each user
Returns:
reIndexed_user_sequences (nd_array: [[[user_index]]]): daily user sequences (same for each sequence)
user_reIndex_mapping ([user_id]): index is the new user index and element is the original user id
"""
all_user_sequences = []
for user in visit_sequence_dict:
user_sequences = []
for seq in visit_sequence_dict[user]:
single_user_sequence = [user] * len(seq)
user_sequences.append(single_user_sequence)
all_user_sequences.append(user_sequences)
reIndexed_user_sequences, user_reIndex_mapping = _reIndex_3d_list(np.array(all_user_sequences, dtype=object))
return reIndexed_user_sequences, user_reIndex_mapping
def generate_hour_sequences(input_data, visit_sequence_dict):
"""generate time (in hour) transition sequences
Args:
input_data (DataFrame): raw check-in data
visit_sequence_dict ({user_id: [[visit_id]]}): daily action sequences for each user
Returns:
reIndexed_hour_sequences (nd_array: [[[time_index]]]): daily hour transition sequences for each user
hour_reIndex_mapping ([hour]): index is the new hour index and element is the original hour
"""
input_data["hour"] = pd.to_datetime(input_data['Local_Time_True']).dt.hour # add hour column in raw data
hour_sequences = []
for user in visit_sequence_dict:
user_hour_sequences = []
for seq in visit_sequence_dict[user]:
single_hour_sequence = []
for visit in seq:
single_hour_sequence.append(input_data['hour'][visit])
user_hour_sequences.append(single_hour_sequence)
hour_sequences.append(user_hour_sequences)
reIndexed_hour_sequences, hour_reIndex_mapping = _reIndex_3d_list(np.array(hour_sequences, dtype=object))
return reIndexed_hour_sequences, hour_reIndex_mapping
def generate_day_sequences(input_data, visit_sequence_dict):
"""generate weekday/weekend tag for each sequence
Args:
input_data (DataFrame): raw check-in data
visit_sequence_dict ({user_id: [[visit_id]]}): daily action sequences for each user
Returns:
reIndexed_day_sequences (nd_array: [[[day_index]]]): daily weekday/weekend sequences (same for each sequence)
day_reIndex_mapping ([weekday/weekend]): index is the new day index and element is the original weekday(False)/weekend(True) tag
"""
input_data["is_weekend"] = pd.to_datetime(
input_data['Local_Time_True']).dt.dayofweek > 4 # add hour column in raw data
day_sequences = []
for user in visit_sequence_dict:
user_day_sequences = []
for seq in visit_sequence_dict[user]:
single_day_sequence = []
for visit in seq:
single_day_sequence.append(input_data['is_weekend'][visit])
user_day_sequences.append(single_day_sequence)
day_sequences.append(user_day_sequences)
reIndexed_day_sequences, day_reIndex_mapping = _reIndex_3d_list(np.array(day_sequences, dtype=object))
return reIndexed_day_sequences, day_reIndex_mapping
def generate_dist_matrix_sequences(input_data, visit_sequence_dict):
"""generate distance matrix for sequences
e.g., for a sequence [1,2,3], the dist matrix sequences would be:
[[d11, d12, d13], [d21, d22, d23], [d31, d32, d33]]
Args:
input_data (DataFrame): raw check-in data
visit_sequence_dict ({user_id: [[visit_id]]}): daily action sequences for each user
Returns:
dist_matrices (nd_array: [[dist_matrix]]): dist matrix for each daily sequences for each user
"""
def _get_distance(pos1, pos2):
"""Calculate the between two positions
Args:
pos1 ((lat, lon)): coordinates for the position 1
pos2 ((lat, lon)): coordinates for the position 2
Returns:
h_dist (float): distances between two positions
"""
lat1, lon1 = pos1
lat2, lon2 = pos2
dlat = lat2 - lat1
dlon = lon2 - lon1
a = math.sin(math.radians(dlat / 2)) ** 2 + math.cos(math.radians(lat1)) * math.cos(
math.radians(lat2)) * math.sin(math.radians(dlon / 2)) ** 2
c = 2 * math.asin(math.sqrt(a))
r = 6371
h_dist = c * r
return h_dist
