forked from Victerose/FiveStone-Gongzhu
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfivestone_conv.py
executable file
·275 lines (233 loc) · 10.4 KB
/
fivestone_conv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
#!/usr/bin/env python3
# -*- coding: UTF-8 -*-
from os import stat
import time,sys,traceback,math,numpy
LOGLEVEL={0:"DEBUG",1:"INFO",2:"WARN",3:"ERR",4:"FATAL"}
LOGFILE=sys.argv[0].split(".")
LOGFILE[-1]="log"
LOGFILE=".".join(LOGFILE)
def log(msg,l=1,end="\n",logfile=None,fileonly=False):
st=traceback.extract_stack()[-2]
lstr=LOGLEVEL[l]
#now_str="%s %03d"%(time.strftime("%y/%m/%d %H:%M:%S",time.localtime()),math.modf(time.time())[0]*1000)
now_str="%s %03d"%(time.strftime("%m/%d %H:%M:%S",time.localtime()),math.modf(time.time())[0]*1000)
if l<3:
tempstr="%s [%s,%s:%d] %s%s"%(now_str,lstr,st.name,st.lineno,str(msg),end)
else:
tempstr="%s [%s,%s:%d] %s:\n%s%s"%(now_str,lstr,st.name,st.lineno,str(msg),traceback.format_exc(limit=5),end)
if not fileonly:
print(tempstr,end="")
if l>=1 or fileonly:
if logfile==None:
logfile=LOGFILE
with open(logfile,"a") as f:
f.write(tempstr)
from copy import deepcopy
from MCTS.mcts import abpruning
import torch,re
import torch.nn as nn
import torch.nn.functional as F
def gen_kern_diag(kern_hori):
return torch.stack([torch.diag(kern_hori[i][0][0]) for i in range(kern_hori.shape[0])]).view(kern_hori.shape[0],1,kern_hori.shape[3],kern_hori.shape[3])
kern_a_hori = torch.tensor([[0,1.,1,0],[1,0,0,0],[0,0,0,1]]).view(3,1,1,4)
kern_a_diag = gen_kern_diag(kern_a_hori)
kern_b_hori = torch.tensor([[[[1,1.0,1,0]]],[[[0,0,0,1]]]])
kern_b_diag = gen_kern_diag(kern_b_hori)
kern_c1_hori = torch.tensor([[[[1.,1,0,1,0]]],[[[0,0,1,0,0]]],[[[0,0,0,0,1]]]])
kern_c1_diag = gen_kern_diag(kern_c1_hori)
kern_c2_hori = torch.tensor([[[[0,1.,1,0,1]]],[[[1,0,0,0,0]]],[[[0,0,0,1,0]]]])
kern_c2_diag = gen_kern_diag(kern_c2_hori)
kern_d_hori = torch.tensor([[[[0,1.,1,1,0]]],[[[1,0,0,0,0]]],[[[0,0,0,0,1]]]])
kern_d_diag = gen_kern_diag(kern_d_hori)
kern_e_hori = torch.tensor([[0,1.,1,0,1,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]).view(4,1,1,6)
kern_e_diag = gen_kern_diag(kern_e_hori)
kern_f_hori = torch.tensor([[1.,1,1,1,0],[0,0,0,0,1]]).view(2,1,1,5)
kern_f_diag = gen_kern_diag(kern_f_hori)
kern_g_hori = torch.tensor([[1.,1,0,1,1],[0,0,1,0,0]]).view(2,1,1,5)
kern_g_diag = gen_kern_diag(kern_g_hori)
kern_h_hori = torch.tensor([[1.,0,1,1,1],[0,1,0,0,0]]).view(2,1,1,5)
kern_h_diag = gen_kern_diag(kern_h_hori)
kern_i_hori = torch.tensor([[0,1.,1,1,1,0],[1,0,0,0,0,0],[0,0,0,0,0,1]]).view(3,1,1,6)
kern_i_diag = gen_kern_diag(kern_i_hori)
kern_possact_5x5_too_slow = torch.tensor([[[[1.,1,1,1,1],[1,2,2,2,1],[1,2,-1024,2,1],[1,2,2,2,1],[1,1,1,1,1]]]])
kern_possact_3x3 = torch.tensor([[[[1.,1,1],[1,-1024,1],[1,1,1]]]])
class FiveStoneState():
kernal_hori = torch.tensor([[[0,0,0,0,0],[0,0,0,0,0],[1/5,1/5,1/5,1/5,1/5],[0,0,0,0,0],[0,0,0,0,0]]])
kernal_diag = torch.tensor([[[1/5,0,0,0,0],[0,1/5,0,0,0],[0,0,1/5,0,0],[0,0,0,1/5,0],[0,0,0,0,1/5]]])
kern_5 = torch.stack((kernal_hori, kernal_diag, kernal_hori.rot90(1,[1,2]), kernal_diag.rot90(1,[1,2])))
BDSZ=15
BDMD=7
BDAR=225
BLACKWIN=10000.0
def __init__(self):
self.attack_factor = 0.8
self.reset()
def reset(self):
self.board = torch.zeros(self.BDSZ,self.BDSZ)
self.board[self.BDMD,self.BDMD] = 1.0
self.currentPlayer = -1
self.is_terminal=False
self.result=float("nan")
def track_hist(self,hists,rot=0):
for i in hists:
ip=(self.BDMD-i[1],self.BDMD+i[0])
if self.board[ip[0]][ip[1]]!=0:
raise Exception("Put stone on existed stone?")
