-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdatastructures.html
1203 lines (1202 loc) · 45.9 KB
/
datastructures.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" lang="" xml:lang="">
<head>
<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta
name="viewport"
content="width=device-width, initial-scale=1.0, user-scalable=yes"
/>
<title>datastructures</title>
<style type="text/css">
code {
white-space: pre-wrap;
}
span.smallcaps {
font-variant: small-caps;
}
span.underline {
text-decoration: underline;
}
div.column {
display: inline-block;
vertical-align: top;
width: 50%;
}
</style>
</head>
<body>
<h3 id="navigation">Navigation</h3>
<ul>
<li>
<a href="https://docs.python.org/3/genindex.html" title="General Index"
>index</a
>
</li>
<li>
<a
href="https://docs.python.org/3/py-modindex.html"
title="Python Module Index"
>modules</a
>
|
</li>
<li><a href="modules.html" title="6. Modules">next</a> |</li>
<li>
<a href="controlflow.html" title="4. More Control Flow Tools"
>previous</a
>
|
</li>
<li><img src="../_static/py.png" /></li>
<li><a href="https://www.python.org/">Python</a> »</li>
<li>
<a href="https://docs.python.org/3/index.html">3.9.5 Documentation</a> »
</li>
<li><a href="index.html">The Python Tutorial</a> »</li>
<li></li>
</ul>
<p><span id="tut-structures"></span></p>
<h1 id="data-structures">
<span class="section-number">5. </span>Data Structures<a
href="#data-structures"
class="headerlink"
title="Permalink to this headline"
>¶</a
>
</h1>
<p>
This chapter describes some things you’ve learned about already in more
detail, and adds some new things as well.
</p>
<p><span id="tut-morelists"></span></p>
<h2 id="more-on-lists">
<span class="section-number">5.1. </span>More on Lists<a
href="#more-on-lists"
class="headerlink"
title="Permalink to this headline"
>¶</a
>
</h2>
<p>
The list data type has some more methods. Here are all of the methods of
list objects:
</p>
<p>
<code>list.``append</code><span class="sig-paren">(</span><em>x</em
><span class="sig-paren">)</span><br />
Add an item to the end of the list. Equivalent to
<code>a[len(a):] = [x]</code>.
</p>
<p>
<code>list.``extend</code><span class="sig-paren">(</span><em>iterable</em
><span class="sig-paren">)</span><br />
Extend the list by appending all the items from the iterable. Equivalent
to <code>a[len(a):] = iterable</code>.
</p>
<p>
<code>list.``insert</code><span class="sig-paren">(</span><em>i</em>,
<em>x</em><span class="sig-paren">)</span><br />
Insert an item at a given position. The first argument is the index of the
element before which to insert, so <code>a.insert(0, x)</code> inserts at
the front of the list, and <code>a.insert(len(a), x)</code> is equivalent
to <code>a.append(x)</code>.
</p>
<p>
<code>list.``remove</code><span class="sig-paren">(</span><em>x</em
><span class="sig-paren">)</span><br />
Remove the first item from the list whose value is equal to <em>x</em>. It
raises a
<a
href="https://docs.python.org/3/library/exceptions.html#ValueError"
class="reference internal"
title="ValueError"
><code class="sourceCode python"
><span class="pp">ValueError</span></code
></a
>
if there is no such item.
</p>
<p>
<code>list.``pop</code><span class="sig-paren">(</span
><span class="optional">[</span><em>i</em><span class="optional">]</span
><span class="sig-paren">)</span><br />
Remove the item at the given position in the list, and return it. If no
index is specified, <code>a.pop()</code> removes and returns the last item
in the list. (The square brackets around the <em>i</em> in the method
signature denote that the parameter is optional, not that you should type
square brackets at that position. You will see this notation frequently in
the Python Library Reference.)
</p>
<p>
<code>list.``clear</code><span class="sig-paren">(</span
><span class="sig-paren">)</span><br />
Remove all items from the list. Equivalent to <code>del a[:]</code>.
