-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmodules.html
1035 lines (1033 loc) · 43.5 KB
/
modules.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" lang="" xml:lang="">
<head>
<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta
name="viewport"
content="width=device-width, initial-scale=1.0, user-scalable=yes"
/>
<title>modules</title>
<style type="text/css">
code {
white-space: pre-wrap;
}
span.smallcaps {
font-variant: small-caps;
}
span.underline {
text-decoration: underline;
}
div.column {
display: inline-block;
vertical-align: top;
width: 50%;
}
</style>
</head>
<body>
<h3 id="navigation">Navigation</h3>
<ul>
<li>
<a href="https://docs.python.org/3/genindex.html" title="General Index"
>index</a
>
</li>
<li>
<a
href="https://docs.python.org/3/py-modindex.html"
title="Python Module Index"
>modules</a
>
|
</li>
<li><a href="inputoutput.html" title="7. Input and Output">next</a> |</li>
<li>
<a href="datastructures.html" title="5. Data Structures">previous</a> |
</li>
<li><img src="../_static/py.png" /></li>
<li><a href="https://www.python.org/">Python</a> »</li>
<li>
<a href="https://docs.python.org/3/index.html">3.9.5 Documentation</a> »
</li>
<li><a href="index.html">The Python Tutorial</a> »</li>
<li></li>
</ul>
<p><span id="tut-modules"></span></p>
<h1 id="modules">
<span class="section-number">6. </span>Modules<a
href="#modules"
class="headerlink"
title="Permalink to this headline"
>¶</a
>
</h1>
<p>
If you quit from the Python interpreter and enter it again, the
definitions you have made (functions and variables) are lost. Therefore,
if you want to write a somewhat longer program, you are better off using a
text editor to prepare the input for the interpreter and running it with
that file as input instead. This is known as creating a <em>script</em>.
As your program gets longer, you may want to split it into several files
for easier maintenance. You may also want to use a handy function that
you’ve written in several programs without copying its definition into
each program.
</p>
<p>
To support this, Python has a way to put definitions in a file and use
them in a script or in an interactive instance of the interpreter. Such a
file is called a <em>module</em>; definitions from a module can be
<em>imported</em> into other modules or into the <em>main</em> module (the
collection of variables that you have access to in a script executed at
the top level and in calculator mode).
</p>
<p>
A module is a file containing Python definitions and statements. The file
name is the module name with the suffix <code>.py</code> appended. Within
a module, the module’s name (as a string) is available as the value of the
global variable <code>__name__</code>. For instance, use your favorite
text editor to create a file called <code>fibo.py</code> in the current
directory with the following contents:
</p>
<pre><code># Fibonacci numbers module
def fib(n): # write Fibonacci series up to n
a, b = 0, 1
while a < n:
print(a, end=' ')
a, b = b, a+b
print()
def fib2(n): # return Fibonacci series up to n
result = []
a, b = 0, 1
while a < n:
result.append(a)
a, b = b, a+b
return result</code></pre>
<p>
Now enter the Python interpreter and import this module with the following
command:
</p>
<pre><code>>>> import fibo</code></pre>
<p>
This does not enter the names of the functions defined in
<code>fibo</code> directly in the current symbol table; it only enters the
module name <code>fibo</code> there. Using the module name you can access
the functions:
</p>
<pre><code>>>> fibo.fib(1000)
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987
>>> fibo.fib2(100)
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]
>>> fibo.__name__
'fibo'</code></pre>
<p>
If you intend to use a function often you can assign it to a local name:
</p>
<pre><code>>>> fib = fibo.fib
>>> fib(500)
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377</code></pre>
<p><span id="tut-moremodules"></span></p>
<h2 id="more-on-modules">
<span class="section-number">6.1. </span>More on Modules<a
href="#more-on-modules"
class="headerlink"
title="Permalink to this headline"
>¶</a
>
</h2>
<p>
A module can contain executable statements as well as function
definitions. These statements are intended to initialize the module. They
are executed only the <em>first</em> time the module name is encountered
in an import statement.
<a href="#id2" id="id1" class="footnote-reference brackets">1</a> (They
are also run if the file is executed as a script.)
