Skip to content

C3-SL: Circular Convolution-Based Batch-Wise Compression for Communication-Efficient Split Learning (IEEE MLSP 2022)

Notifications You must be signed in to change notification settings

WesleyHsieh0806/C3-SL

Folders and files

NameName
Last commit message
Last commit date

Latest commit

e1a874d Β· Aug 6, 2022
Aug 6, 2022
Aug 6, 2022
Jan 9, 2022
Jul 25, 2022
Aug 6, 2022

Repository files navigation

C3-SL: Circular Convolution-Based Batch-Wise Compression for Communication-Efficient Split Learning

This repository provides the official Pytorch implementation for C3-SL.

πŸ“Ž Paper Link ✏️ Citations

C3-SL Framework


  • Batch-Wise Compression (A new Compression Paradigm for Split Learning)
  • Exploit Circular Convolution and Orthogonality of features to avoid information loss
  • Reduce 1152x memory and 2.25x computation overhead compared to the SOTA dimension-wise compression method

Presentation Video : Click here


Table of Contents


πŸ“š Prepare Dataset

The source code can be found in CIFAR-10/data preprocess src and CIFAR-100/data preprocess src.

Tasks Datasets:point_down:
Image Classification CIFAR-10, CIFAR-100
  • Use the following commands:
$ cd CIFAR10  # or cd CIFAR100
$ cd "data preprocess src"    
$ python download_data.py
  • The data structure should be formatted like this:
CIFAR10(Current dir)
β”œβ”€β”€CIFAR
β”‚   β”œβ”€β”€ train
β”‚   β”œβ”€β”€ val
β”œβ”€β”€data preprocess src
β”‚   β”œβ”€β”€ download_data.py

πŸƒ Usage - Training

Requirements

  • Python 3.6
  • Pytorch 1.4.0
  • torchvision
  • CUDA 10.2
  • tensorflow_datasets
  • Other dependencies: numpy, matplotlib, tensorflow

Training

Modify parameters in the shell script.

Parameters Definition
--batch batch size
--epoch number of training epochs
--dump_path save path of experiment logs and checkpoints
--arch model architecture (resnet50/vgg16)
--split the split point of model
--bcr Batch Compression Ratio R
cd CIFAR10/C3-SL
./train.sh

πŸ“ˆ Experiment Overview

  • Comparable Accuracy with SOTA
  • Greatly Reduce Resource Overhead
Experiment


Citations

@article{hsieh2022c3,
  title={C3-SL: Circular Convolution-Based Batch-Wise Compression for Communication-Efficient Split Learning},
  author={Hsieh, Cheng-Yen and Chuang, Yu-Chuan and others},
  journal={arXiv preprint arXiv:2207.12397},
  year={2022}
}

About

C3-SL: Circular Convolution-Based Batch-Wise Compression for Communication-Efficient Split Learning (IEEE MLSP 2022)

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published