def _generate_dist_matrix(seq, input_data):
"""Generate a distance matrix for one sequence
Args:
seq ([visit_id]): one visit sequence
input_data (DataFrame): raw check-in data
Returns:
dist_matrix ([[d11,d12,...],[d21,d22,...],...]): a matrix show distance between each pair of POI in the sequence
"""
return [[_get_distance((input_data['Latitude'][x], input_data['Longitude'][x]),
(input_data['Latitude'][y], input_data['Longitude'][y])) \
for x in seq] for y in seq]
dist_matrices = []
for user in visit_sequence_dict:
user_dist_matrices = []
for seq in visit_sequence_dict[user]: # generate dist matrix for each seq
dist_matrix = _generate_dist_matrix(seq, input_data)
user_dist_matrices.append(dist_matrix)
dist_matrices.append(user_dist_matrices)
return np.array(dist_matrices, dtype=object)
# generate (short term + long term) feed data
def filter_long_short_term_sequences(total_sequences_meta, min_short_term_len, pre_seq_window, min_long_term_count):
"""filter valid long+short-term sequences for generation of input data
criteria: 1. the feed data is composed of multiple long-term sequences and one short-term sequence;
2. the short term sequence length >= min_short_term_len(5)
3. the long term sequences a sequences 7 days before the short term sequence
4. the number of long term sequences must >= min_long_term_count(2)
Args:
total_sequences_meta ([(user)[(timestamp(int),seq_len(int))]]): date and length for each sequnece
min_short_term_len (int): minimum visits in a short-term sequence
pre_seq_window (int): number of days to look for long-term sequences
min_long_term_count (int): minimum number of long-term sequences to make the long-short sequences valid
Returns:
valid_input_index ([(all users)[(each user)[(valid sequences)seq_index]]]): valid long+short term sequneces for each user
"""
valid_input_index = [] # filtered long+short term data
valid_user_count, valid_input_count = 0, 0, # for statistics purpose
for _, user_sequences in enumerate(total_sequences_meta): # for each user
user_valid_input_index = []
# print(user_sequences)
for seq_index, seq in enumerate(user_sequences): # for each sequence
# print(seq)
# print(seq_index)
seq_time, seq_len = seq[0], seq[1]
if seq_len >= min_short_term_len: # valid short-term sequence
start_time, end_time = seq_time - timedelta(days=pre_seq_window), seq_time
long_term_seqs = [(index, seq) for index, seq in enumerate(user_sequences[:seq_index]) if
start_time <= seq[0] <= end_time]
if len(long_term_seqs) >= min_long_term_count: # valid long-short term sequence
user_valid_input_index.append([seq[0] for seq in long_term_seqs] + [seq_index])
valid_input_count += 1
valid_input_index.append(user_valid_input_index)
valid_user_count += 1 if len(user_valid_input_index) > 0 else 0
print(f"Filtered {valid_input_count} valid input long+short term sequences for {valid_user_count} users.")
return valid_input_index
def generate_input_samples(feature_sequences, valid_input_index):
"""turn a feature sequence into a input long+short term data to be fed into model
Args:
feature_sequences (nd_array: [[[id]]]): daily transition sequences for each user for certain feature
valid_input_index ([(all users)[(each user)[(valid sequences)seq_index]]]): valid long+short term sequneces for each user
Return:
input_samples ([(input sample)[(sequences)feature_id]]]): valid long+short term feature sequences for each user
"""
input_samples = []
for user_index, user_sequences in enumerate(valid_input_index):
if len(user_sequences) != 0:
for seq in user_sequences:
feature_sequence = [feature_sequences[user_index][index] for index in seq]
input_samples.append(feature_sequence)
return input_samples
def split_train_test(input_samples):