</p>
<p>
Each module has its own private symbol table, which is used as the global
symbol table by all functions defined in the module. Thus, the author of a
module can use global variables in the module without worrying about
accidental clashes with a user’s global variables. On the other hand, if
you know what you are doing you can touch a module’s global variables with
the same notation used to refer to its functions,
<code>modname.itemname</code>.
</p>
<p>
Modules can import other modules. It is customary but not required to
place all
<a
href="https://docs.python.org/3/reference/simple_stmts.html#import"
class="reference internal"
><code class="xref std std-keyword docutils literal notranslate"
>import</code
></a
>
statements at the beginning of a module (or script, for that matter). The
imported module names are placed in the importing module’s global symbol
table.
</p>
<p>
There is a variant of the
<a
href="https://docs.python.org/3/reference/simple_stmts.html#import"
class="reference internal"
><code class="xref std std-keyword docutils literal notranslate"
>import</code
></a
>
statement that imports names from a module directly into the importing
module’s symbol table. For example:
</p>
<pre><code>>>> from fibo import fib, fib2
>>> fib(500)
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377</code></pre>
<p>
This does not introduce the module name from which the imports are taken
in the local symbol table (so in the example, <code>fibo</code> is not
defined).
</p>
<p>There is even a variant to import all names that a module defines:</p>
<pre><code>>>> from fibo import *
>>> fib(500)
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377</code></pre>
<p>
This imports all names except those beginning with an underscore
(<code>_</code>). In most cases Python programmers do not use this
facility since it introduces an unknown set of names into the interpreter,
possibly hiding some things you have already defined.
</p>
<p>
Note that in general the practice of importing <code>*</code> from a
module or package is frowned upon, since it often causes poorly readable
code. However, it is okay to use it to save typing in interactive
sessions.
</p>
<p>
If the module name is followed by <code>as</code>, then the name following
<code>as</code> is bound directly to the imported module.
</p>
<pre><code>>>> import fibo as fib
>>> fib.fib(500)
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377</code></pre>
<p>
This is effectively importing the module in the same way that
<code>import fibo</code> will do, with the only difference of it being
available as <code>fib</code>.
</p>
<p>
It can also be used when utilising
<a
href="https://docs.python.org/3/reference/simple_stmts.html#from"
class="reference internal"
><code class="xref std std-keyword docutils literal notranslate"
>from</code
></a
>
with similar effects:
</p>
<pre><code>>>> from fibo import fib as fibonacci
>>> fibonacci(500)
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377</code></pre>
<p>Note</p>
<p>
For efficiency reasons, each module is only imported once per interpreter
session. Therefore, if you change your modules, you must restart the
interpreter – or, if it’s just one module you want to test interactively,
use
<a
href="https://docs.python.org/3/library/importlib.html#importlib.reload"
class="reference internal"
title="importlib.reload"
><code class="sourceCode python"
>importlib.<span class="bu">reload</span>()</code
></a
>, e.g. <code>import importlib; importlib.reload(modulename)</code>.
</p>
<p><span id="tut-modulesasscripts"></span></p>
<h3 id="executing-modules-as-scripts">
<span class="section-number">6.1.1. </span>Executing modules as scripts<a
href="#executing-modules-as-scripts"
class="headerlink"
title="Permalink to this headline"
>¶</a
>
</h3>
<p>When you run a Python module with</p>
<pre><code>python fibo.py <arguments></code></pre>
<p>
the code in the module will be executed, just as if you imported it, but
with the <code>__name__</code> set to <code>"__main__"</code>. That means
that by adding this code at the end of your module:
</p>
<pre><code>if __name__ == "__main__":
import sys
fib(int(sys.argv[1]))</code></pre>
<p>
you can make the file usable as a script as well as an importable module,
because the code that parses the command line only runs if the module is
executed as the “main” file:
</p>
<pre><code>$ python fibo.py 50
0 1 1 2 3 5 8 13 21 34</code></pre>
<p>If the module is imported, the code is not run:</p>
<pre><code>>>> import fibo
>>></code></pre>
<p>
This is often used either to provide a convenient user interface to a
module, or for testing purposes (running the module as a script executes a
test suite).