self.board[ip[0]][ip[1]] = self.currentPlayer
self.currentPlayer *= -1
self.board=self.board.rot90(rot)
def getCurrentPlayer(self):
return self.currentPlayer
def getPossibleActions(self,printflag=False):
cv = F.conv2d(self.board.abs().view(1,1,self.BDSZ,self.BDSZ), kern_possact_3x3, padding=1)
if printflag:
print(cv)
l_temp=[(cv[0,0,i,j].item(),(i,j)) for i in range(self.BDSZ) for j in range(self.BDSZ) if cv[0,0,i,j]>0]
l_temp.sort(key=lambda x:-1*x[0])
return [i[1] for i in l_temp]
def takeAction(self, action):
newState = deepcopy(self)
if newState.board[action[0]][action[1]]!=0:
log(self.board)
print(self.getPossibleActions(printflag=True))
raise Exception("Put stone on existed stone?")
newState.board[action[0]][action[1]] = self.currentPlayer
newState.currentPlayer *= -1
return newState
def isTerminal(self):
conv1 = F.conv2d(self.board.view(1,1,self.BDSZ,self.BDSZ), self.kern_5, padding=2)
if conv1.max() >= 0.9:
self.is_terminal=True
self.result=self.BLACKWIN
elif conv1.min() <= -0.9:
self.is_terminal=True
self.result=-self.BLACKWIN
elif self.board.abs().sum()==self.BDAR:
self.is_terminal=True
self.result=0.0
return self.is_terminal
def getReward(self):
if self.is_terminal:
return self.result
boards = torch.stack((self.board.view(1,self.BDSZ,self.BDSZ),
self.board.view(1,self.BDSZ,self.BDSZ).rot90(1,[1,2]),
self.board.view(1,self.BDSZ,self.BDSZ).rot90(2,[1,2]),
self.board.view(1,self.BDSZ,self.BDSZ).rot90(3,[1,2])))
bk_reward=self.getReward_sub(boards,1)
wt_reward=self.getReward_sub(boards,-1)
if self.currentPlayer == 1:
return bk_reward-self.attack_factor*wt_reward
else:
return self.attack_factor*bk_reward-wt_reward
def getReward_sub(self,boards,player):
cv = F.conv2d(boards, kern_a_hori, padding=0)
pt_a = ((cv[:,0]==player*2) & (cv[:,1]==0) & (cv[:,2]==0)).sum().item()
cv = F.conv2d(boards, kern_a_diag, padding=0)
pt_a += ((cv[:,0]==player*2) & (cv[:,1]==0) & (cv[:,2]==0)).sum().item()
del cv
cv = F.conv2d(boards, kern_b_hori, padding=0)
pt_b = ((cv[:,0]==player*3) & (cv[:,1]==0)).sum().item()
cv = F.conv2d(boards, kern_b_diag, padding=0)
pt_b += ((cv[:,0]==player*3) & (cv[:,1]==0)).sum().item()
del cv
cv = F.conv2d(boards, kern_c1_hori, padding=0)
pt_c1 = ((cv[:,0]==player*3) & (cv[:,1]==0) & (cv[:,2]==0)).sum().item()
cv = F.conv2d(boards, kern_c1_diag, padding=0)
pt_c1 += ((cv[:,0]==player*3) & (cv[:,1]==0) & (cv[:,2]==0)).sum().item()
del cv
cv = F.conv2d(boards, kern_c2_hori, padding=0)
pt_c2 = ((cv[:,0]==player*3) & (cv[:,1]==0) & (cv[:,2]==0)).sum().item()
cv = F.conv2d(boards, kern_c2_diag, padding=0)
pt_c2 += ((cv[:,0]==player*3) & (cv[:,1]==0) & (cv[:,2]==0)).sum().item()
del cv
cv = F.conv2d(boards, kern_d_hori, padding=0)
pt_d = ((cv[:,0]==player*3) & (cv[:,1]==0) & (cv[:,2]==0)).sum().item()
cv = F.conv2d(boards, kern_d_diag, padding=0)
pt_d += ((cv[:,0]==player*3) & (cv[:,1]==0) & (cv[:,2]==0)).sum().item()