"""split a input sequence into training, validation and testing sequences
criteria: train-80%, validation-10%, test-10%
Args:
input_samples (3d array: [(each sample)[(valid sequences)feature_id]]): valid long+short term feature sequences for each user
Returns:
all_training_samples: 80% of samples for training
all_validation_samples: 10% of samples for validation
all_testing_samples: 10% of samples for testing
all_training_validation_samples: 90% of samples for final training after validation
"""
random.Random(random_seed).shuffle(input_samples)
N = len(input_samples)
train_valid_boundary = int(0.8 * N)
valid_test_boundary = int(0.9 * N)
all_training_samples = input_samples[:train_valid_boundary]
all_validation_samples = input_samples[train_valid_boundary:valid_test_boundary]
all_testing_samples = input_samples[valid_test_boundary:]
all_training_validation_samples = input_samples[:valid_test_boundary]
return all_training_samples, all_validation_samples, all_testing_samples, all_training_validation_samples
def reshape_data(original_data):
"""combine different samples for each features to one sample containing all features
Args:
original_data ([features * sample * sequence]): combination of samples for each feature
Return:
reshaped_data ([sample * sequence * features]): each sample contains myltiple features
"""
result = []
# [feature * sample] -> [sample * feature]
samples = np.transpose(np.array(original_data, dtype=object), (1, 0))
# [feature * sequence] -> [sequence * feature]
for sample in samples:
sample_data = []
feature_num = len(sample) # 6 features
sequence_num = len(sample[0]) # number of steps in this sequence
for i in range(sequence_num):
sample_data.append([sample[j][i] for j in range(feature_num)])
result.append(sample_data)
return result
def dump_data(data, city, data_type):
"""save data as pickle file
Args:
data ([(feature)[(sample)[feature_id]]]): processed data
city (str): city code for file naming
data_type (str): data description for file naming
"""
directory = './processed_data'
if not os.path.exists(directory):
os.makedirs(directory)
file_path = directory + "/{}_{}"
pickle.dump(data, open(file_path.format(city, data_type), 'wb'))
def generate_poi_to_location(city_code, poi_mapping, input_data):
# dataframe = pd.DataFrame(poi_mapping)
# dataframe.to_csv(f"./raw_data/{city_code}_poi_mapping.csv", header="Id,VenueId")
locations = []
for venue_id in poi_mapping:
record = input_data[input_data['VenueId'] == venue_id].iloc[0]
longitude = record['Longitude']
latitude = record['Latitude']
locations.append([venue_id, longitude, latitude])
df = pd.DataFrame(locations, columns=['POI_id', 'longitude', 'latitude'])
df.to_csv(f"./raw_data/{city_code}_poi_mapping.csv")
return df
# completely process data for one city
# def get_location_code_tile(latitude, longitude):
# code_0 = latlon2quadkey(latitude, longitude, 12)
# code_1 = latlon2quadkey(latitude, longitude, 13)
# code_2 = latlon2quadkey(latitude, longitude, 14)
# code_3 = latlon2quadkey(latitude, longitude, 15)
# code_4 = latlon2quadkey(latitude, longitude, 16)
# code_5 = latlon2quadkey(latitude, longitude, 17)
# return [code_0, code_1, code_2, code_3, code_4, code_5]
#
#
# def get_location_code_h3(latitude, longitude):
# code_0 = h3.latlng_to_cell(latitude, longitude, 5)
# code_1 = h3.latlng_to_cell(latitude, longitude, 6)
# code_2 = h3.latlng_to_cell(latitude, longitude, 7)
# code_3 = h3.latlng_to_cell(latitude, longitude, 8)
# code_4 = h3.latlng_to_cell(latitude, longitude, 9)
# code_5 = h3.latlng_to_cell(latitude, longitude, 10)
# return [code_0, code_1, code_2, code_3, code_4, code_5]
#
#
# def get_location_code_S2(latitude, longitude):
# cell = S2.sphere.CellId().from_lat_lng(S2.sphere.LatLng.from_degrees(latitude, longitude))