</p>
<p><span id="tut-searchpath"></span></p>
<h3 id="the-module-search-path">
<span class="section-number">6.1.2. </span>The Module Search Path<a
href="#the-module-search-path"
class="headerlink"
title="Permalink to this headline"
>¶</a
>
</h3>
<p>
When a module named <code>spam</code> is imported, the interpreter first
searches for a built-in module with that name. If not found, it then
searches for a file named <code>spam.py</code> in a list of directories
given by the variable
<a
href="https://docs.python.org/3/library/sys.html#sys.path"
class="reference internal"
title="sys.path"
><code class="sourceCode python">sys.path</code></a
>.
<a
href="https://docs.python.org/3/library/sys.html#sys.path"
class="reference internal"
title="sys.path"
><code class="sourceCode python">sys.path</code></a
>
is initialized from these locations:
</p>
<ul>
<li>
<p>
The directory containing the input script (or the current directory
when no file is specified).
</p>
</li>
<li>
<p>
<span id="index-1" class="target"></span
><a
href="https://docs.python.org/3/using/cmdline.html#envvar-PYTHONPATH"
class="reference internal"
><code class="xref std std-envvar docutils literal notranslate"
>PYTHONPATH</code
></a
>
(a list of directory names, with the same syntax as the shell variable
<span id="index-2" class="target"></span><code>PATH</code>).
</p>
</li>
<li><p>The installation-dependent default.</p></li>
</ul>
<p>Note</p>
<p>
On file systems which support symlinks, the directory containing the input
script is calculated after the symlink is followed. In other words the
directory containing the symlink is <strong>not</strong> added to the
module search path.
</p>
<p>
After initialization, Python programs can modify
<a
href="https://docs.python.org/3/library/sys.html#sys.path"
class="reference internal"
title="sys.path"
><code class="sourceCode python">sys.path</code></a
>. The directory containing the script being run is placed at the
beginning of the search path, ahead of the standard library path. This
means that scripts in that directory will be loaded instead of modules of
the same name in the library directory. This is an error unless the
replacement is intended. See section
<a href="#tut-standardmodules" class="reference internal"
><span class="std std-ref">Standard Modules</span></a
>
for more information.
</p>
<h3 id="compiled-python-files">
<span class="section-number">6.1.3. </span>“Compiled” Python files<a
href="#compiled-python-files"
class="headerlink"
title="Permalink to this headline"
>¶</a
>
</h3>
<p>
To speed up loading modules, Python caches the compiled version of each
module in the <code>__pycache__</code> directory under the name
<code>module.version.pyc</code>, where the version encodes the format of
the compiled file; it generally contains the Python version number. For
example, in CPython release 3.3 the compiled version of spam.py would be
cached as <code>__pycache__/spam.cpython-33.pyc</code>. This naming
convention allows compiled modules from different releases and different
versions of Python to coexist.
</p>
<p>
Python checks the modification date of the source against the compiled
version to see if it’s out of date and needs to be recompiled. This is a
completely automatic process. Also, the compiled modules are
platform-independent, so the same library can be shared among systems with
different architectures.
</p>
<p>
Python does not check the cache in two circumstances. First, it always
recompiles and does not store the result for the module that’s loaded
directly from the command line. Second, it does not check the cache if
there is no source module. To support a non-source (compiled only)
distribution, the compiled module must be in the source directory, and
there must not be a source module.
</p>
<p>Some tips for experts:</p>
<ul>
<li>
<p>
You can use the
<a
href="https://docs.python.org/3/using/cmdline.html#cmdoption-o"
class="reference internal"
><code class="xref std std-option docutils literal notranslate"
>-O</code
></a
>
or
<a
href="https://docs.python.org/3/using/cmdline.html#cmdoption-oo"
class="reference internal"
><code class="xref std std-option docutils literal notranslate"
>-OO</code
></a
>
switches on the Python command to reduce the size of a compiled
module. The <code>-O</code> switch removes assert statements, the
<code>-OO</code> switch removes both assert statements and __doc__
strings. Since some programs may rely on having these available, you
should only use this option if you know what you’re doing. “Optimized”
modules have an <code>opt-</code> tag and are usually smaller. Future
releases may change the effects of optimization.