</p>
<p>
<code>list.``index</code><span class="sig-paren">(</span><em>x</em
><span class="optional">[</span>, <em>start</em
><span class="optional">[</span>, <em>end</em
><span class="optional">]</span><span class="optional">]</span
><span class="sig-paren">)</span><br />
Return zero-based index in the list of the first item whose value is equal
to <em>x</em>. Raises a
<a
href="https://docs.python.org/3/library/exceptions.html#ValueError"
class="reference internal"
title="ValueError"
><code class="sourceCode python"
><span class="pp">ValueError</span></code
></a
>
if there is no such item.
</p>
<p>
The optional arguments <em>start</em> and <em>end</em> are interpreted as
in the slice notation and are used to limit the search to a particular
subsequence of the list. The returned index is computed relative to the
beginning of the full sequence rather than the <em>start</em> argument.
</p>
<p>
<code>list.``count</code><span class="sig-paren">(</span><em>x</em
><span class="sig-paren">)</span><br />
Return the number of times <em>x</em> appears in the list.
</p>
<p>
<code>list.``sort</code><span class="sig-paren">(</span>**<em>,</em>
key=None<em>,</em> reverse=False*<span class="sig-paren">)</span><br />
Sort the items of the list in place (the arguments can be used for sort
customization, see
<a
href="https://docs.python.org/3/library/functions.html#sorted"
class="reference internal"
title="sorted"
><code class="sourceCode python"
><span class="bu">sorted</span>()</code
></a
>
for their explanation).
</p>
<p>
<code>list.``reverse</code><span class="sig-paren">(</span
><span class="sig-paren">)</span><br />
Reverse the elements of the list in place.
</p>
<p>
<code>list.``copy</code><span class="sig-paren">(</span
><span class="sig-paren">)</span><br />
Return a shallow copy of the list. Equivalent to <code>a[:]</code>.
</p>
<p>An example that uses most of the list methods:</p>
<pre><code>>>> fruits = ['orange', 'apple', 'pear', 'banana', 'kiwi', 'apple', 'banana']
>>> fruits.count('apple')
2
>>> fruits.count('tangerine')
0
>>> fruits.index('banana')
3
>>> fruits.index('banana', 4) # Find next banana starting a position 4
6
>>> fruits.reverse()
>>> fruits
['banana', 'apple', 'kiwi', 'banana', 'pear', 'apple', 'orange']
>>> fruits.append('grape')
>>> fruits
['banana', 'apple', 'kiwi', 'banana', 'pear', 'apple', 'orange', 'grape']
>>> fruits.sort()
>>> fruits
['apple', 'apple', 'banana', 'banana', 'grape', 'kiwi', 'orange', 'pear']
>>> fruits.pop()
'pear'</code></pre>
<p>
You might have noticed that methods like <code>insert</code>,
<code>remove</code> or <code>sort</code> that only modify the list have no
return value printed – they return the default <code>None</code>.
<a href="#id2" id="id1" class="footnote-reference brackets">1</a> This is
a design principle for all mutable data structures in Python.
</p>
<p>
Another thing you might notice is that not all data can be sorted or
compared. For instance, <code>[None, 'hello', 10]</code> doesn’t sort
because integers can’t be compared to strings and <em>None</em> can’t be
compared to other types. Also, there are some types that don’t have a
defined ordering relation. For example, <code>3+4j < 5+7j</code> isn’t
a valid comparison.
</p>
<p><span id="tut-lists-as-stacks"></span></p>
<h3 id="using-lists-as-stacks">
<span class="section-number">5.1.1. </span>Using Lists as Stacks<a
href="#using-lists-as-stacks"
class="headerlink"
title="Permalink to this headline"
>¶</a
>
</h3>
<p>
The list methods make it very easy to use a list as a stack, where the
last element added is the first element retrieved (“last-in, first-out”).
