-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset_creation.py
38 lines (30 loc) · 1.61 KB
/
dataset_creation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
from processing.processing import *
import logging
logger = logging.getLogger(__name__)
logging.basicConfig(format='%(levelname)s:%(message)s', level=logging.INFO)
if __name__ == "__main__":
for show_name in ["the_office", "seinfeld", "tbbt", "friends"]:
logger.info(f"Creating datasets for {show_name}...")
path = f"data/{show_name}"
# load raw data
latest_file = [f for f in os.listdir(path) if f.startswith(f"{show_name}_lines_v")][-1]
data = pd.read_csv(f"{path}/{latest_file}")
# save all
edges_weighted = (data.pipe(filter_by_speakers, count=0)
.pipe(filter_group_scenes)
.pipe(get_speaker_network_edges))
edges_weighted.to_csv(f"{path}/edges_weighted_all.csv", index=False, encoding="utf-8")
# save speakers with over 100 lines
office_edges_weighted = (data.pipe(filter_by_speakers)
.pipe(filter_group_scenes)
.pipe(get_speaker_network_edges))
office_edges_weighted.to_csv(f"{path}/edges_weighted.csv", index=False, encoding="utf-8")
# top 30 speakers
top30_edges_weighted = (data.pipe(filter_by_speakers, top=30)
.pipe(filter_group_scenes)
.pipe(get_speaker_network_edges))
top30_edges_weighted.to_csv(f"{path}/edges_weighted_top30.csv", index=False, encoding="utf-8")
save_seasons(data, count=20, path=path)
save_episodes(data, count=0, path=path)
save_merged_episodes(path)
merge_seasons(path)