</p>
</li>
<li>
<p>
A program doesn’t run any faster when it is read from a
<code>.pyc</code> file than when it is read from a
<code>.py</code> file; the only thing that’s faster about
<code>.pyc</code> files is the speed with which they are loaded.
</p>
</li>
<li>
<p>
The module
<a
href="https://docs.python.org/3/library/compileall.html#module-compileall"
class="reference internal"
title="compileall: Tools for byte-compiling all Python source files in a directory tree."
><code class="sourceCode python">compileall</code></a
>
can create .pyc files for all modules in a directory.
</p>
</li>
<li>
<p>
There is more detail on this process, including a flow chart of the
decisions, in <span id="index-3" class="target"></span
><a
href="https://www.python.org/dev/peps/pep-3147"
class="pep reference external"
><strong>PEP 3147</strong></a
>.
</p>
</li>
</ul>
<p><span id="tut-standardmodules"></span></p>
<h2 id="standard-modules">
<span class="section-number">6.2. </span>Standard Modules<a
href="#standard-modules"
class="headerlink"
title="Permalink to this headline"
>¶</a
>
</h2>
<p>
Python comes with a library of standard modules, described in a separate
document, the Python Library Reference (“Library Reference” hereafter).
Some modules are built into the interpreter; these provide access to
operations that are not part of the core of the language but are
nevertheless built in, either for efficiency or to provide access to
operating system primitives such as system calls. The set of such modules
is a configuration option which also depends on the underlying platform.
For example, the
<a
href="https://docs.python.org/3/library/winreg.html#module-winreg"
class="reference internal"
title="winreg: Routines and objects for manipulating the Windows registry. (Windows)"
><code class="sourceCode python">winreg</code></a
>
module is only provided on Windows systems. One particular module deserves
some attention:
<a
href="https://docs.python.org/3/library/sys.html#module-sys"
class="reference internal"
title="sys: Access system-specific parameters and functions."
><code class="sourceCode python">sys</code></a
>, which is built into every Python interpreter. The variables
<code>sys.ps1</code> and <code>sys.ps2</code> define the strings used as
primary and secondary prompts:
</p>
<pre><code>>>> import sys
>>> sys.ps1
'>>> '
>>> sys.ps2
'... '
>>> sys.ps1 = 'C> '
C> print('Yuck!')
Yuck!
C></code></pre>
<p>
These two variables are only defined if the interpreter is in interactive
mode.
</p>
<p>
The variable <code>sys.path</code> is a list of strings that determines
the interpreter’s search path for modules. It is initialized to a default
path taken from the environment variable
<span id="index-5" class="target"></span
><a
href="https://docs.python.org/3/using/cmdline.html#envvar-PYTHONPATH"
class="reference internal"
><code class="xref std std-envvar docutils literal notranslate"
>PYTHONPATH</code
></a
>, or from a built-in default if <span id="index-6" class="target"></span
><a
href="https://docs.python.org/3/using/cmdline.html#envvar-PYTHONPATH"
class="reference internal"
><code class="xref std std-envvar docutils literal notranslate"
>PYTHONPATH</code
></a
>
is not set. You can modify it using standard list operations:
</p>
<pre><code>>>> import sys
>>> sys.path.append('/ufs/guido/lib/python')</code></pre>
<p><span id="tut-dir"></span></p>
<h2 id="the-dir-function">
<span class="section-number">6.3. </span>The
<a
href="https://docs.python.org/3/library/functions.html#dir"
class="reference internal"
title="dir"
><code class="sourceCode python"><span class="bu">dir</span>()</code></a
>
Function<a
href="#the-dir-function"
class="headerlink"
title="Permalink to this headline"
>¶</a
>
</h2>
<p>
The built-in function
<a