del cv
cv = F.conv2d(boards, kern_e_hori, padding=0)
pt_e = ((cv[:,0]==player*3) & (cv[:,1]==0) & (cv[:,2]==0) & (cv[:,3]==0)).sum().item()
cv = F.conv2d(boards, kern_e_diag, padding=0)
pt_e += ((cv[:,0]==player*3) & (cv[:,1]==0) & (cv[:,2]==0) & (cv[:,3]==0)).sum().item()
del cv
cv = F.conv2d(boards, kern_f_hori, padding=0)
pt_f = ((cv[:,0]==player*4) & (cv[:,1]==0)).sum().item()
cv = F.conv2d(boards, kern_f_diag, padding=0)
pt_f += ((cv[:,0]==player*4) & (cv[:,1]==0)).sum().item()
del cv
cv = F.conv2d(boards, kern_g_hori, padding=0)
pt_g = ((cv[:,0]==player*4) & (cv[:,1]==0)).sum().item()
cv = F.conv2d(boards, kern_g_diag, padding=0)
pt_g += ((cv[:,0]==player*4) & (cv[:,1]==0)).sum().item()
del cv
cv = F.conv2d(boards, kern_h_hori, padding=0)
pt_h = ((cv[:,0]==player*4) & (cv[:,1]==0)).sum().item()
cv = F.conv2d(boards, kern_h_diag, padding=0)
pt_h += ((cv[:,0]==player*4) & (cv[:,1]==0)).sum().item()
del cv
cv = F.conv2d(boards, kern_i_hori, padding=0)
pt_i = ((cv[:,0]==player*4) & (cv[:,1]==0) & (cv[:,2]==0)).sum().item()
cv = F.conv2d(boards, kern_i_diag, padding=0)
pt_i += ((cv[:,0]==player*4) & (cv[:,1]==0)& (cv[:,2]==0)).sum().item()
del cv
# print("pt_a | ", pt_a)
# print("pt_b | ", pt_b)
# print("pt_c1 | ", pt_c1)
# print("pt_c2 | ", pt_c2)
# print("pt_d | ", pt_d)
# print("pt_e | ", pt_e)
# print("pt_f | ", pt_f)
# print("pt_g | ", pt_g)
# print("pt_h | ", pt_h)
# print("pt_i | ", pt_i)
return (5*pt_a + 50*pt_b + 20*pt_c1 + 10*pt_c2 + 200*pt_d +\
450*pt_e + 450*pt_f + 245*pt_g + 100*pt_h + 4100*pt_i)/10
def pretty_board(gamestate):
d_stone={1:"\u25cf",-1:"\u25cb",0:" "} #"\u25cb" "\u25cf"
li=[]
for i,r in enumerate(gamestate.board):
lj="|".join([d_stone[j.item()] for j in r])
li.append("%2d|%s|"%(gamestate.BDMD-i,lj))
li.append(" "+" "*gamestate.BDMD+"0 1 2 3 4 5 6 7")
li="\n".join(li)
log("\n%s"%(li),l=0)
return li
def play_tui(human_color=-1,deep=3):
searcher=abpruning(deep=deep,n_killer=4)
state=FiveStoneState()
state.reset()
while not state.isTerminal():
if state.currentPlayer==human_color:
get_tui_input(state)
else:
searcher.counter=0
log("searching...")
searcher.search(initialState=state)
log("searched %d cases"%(searcher.counter))
best_action=max(searcher.children.items(),key=lambda x: x[1]*state.currentPlayer)
log(best_action)
state=state.takeAction(best_action[0])
def get_tui_input(state):
pretty_board(state)
while True:
istr=input("your action: ")
r=re.match("[\\-0-9]+([,.])[\\-0-9]+",istr)
if r:
myaction=tuple([int(i) for i in istr.split(r.group(1))])
try:
state=state.track_hist([myaction])
except:
log("take action failed",l=3)
else:
return state
else:
log("input format error!")
def test_rot():
state = FiveStoneState()
for i in range(4):
state.reset()
state.track_hist([(1,1),(2,-2)],rot=i)
pretty_board(state)
if __name__=="__main__":
#test_rot()
play_tui(human_color=1,deep=2)