# code_0 = cell.parent(10).to_token()
# code_1 = cell.parent(11).to_token()
# code_2 = cell.parent(12).to_token()
# code_3 = cell.parent(13).to_token()
# code_4 = cell.parent(14).to_token()
# code_5 = cell.parent(16).to_token()
# return [code_0, code_1, code_2, code_3, code_4, code_5]
# pygeohash
# PHO 4(6)、5(60)、6(508) 、7(1075)、8(1367) POI(1430)
# NYC 4(8)、5(67)、6(1042)、7(5310)、8(12927) POI(15754)
# SIN 4(2)、5(24)、6(303) 、7(2615)、8(6273) POI(8974)
# Bing Tile Map 编码
# PHO 12(22)、13(70)、14(197)、15(401)、16(654) 、17(894) POI(1430)
# NYC 12(28)、13(86)、14(264)、15(765)、16(1843)、17(3484) POI(15754)
# SIN 12(10)、13(24)、14(60) 、15(175)、16(512)、 17(1296) POI(8974)
# PHO
# tile 12(22)、13(70)、14(197)、15(401)、16(654)、17(894) POI(1430)
# h3 编码 5(7)、6(33)、7(155)、8(456)、9(792)、10(1104),11(1298),12(1382),13(1400),14、15(1405) POI(1950)
# S2 编码 9(7)、10(18)、11(58)、12(172)、13(391)、14(622),15(861),16(1085),17(1258),18(1347),19(1379) POI(1950)
# NYC
# h3 编码 5(8)、6(36)、7(183)、8(852)、9(2565)、10(5603)、11(10092)、12(13672)、13(15078) POI(15754)
# SIN
# h3 编码 5(5)、6(15)、7(60)、8(272)、9(1119)、10(2904) POI(8974)
# def generate_area_dict(location_code_type, poi_sequences, poi_mapping, poi_location):
# codes_0, codes_1, codes_2, codes_3, codes_4, codes_5 = [], [], [], [], [], []
# dict_0, dict_1, dict_2, dict_3, dict_4, dict_5 = {}, {}, {}, {}, {}, {}
# for sequence in poi_sequences:
# sequence_0, sequence_1, sequence_2, sequence_3, sequence_4, sequence_5 = [], [], [], [], [], []
# for seq in sequence:
# seq_0, seq_1, seq_2, seq_3, seq_4, seq_5 = [], [], [], [], [], []
# for poi in seq:
# poi_id = poi_mapping[poi]
# record = poi_location[poi_location['POI_id'] == poi_id].iloc[0]
# longitude = round(record['longitude'], 6)
# latitude = round(record['latitude'], 6)
#
# if location_code_type == "h3":
# code_0, code_1, code_2, code_3, code_4, code_5 = get_location_code_h3(latitude, longitude)
# elif location_code_type == "S2":
# code_0, code_1, code_2, code_3, code_4, code_5 = get_location_code_S2(latitude, longitude)
# elif location_code_type == "tile":
# code_0, code_1, code_2, code_3, code_4, code_5 = get_location_code_tile(latitude, longitude)
# else:
# raise Exception("Wrong location code type!")
# dict_0.setdefault(code_0, len(dict_0))
# dict_1.setdefault(code_1, len(dict_1))
# dict_2.setdefault(code_2, len(dict_2))
# dict_3.setdefault(code_3, len(dict_3))
# dict_4.setdefault(code_4, len(dict_4))
# dict_5.setdefault(code_5, len(dict_5))
#
# seq_0.append(dict_0[code_0])
# seq_1.append(dict_1[code_1])
# seq_2.append(dict_2[code_2])
# seq_3.append(dict_3[code_3])
# seq_4.append(dict_4[code_4])
# seq_5.append(dict_5[code_5])
# sequence_0.append(seq_0)
# sequence_1.append(seq_1)
# sequence_2.append(seq_2)
# sequence_3.append(seq_3)
# sequence_4.append(seq_4)
# sequence_5.append(seq_5)
# codes_0.append(sequence_0)
# codes_1.append(sequence_1)
# codes_2.append(sequence_2)
# codes_3.append(sequence_3)
# codes_4.append(sequence_4)
# codes_5.append(sequence_5)
#
# codes_0 = np.array(codes_0)
# codes_1 = np.array(codes_1)
# codes_2 = np.array(codes_2)
# codes_3 = np.array(codes_3)
# codes_4 = np.array(codes_4)
# codes_5 = np.array(codes_5)
# area_dict = {"0": codes_0, "1": codes_1, "2": codes_2, "3": codes_3, "4": codes_4, "5": codes_5}
#
# # 输出位置编码到 csv 中
# # pd.DataFrame.from_dict(data=dict_0, orient='index').to_csv(f"./raw_data/PHO_S2_10.csv", header=False)
# # pd.DataFrame.from_dict(data=dict_1, orient='index').to_csv(f"./raw_data/PHO_S2_11.csv", header=False)
# # pd.DataFrame.from_dict(data=dict_2, orient='index').to_csv(f"./raw_data/PHO_S2_12.csv", header=False)
# # pd.DataFrame.from_dict(data=dict_3, orient='index').to_csv(f"./raw_data/PHO_S2_13.csv", header=False)
# # pd.DataFrame.from_dict(data=dict_4, orient='index').to_csv(f"./raw_data/PHO_S2_14.csv", header=False)
# # pd.DataFrame.from_dict(data=dict_5, orient='index').to_csv(f"./raw_data/PHO_S2_16.csv", header=False)
#
# return area_dict
def generate_h3_area_mapping():