href="https://docs.python.org/3/library/functions.html#dir"
class="reference internal"
title="dir"
><code class="sourceCode python"><span class="bu">dir</span>()</code></a
>
is used to find out which names a module defines. It returns a sorted list
of strings:
</p>
<pre><code>>>> import fibo, sys
>>> dir(fibo)
['__name__', 'fib', 'fib2']
>>> dir(sys)
['__breakpointhook__', '__displayhook__', '__doc__', '__excepthook__',
'__interactivehook__', '__loader__', '__name__', '__package__', '__spec__',
'__stderr__', '__stdin__', '__stdout__', '__unraisablehook__',
'_clear_type_cache', '_current_frames', '_debugmallocstats', '_framework',
'_getframe', '_git', '_home', '_xoptions', 'abiflags', 'addaudithook',
'api_version', 'argv', 'audit', 'base_exec_prefix', 'base_prefix',
'breakpointhook', 'builtin_module_names', 'byteorder', 'call_tracing',
'callstats', 'copyright', 'displayhook', 'dont_write_bytecode', 'exc_info',
'excepthook', 'exec_prefix', 'executable', 'exit', 'flags', 'float_info',
'float_repr_style', 'get_asyncgen_hooks', 'get_coroutine_origin_tracking_depth',
'getallocatedblocks', 'getdefaultencoding', 'getdlopenflags',
'getfilesystemencodeerrors', 'getfilesystemencoding', 'getprofile',
'getrecursionlimit', 'getrefcount', 'getsizeof', 'getswitchinterval',
'gettrace', 'hash_info', 'hexversion', 'implementation', 'int_info',
'intern', 'is_finalizing', 'last_traceback', 'last_type', 'last_value',
'maxsize', 'maxunicode', 'meta_path', 'modules', 'path', 'path_hooks',
'path_importer_cache', 'platform', 'prefix', 'ps1', 'ps2', 'pycache_prefix',
'set_asyncgen_hooks', 'set_coroutine_origin_tracking_depth', 'setdlopenflags',
'setprofile', 'setrecursionlimit', 'setswitchinterval', 'settrace', 'stderr',
'stdin', 'stdout', 'thread_info', 'unraisablehook', 'version', 'version_info',
'warnoptions']</code></pre>
<p>
Without arguments,
<a
href="https://docs.python.org/3/library/functions.html#dir"
class="reference internal"
title="dir"
><code class="sourceCode python"><span class="bu">dir</span>()</code></a
>
lists the names you have defined currently:
</p>
<pre><code>>>> a = [1, 2, 3, 4, 5]
>>> import fibo
>>> fib = fibo.fib
>>> dir()
['__builtins__', '__name__', 'a', 'fib', 'fibo', 'sys']</code></pre>
<p>
Note that it lists all types of names: variables, modules, functions, etc.
</p>
<p>
<a
href="https://docs.python.org/3/library/functions.html#dir"
class="reference internal"
title="dir"
><code class="sourceCode python"><span class="bu">dir</span>()</code></a
>
does not list the names of built-in functions and variables. If you want a
list of those, they are defined in the standard module
<a
href="https://docs.python.org/3/library/builtins.html#module-builtins"
class="reference internal"
title="builtins: The module that provides the built-in namespace."
><code class="sourceCode python">builtins</code></a
>:
</p>
<pre><code>>>> import builtins
>>> dir(builtins)
['ArithmeticError', 'AssertionError', 'AttributeError', 'BaseException',
'BlockingIOError', 'BrokenPipeError', 'BufferError', 'BytesWarning',
'ChildProcessError', 'ConnectionAbortedError', 'ConnectionError',
'ConnectionRefusedError', 'ConnectionResetError', 'DeprecationWarning',
'EOFError', 'Ellipsis', 'EnvironmentError', 'Exception', 'False',
'FileExistsError', 'FileNotFoundError', 'FloatingPointError',
'FutureWarning', 'GeneratorExit', 'IOError', 'ImportError',
'ImportWarning', 'IndentationError', 'IndexError', 'InterruptedError',
'IsADirectoryError', 'KeyError', 'KeyboardInterrupt', 'LookupError',
'MemoryError', 'NameError', 'None', 'NotADirectoryError', 'NotImplemented',
'NotImplementedError', 'OSError', 'OverflowError',
'PendingDeprecationWarning', 'PermissionError', 'ProcessLookupError',
'ReferenceError', 'ResourceWarning', 'RuntimeError', 'RuntimeWarning',