To add an item to the top of the stack, use <code>append()</code>. To
retrieve an item from the top of the stack, use <code>pop()</code> without
an explicit index. For example:
</p>
<pre><code>>>> stack = [3, 4, 5]
>>> stack.append(6)
>>> stack.append(7)
>>> stack
[3, 4, 5, 6, 7]
>>> stack.pop()
7
>>> stack
[3, 4, 5, 6]
>>> stack.pop()
6
>>> stack.pop()
5
>>> stack
[3, 4]</code></pre>
<p><span id="tut-lists-as-queues"></span></p>
<h3 id="using-lists-as-queues">
<span class="section-number">5.1.2. </span>Using Lists as Queues<a
href="#using-lists-as-queues"
class="headerlink"
title="Permalink to this headline"
>¶</a
>
</h3>
<p>
It is also possible to use a list as a queue, where the first element
added is the first element retrieved (“first-in, first-out”); however,
lists are not efficient for this purpose. While appends and pops from the
end of list are fast, doing inserts or pops from the beginning of a list
is slow (because all of the other elements have to be shifted by one).
</p>
<p>
To implement a queue, use
<a
href="https://docs.python.org/3/library/collections.html#collections.deque"
class="reference internal"
title="collections.deque"
><code class="sourceCode python">collections.deque</code></a
>
which was designed to have fast appends and pops from both ends. For
example:
</p>
<pre><code>>>> from collections import deque
>>> queue = deque(["Eric", "John", "Michael"])
>>> queue.append("Terry") # Terry arrives
>>> queue.append("Graham") # Graham arrives
>>> queue.popleft() # The first to arrive now leaves
'Eric'
>>> queue.popleft() # The second to arrive now leaves
'John'
>>> queue # Remaining queue in order of arrival
deque(['Michael', 'Terry', 'Graham'])</code></pre>
<p><span id="tut-listcomps"></span></p>
<h3 id="list-comprehensions">
<span class="section-number">5.1.3. </span>List Comprehensions<a
href="#list-comprehensions"
class="headerlink"
title="Permalink to this headline"
>¶</a
>
</h3>
<p>
List comprehensions provide a concise way to create lists. Common
applications are to make new lists where each element is the result of
some operations applied to each member of another sequence or iterable, or
to create a subsequence of those elements that satisfy a certain
condition.
</p>
<p>For example, assume we want to create a list of squares, like:</p>
<pre><code>>>> squares = []
>>> for x in range(10):
... squares.append(x**2)
...
>>> squares
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]</code></pre>
<p>
Note that this creates (or overwrites) a variable named
<code>x</code> that still exists after the loop completes. We can
calculate the list of squares without any side effects using:
</p>
<pre><code>squares = list(map(lambda x: x**2, range(10)))</code></pre>
<p>or, equivalently:</p>
<pre><code>squares = [x**2 for x in range(10)]</code></pre>
<p>which is more concise and readable.</p>
<p>
A list comprehension consists of brackets containing an expression
followed by a <code>for</code> clause, then zero or more
<code>for</code> or <code>if</code> clauses. The result will be a new list
resulting from evaluating the expression in the context of the
<code>for</code> and <code>if</code> clauses which follow it. For example,
this listcomp combines the elements of two lists if they are not equal:
</p>
<pre><code>>>> [(x, y) for x in [1,2,3] for y in [3,1,4] if x != y]
[(1, 3), (1, 4), (2, 3), (2, 1), (2, 4), (3, 1), (3, 4)]</code></pre>
<p>and it’s equivalent to:</p>
<pre><code>>>> combs = []
>>> for x in [1,2,3]:
... for y in [3,1,4]:
... if x != y:
... combs.append((x, y))
...