"""
Generate the index table of POI ID to area index
"""
df = pd.read_csv(f"./raw_data/{city}_poi_mapping.csv")
df["token_5"] = df.apply(lambda row: h3.latlng_to_cell(row["latitude"], row["longitude"], 5), axis=1)
# Get the data in the h3_5 column and remove duplicates and sort
token_5_values = df["token_5"].unique()
token_5_values.sort()
# Generate serial number
index_5 = list(range(len(token_5_values)))
index_5_dict = dict(zip(token_5_values, index_5))
df['index_5'] = df['token_5'].map(index_5_dict)
df["token_6"] = df.apply(lambda row: h3.latlng_to_cell(row["latitude"], row["longitude"], 6), axis=1)
token_6_values = df["token_6"].unique()
token_6_values.sort()
index_6 = list(range(len(token_6_values)))
index_6_dict = dict(zip(token_6_values, index_6))
df['index_6'] = df['token_6'].map(index_6_dict)
df["token_7"] = df.apply(lambda row: h3.latlng_to_cell(row["latitude"], row["longitude"], 7), axis=1)
token_7_values = df["token_7"].unique()
token_7_values.sort()
index_7 = list(range(len(token_7_values)))
index_7_dict = dict(zip(token_7_values, index_7))
df['index_7'] = df['token_7'].map(index_7_dict)
df["token_8"] = df.apply(lambda row: h3.latlng_to_cell(row["latitude"], row["longitude"], 8), axis=1)
token_8_values = df["token_8"].unique()
token_8_values.sort()
index_8 = list(range(len(token_8_values)))
index_8_dict = dict(zip(token_8_values, index_8))
df['index_8'] = df['token_8'].map(index_8_dict)
df["token_9"] = df.apply(lambda row: h3.latlng_to_cell(row["latitude"], row["longitude"], 9), axis=1)
token_9_values = df["token_9"].unique()
token_9_values.sort()
index_9 = list(range(len(token_9_values)))
index_9_dict = dict(zip(token_9_values, index_9))
df['index_9'] = df['token_9'].map(index_9_dict)
df["token_10"] = df.apply(lambda row: h3.latlng_to_cell(row["latitude"], row["longitude"], 10), axis=1)
token_10_values = df["token_10"].unique()
token_10_values.sort()
index_10 = list(range(len(token_10_values)))
index_10_dict = dict(zip(token_10_values, index_10))
df['index_10'] = df['token_10'].map(index_10_dict)
df.to_csv(f"./raw_data/{city}_h3_area_mapping.csv", index=False)
print(f"Created {city}_h3_area_mapping.csv")
def get_area_index_h3(row):
index_5 = row['index_5'].values[0]
index_6 = row['index_6'].values[0]
index_7 = row['index_7'].values[0]
index_8 = row['index_8'].values[0]
index_9 = row['index_9'].values[0]
index_10 = row['index_10'].values[0]
return [index_5, index_6, index_7, index_8, index_9, index_10]
def generate_area_dict_h3(location_code_type, poi_sequences, poi_mapping):
codes_0, codes_1, codes_2, codes_3, codes_4, codes_5 = [], [], [], [], [], []
area_mapping = pd.read_csv(f"./raw_data/{city}_{location_code_type}_area_mapping.csv")
for sequence in poi_sequences:
sequence_0, sequence_1, sequence_2, sequence_3, sequence_4, sequence_5 = [], [], [], [], [], []
for seq in sequence:
seq_0, seq_1, seq_2, seq_3, seq_4, seq_5 = [], [], [], [], [], []
for poi in seq:
poi_id = poi_mapping[poi]
row = area_mapping.loc[area_mapping['POI_id'] == poi_id]
if location_code_type == "h3":
index_5, index_6, index_7, index_8, index_9, index_10 = get_area_index_h3(row)
# elif location_code_type == "S2":
# code_0, code_1, code_2, code_3, code_4, code_5 = get_location_code_S2(latitude, longitude)
# elif location_code_type == "tile":
# code_0, code_1, code_2, code_3, code_4, code_5 = get_location_code_tile(latitude, longitude)
else:
raise Exception("Wrong location code type!")