'StopIteration', 'SyntaxError', 'SyntaxWarning', 'SystemError',
'SystemExit', 'TabError', 'TimeoutError', 'True', 'TypeError',
'UnboundLocalError', 'UnicodeDecodeError', 'UnicodeEncodeError',
'UnicodeError', 'UnicodeTranslateError', 'UnicodeWarning', 'UserWarning',
'ValueError', 'Warning', 'ZeroDivisionError', '_', '__build_class__',
'__debug__', '__doc__', '__import__', '__name__', '__package__', 'abs',
'all', 'any', 'ascii', 'bin', 'bool', 'bytearray', 'bytes', 'callable',
'chr', 'classmethod', 'compile', 'complex', 'copyright', 'credits',
'delattr', 'dict', 'dir', 'divmod', 'enumerate', 'eval', 'exec', 'exit',
'filter', 'float', 'format', 'frozenset', 'getattr', 'globals', 'hasattr',
'hash', 'help', 'hex', 'id', 'input', 'int', 'isinstance', 'issubclass',
'iter', 'len', 'license', 'list', 'locals', 'map', 'max', 'memoryview',
'min', 'next', 'object', 'oct', 'open', 'ord', 'pow', 'print', 'property',
'quit', 'range', 'repr', 'reversed', 'round', 'set', 'setattr', 'slice',
'sorted', 'staticmethod', 'str', 'sum', 'super', 'tuple', 'type', 'vars',
'zip']</code></pre>
<p><span id="tut-packages"></span></p>
<h2 id="packages">
<span class="section-number">6.4. </span>Packages<a
href="#packages"
class="headerlink"
title="Permalink to this headline"
>¶</a
>
</h2>
<p>
Packages are a way of structuring Python’s module namespace by using
“dotted module names”. For example, the module name
<code>A.B</code> designates a submodule named <code>B</code> in a package
named <code>A</code>. Just like the use of modules saves the authors of
different modules from having to worry about each other’s global variable
names, the use of dotted module names saves the authors of multi-module
packages like NumPy or Pillow from having to worry about each other’s
module names.
</p>
<p>
Suppose you want to design a collection of modules (a “package”) for the
uniform handling of sound files and sound data. There are many different
sound file formats (usually recognized by their extension, for example:
<code>.wav</code>, <code>.aiff</code>, <code>.au</code>), so you may need
to create and maintain a growing collection of modules for the conversion
between the various file formats. There are also many different operations
you might want to perform on sound data (such as mixing, adding echo,
applying an equalizer function, creating an artificial stereo effect), so
in addition you will be writing a never-ending stream of modules to
perform these operations. Here’s a possible structure for your package
(expressed in terms of a hierarchical filesystem):
</p>
<pre><code>sound/ Top-level package
__init__.py Initialize the sound package
formats/ Subpackage for file format conversions
__init__.py
wavread.py
wavwrite.py
aiffread.py
aiffwrite.py
auread.py
auwrite.py
...
effects/ Subpackage for sound effects
__init__.py
echo.py
surround.py
reverse.py
...
filters/ Subpackage for filters
__init__.py
equalizer.py
vocoder.py
karaoke.py
...</code></pre>
<p>
When importing the package, Python searches through the directories on
<code>sys.path</code> looking for the package subdirectory.
</p>
<p>
The <code>__init__.py</code> files are required to make Python treat
directories containing the file as packages. This prevents directories
with a common name, such as <code>string</code>, unintentionally hiding
valid modules that occur later on the module search path. In the simplest
case, <code>__init__.py</code> can just be an empty file, but it can also
execute initialization code for the package or set the
<code>__all__</code> variable, described later.
</p>
<p>
Users of the package can import individual modules from the package, for
example:
</p>
<pre><code>import sound.effects.echo</code></pre>
<p>
This loads the submodule <code>sound.effects.echo</code>. It must be
referenced with its full name.
</p>
<pre><code>sound.effects.echo.echofilter(input, output, delay=0.7, atten=4)</code></pre>
<p>An alternative way of importing the submodule is:</p>
<pre><code>from sound.effects import echo</code></pre>
<p>
This also loads the submodule <code>echo</code>, and makes it available
without its package prefix, so it can be used as follows:
</p>
<pre><code>echo.echofilter(input, output, delay=0.7, atten=4)</code></pre>
<p>
Yet another variation is to import the desired function or variable
directly:
</p>
<pre><code>from sound.effects.echo import echofilter</code></pre>
<p>
Again, this loads the submodule <code>echo</code>, but this makes its
function <code>echofilter()</code> directly available:
</p>
<pre><code>echofilter(input, output, delay=0.7, atten=4)</code></pre>
<p>
Note that when using <code>from package import item</code>, the item can
be either a submodule (or subpackage) of the package, or some other name
defined in the package, like a function, class or variable. The
<code>import</code> statement first tests whether the item is defined in
the package; if not, it assumes it is a module and attempts to load it. If
it fails to find it, an
<a
href="https://docs.python.org/3/library/exceptions.html#ImportError"
class="reference internal"
title="ImportError"
><code class="sourceCode python"
><span class="pp">ImportError</span></code
></a
>
exception is raised.
</p>
<p>
Contrarily, when using syntax like
<code>import item.subitem.subsubitem</code>, each item except for the last
must be a package; the last item can be a module or a package but can’t be
a class or function or variable defined in the previous item.
</p>
<p><span id="tut-pkg-import-star"></span></p>
<h3 id="importing-from-a-package">
<span class="section-number">6.4.1. </span>Importing * From a Package<a
href="#importing-from-a-package"
class="headerlink"
title="Permalink to this headline"
>¶</a
>
</h3>
<p>
Now what happens when the user writes
<code>from sound.effects import *</code>? Ideally, one would hope that
this somehow goes out to the filesystem, finds which submodules are
present in the package, and imports them all. This could take a long time
and importing sub-modules might have unwanted side-effects that should
only happen when the sub-module is explicitly imported.
</p>
<p>
The only solution is for the package author to provide an explicit index
of the package. The
<a
href="https://docs.python.org/3/reference/simple_stmts.html#import"
class="reference internal"
><code class="xref std std-keyword docutils literal notranslate"
>import</code
></a
>
statement uses the following convention: if a package’s
<code>__init__.py</code> code defines a list named <code>__all__</code>,
it is taken to be the list of module names that should be imported when
<code>from package import *</code> is encountered. It is up to the package
author to keep this list up-to-date when a new version of the package is
released. Package authors may also decide not to support it, if they don’t
see a use for importing * from their package. For example, the file
<code>sound/effects/__init__.py</code> could contain the following code:
</p>
<pre><code>__all__ = ["echo", "surround", "reverse"]</code></pre>
<p>
This would mean that <code>from sound.effects import *</code> would import
the three named submodules of the <code>sound</code> package.
</p>
<p>
If <code>__all__</code> is not defined, the statement
<code>from sound.effects import *</code> does <em>not</em> import all
submodules from the package <code>sound.effects</code> into the current
namespace; it only ensures that the package <code>sound.effects</code> has
been imported (possibly running any initialization code in
<code>__init__.py</code>) and then imports whatever names are defined in
the package. This includes any names defined (and submodules explicitly
loaded) by <code>__init__.py</code>. It also includes any submodules of
the package that were explicitly loaded by previous
<a
href="https://docs.python.org/3/reference/simple_stmts.html#import"
class="reference internal"
><code class="xref std std-keyword docutils literal notranslate"
>import</code
></a
>
statements. Consider this code:
</p>
<pre><code>import sound.effects.echo
import sound.effects.surround
from sound.effects import *</code></pre>
<p>
In this example, the <code>echo</code> and <code>surround</code> modules
are imported in the current namespace because they are defined in the
<code>sound.effects</code> package when the
<code>from...import</code> statement is executed. (This also works when
<code>__all__</code> is defined.)
</p>
<p>
Although certain modules are designed to export only names that follow
certain patterns when you use <code>import *</code>, it is still
considered bad practice in production code.
</p>
<p>
Remember, there is nothing wrong with using
<code>from package import specific_submodule</code>! In fact, this is the
recommended notation unless the importing module needs to use submodules
with the same name from different packages.
</p>
<h3 id="intra-package-references">
<span class="section-number">6.4.2. </span>Intra-package References<a
href="#intra-package-references"
class="headerlink"
title="Permalink to this headline"
>¶</a
>
</h3>
<p>
When packages are structured into subpackages (as with the
<code>sound</code> package in the example), you can use absolute imports
to refer to submodules of siblings packages. For example, if the module
<code>sound.filters.vocoder</code> needs to use the
<code>echo</code> module in the <code>sound.effects</code> package, it can
use <code>from sound.effects import echo</code>.