seq_0.append(index_5)
seq_1.append(index_6)
seq_2.append(index_7)
seq_3.append(index_8)
seq_4.append(index_9)
seq_5.append(index_10)
sequence_0.append(seq_0)
sequence_1.append(seq_1)
sequence_2.append(seq_2)
sequence_3.append(seq_3)
sequence_4.append(seq_4)
sequence_5.append(seq_5)
codes_0.append(sequence_0)
codes_1.append(sequence_1)
codes_2.append(sequence_2)
codes_3.append(sequence_3)
codes_4.append(sequence_4)
codes_5.append(sequence_5)
codes_0 = np.array(codes_0)
codes_1 = np.array(codes_1)
codes_2 = np.array(codes_2)
codes_3 = np.array(codes_3)
codes_4 = np.array(codes_4)
codes_5 = np.array(codes_5)
area_dict = {"0": codes_0, "1": codes_1, "2": codes_2, "3": codes_3, "4": codes_4, "5": codes_5}
return area_dict
def get_area_index_geohash(row):
index_4 = row['index_4'].values[0]
index_5 = row['index_5'].values[0]
index_6 = row['index_6'].values[0]
index_7 = row['index_7'].values[0]
index_8 = row['index_8'].values[0]
return [index_4, index_5, index_6, index_7, index_8]
def generate_area_dict_geohash(location_code_type, poi_sequences, poi_mapping):
codes_0, codes_1, codes_2, codes_3, codes_4 = [], [], [], [], []
area_mapping = pd.read_csv(f"./raw_data/{city}_{location_code_type}_area_mapping.csv")
for sequence in poi_sequences:
sequence_0, sequence_1, sequence_2, sequence_3, sequence_4 = [], [], [], [], []
for seq in sequence:
seq_0, seq_1, seq_2, seq_3, seq_4 = [], [], [], [], []
for poi in seq:
poi_id = poi_mapping[poi]
row = area_mapping.loc[area_mapping['POI_id'] == poi_id]
if location_code_type == "geohash":
index_4, index_5, index_6, index_7, index_8 = get_area_index_geohash(row)
else:
raise Exception("Wrong location code type!")
seq_0.append(index_4)
seq_1.append(index_5)
seq_2.append(index_6)
seq_3.append(index_7)
seq_4.append(index_8)
sequence_0.append(seq_0)
sequence_1.append(seq_1)
sequence_2.append(seq_2)
sequence_3.append(seq_3)
sequence_4.append(seq_4)
codes_0.append(sequence_0)
codes_1.append(sequence_1)
codes_2.append(sequence_2)
codes_3.append(sequence_3)
codes_4.append(sequence_4)
codes_0 = np.array(codes_0)
codes_1 = np.array(codes_1)
codes_2 = np.array(codes_2)
codes_3 = np.array(codes_3)
codes_4 = np.array(codes_4)
area_dict = {"0": codes_0, "1": codes_1, "2": codes_2, "3": codes_3, "4": codes_4}
return area_dict
def generate_data(city):
"""
Generate complete train and test data set for one city
Save the result in pickle files
Args:
city (str): city to read data from and process
"""
print(f"******Process data for {city}******")
data = pd.read_csv(f"./raw_data/{city}_checkin_with_active_regionId.csv")
visit_sequence_dict, total_sequences_meta = generate_sequence(data, min_seq_len, min_seq_num)
valid_input_index = filter_long_short_term_sequences(total_sequences_meta, min_short_term_len, pre_seq_window,
min_long_term_count)
# poi inputs
poi_sequences, poi_mapping = generate_POI_sequences(data, visit_sequence_dict)
# save
with open(f'./processed_data/{city}_visit_sequence_dict.pickle', 'wb') as f:
pickle.dump(visit_sequence_dict, f)
with open(f'./processed_data/{city}_valid_input_index.pickle', 'wb') as f:
pickle.dump(valid_input_index, f)
np.save(f'./processed_data/{city}_poi_sequences.npy', poi_sequences)
np.save(f'./processed_data/{city}_poi_mapping.npy', poi_mapping)
# load
with open(f'./processed_data/{city}_visit_sequence_dict.pickle', 'rb') as f:
visit_sequence_dict = pickle.load(f)
with open(f'./processed_data/{city}_valid_input_index.pickle', 'rb') as f:
valid_input_index = pickle.load(f)
poi_sequences = np.load(f'./processed_data/{city}_poi_sequences.npy', allow_pickle=True)
poi_mapping = np.load(f'./processed_data/{city}_poi_mapping.npy', allow_pickle=True)