</p>
<p>
You can also write relative imports, with the
<code>from module import name</code> form of import statement. These
imports use leading dots to indicate the current and parent packages
involved in the relative import. From the <code>surround</code> module for
example, you might use:
</p>
<pre><code>from . import echo
from .. import formats
from ..filters import equalizer</code></pre>
<p>
Note that relative imports are based on the name of the current module.
Since the name of the main module is always <code>"__main__"</code>,
modules intended for use as the main module of a Python application must
always use absolute imports.
</p>
<h3 id="packages-in-multiple-directories">
<span class="section-number">6.4.3. </span>Packages in Multiple
Directories<a
href="#packages-in-multiple-directories"
class="headerlink"
title="Permalink to this headline"
>¶</a
>
</h3>
<p>
Packages support one more special attribute,
<a
href="https://docs.python.org/3/reference/import.html#__path__"
class="reference internal"
title="__path__"
><code class="sourceCode python">path</code></a
>. This is initialized to be a list containing the name of the directory
holding the package’s <code>__init__.py</code> before the code in that
file is executed. This variable can be modified; doing so affects future
searches for modules and subpackages contained in the package.
</p>
<p>
While this feature is not often needed, it can be used to extend the set
of modules found in a package.
</p>
<p>Footnotes</p>
<p>
<span class="brackets"><a href="#id1" class="fn-backref">1</a></span
><br />
In fact function definitions are also ‘statements’ that are ‘executed’;
the execution of a module-level function definition enters the function
name in the module’s global symbol table.
</p>
<h3 id="table-of-contents">
<a href="https://docs.python.org/3/contents.html">Table of Contents</a>
</h3>
<ul>
<li>
<a href="#" class="reference internal">6. Modules</a>
<ul>
<li>
<a href="#more-on-modules" class="reference internal"
>6.1. More on Modules</a
>
<ul>
<li>
<a
href="#executing-modules-as-scripts"
class="reference internal"
>6.1.1. Executing modules as scripts</a
>
</li>
<li>
<a href="#the-module-search-path" class="reference internal"
>6.1.2. The Module Search Path</a
>
</li>
<li>
<a href="#compiled-python-files" class="reference internal"
>6.1.3. “Compiled” Python files</a
>
</li>
</ul>
</li>
<li>
<a href="#standard-modules" class="reference internal"
>6.2. Standard Modules</a
>
</li>
<li>
<a href="#the-dir-function" class="reference internal"
>6.3. The
<code class="sourceCode python"
><span class="bu">dir</span>()</code
>
Function</a
>
</li>
<li>
<a href="#packages" class="reference internal">6.4. Packages</a>
<ul>
<li>
<a href="#importing-from-a-package" class="reference internal"
>6.4.1. Importing * From a Package</a
>
</li>
<li>
<a href="#intra-package-references" class="reference internal"
>6.4.2. Intra-package References</a
>
</li>
<li>
<a
href="#packages-in-multiple-directories"
class="reference internal"
>6.4.3. Packages in Multiple Directories</a
>
</li>
</ul>
</li>
</ul>
</li>
</ul>
<h4 id="previous-topic">Previous topic</h4>
<p>
<a href="datastructures.html" title="previous chapter"
><span class="section-number">5. </span>Data Structures</a
>
</p>
<h4 id="next-topic">Next topic</h4>
<p>
<a href="inputoutput.html" title="next chapter"
><span class="section-number">7. </span>Input and Output</a
>
</p>
<h3 id="this-page">This Page</h3>
<ul>
<li><a href="https://docs.python.org/3/bugs.html">Report a Bug</a></li>
<li>
<a
href="https://github.com/python/cpython/blob/3.9/Doc/tutorial/modules.rst"
>Show Source</a
>
</li>
</ul>
<h3 id="navigation-1">Navigation</h3>
<ul>
<li>
<a href="https://docs.python.org/3/genindex.html" title="General Index"
>index</a
>