# Export POI ID latitude and longitude
# poi_location = generate_poi_to_location(city_code, poi_mapping, data)
# print("poi mapping csv generated.")
train_data, valid_data, test_data, train_valid_data, meta_data = [], [], [], [], {}
poi_input_data = generate_input_samples(poi_sequences, valid_input_index)
poi_train, poi_valid, poi_test, poi_train_valid = split_train_test(poi_input_data)
train_data.append(poi_train)
valid_data.append(poi_valid)
test_data.append(poi_test)
train_valid_data.append(poi_train_valid)
print("poi sequence generated.")
# cat inputs
cat_sequences, cat_mapping = generate_category_sequences(data, visit_sequence_dict)
cat_input_data = generate_input_samples(cat_sequences, valid_input_index)
cat_train, cat_valid, cat_test, cat_train_valid = split_train_test(cat_input_data)
train_data.append(cat_train)
valid_data.append(cat_valid)
test_data.append(cat_test)
train_valid_data.append(cat_train_valid)
print("category sequence generated.")
# user inputs
user_sequences, user_mapping = generate_user_sequences(data, visit_sequence_dict)
user_input_data = generate_input_samples(user_sequences, valid_input_index)
user_train, user_valid, user_test, user_train_valid = split_train_test(user_input_data)
train_data.append(user_train)
valid_data.append(user_valid)
test_data.append(user_test)
train_valid_data.append(user_train_valid)
print("user sequence generated.")
# hour inputs
hour_sequences, hour_mapping = generate_hour_sequences(data, visit_sequence_dict)
hour_input_data = generate_input_samples(hour_sequences, valid_input_index)
hour_train, hour_valid, hour_test, hour_train_valid = split_train_test(hour_input_data)
train_data.append(hour_train)
valid_data.append(hour_valid)
test_data.append(hour_test)
train_valid_data.append(hour_train_valid)
print("hour sequence generated.")
# day inputs
day_sequences, day_mapping = generate_day_sequences(data, visit_sequence_dict)
day_input_data = generate_input_samples(day_sequences, valid_input_index)
day_train, day_valid, day_test, day_train_valid = split_train_test(day_input_data)
train_data.append(day_train)
valid_data.append(day_valid)
test_data.append(day_test)
train_valid_data.append(day_train_valid)
print("day sequence generated.")
area_code_type = "geohash" # geohash,h3,S2,tile
area_dict = generate_area_dict_geohash(area_code_type, poi_sequences, poi_mapping)
for key, area_data in area_dict.items():
area_input_data = generate_input_samples(area_data, valid_input_index)
area_train, area_valid, area_test, area_train_valid = split_train_test(area_input_data)
train_data.append(area_train)
valid_data.append(area_valid)
test_data.append(area_test)
train_valid_data.append(area_train_valid)
print(f"all {area_code_type} area sequence generated.")
# reshape data: [features * sample * sequence] -> [sample * sequence * features]
train_data = reshape_data(train_data)
valid_data = reshape_data(valid_data)
test_data = reshape_data(test_data)
train_valid_data = reshape_data(train_valid_data)
# meta data
meta_data["POI"] = poi_mapping
meta_data["cat"] = cat_mapping
meta_data["user"] = user_mapping
meta_data["hour"] = hour_mapping
meta_data["day"] = day_mapping
# output data
dump_data(train_data, city, "train")
dump_data(valid_data, city, "valid")
dump_data(test_data, city, "test")
dump_data(train_valid_data, city, "train_valid")
dump_data(meta_data, city, "meta")
if __name__ == '__main__':
# city_list = ['PHO', 'NYC', 'SIN']
city_list = ['PHO']
# generate_h3_area_mapping()
for city in city_list:
generate_data(city)