>>> combs
[(1, 3), (1, 4), (2, 3), (2, 1), (2, 4), (3, 1), (3, 4)]</code></pre>
<p>
Note how the order of the
<a
href="https://docs.python.org/3/reference/compound_stmts.html#for"
class="reference internal"
><code class="xref std std-keyword docutils literal notranslate"
>for</code
></a
>
and
<a
href="https://docs.python.org/3/reference/compound_stmts.html#if"
class="reference internal"
><code class="xref std std-keyword docutils literal notranslate"
>if</code
></a
>
statements is the same in both these snippets.
</p>
<p>
If the expression is a tuple (e.g. the <code>(x, y)</code> in the previous
example), it must be parenthesized.
</p>
<pre><code>>>> vec = [-4, -2, 0, 2, 4]
>>> # create a new list with the values doubled
>>> [x*2 for x in vec]
[-8, -4, 0, 4, 8]
>>> # filter the list to exclude negative numbers
>>> [x for x in vec if x >= 0]
[0, 2, 4]
>>> # apply a function to all the elements
>>> [abs(x) for x in vec]
[4, 2, 0, 2, 4]
>>> # call a method on each element
>>> freshfruit = [' banana', ' loganberry ', 'passion fruit ']
>>> [weapon.strip() for weapon in freshfruit]
['banana', 'loganberry', 'passion fruit']
>>> # create a list of 2-tuples like (number, square)
>>> [(x, x**2) for x in range(6)]
[(0, 0), (1, 1), (2, 4), (3, 9), (4, 16), (5, 25)]
>>> # the tuple must be parenthesized, otherwise an error is raised
>>> [x, x**2 for x in range(6)]
File "<stdin>", line 1, in <module>
[x, x**2 for x in range(6)]
^
SyntaxError: invalid syntax
>>> # flatten a list using a listcomp with two 'for'
>>> vec = [[1,2,3], [4,5,6], [7,8,9]]
>>> [num for elem in vec for num in elem]
[1, 2, 3, 4, 5, 6, 7, 8, 9]</code></pre>
<p>
List comprehensions can contain complex expressions and nested functions:
</p>
<pre><code>>>> from math import pi
>>> [str(round(pi, i)) for i in range(1, 6)]
['3.1', '3.14', '3.142', '3.1416', '3.14159']</code></pre>
<h3 id="nested-list-comprehensions">
<span class="section-number">5.1.4. </span>Nested List Comprehensions<a
href="#nested-list-comprehensions"
class="headerlink"
title="Permalink to this headline"
>¶</a
>
</h3>
<p>
The initial expression in a list comprehension can be any arbitrary
expression, including another list comprehension.
</p>
<p>
Consider the following example of a 3x4 matrix implemented as a list of 3
lists of length 4:
</p>
<pre><code>>>> matrix = [
... [1, 2, 3, 4],
... [5, 6, 7, 8],
... [9, 10, 11, 12],
... ]</code></pre>
<p>The following list comprehension will transpose rows and columns:</p>
<pre><code>>>> [[row[i] for row in matrix] for i in range(4)]
[[1, 5, 9], [2, 6, 10], [3, 7, 11], [4, 8, 12]]</code></pre>
<p>
As we saw in the previous section, the nested listcomp is evaluated in the
context of the
<a
href="https://docs.python.org/3/reference/compound_stmts.html#for"
class="reference internal"
><code class="xref std std-keyword docutils literal notranslate"
>for</code
></a
>
that follows it, so this example is equivalent to:
</p>
<pre><code>>>> transposed = []
>>> for i in range(4):
... transposed.append([row[i] for row in matrix])
...
>>> transposed
[[1, 5, 9], [2, 6, 10], [3, 7, 11], [4, 8, 12]]</code></pre>
<p>which, in turn, is the same as:</p>
<pre><code>>>> transposed = []
>>> for i in range(4):
... # the following 3 lines implement the nested listcomp
... transposed_row = []
... for row in matrix:
... transposed_row.append(row[i])
... transposed.append(transposed_row)
...
>>> transposed
[[1, 5, 9], [2, 6, 10], [3, 7, 11], [4, 8, 12]]</code></pre>
<p>
In the real world, you should prefer built-in functions to complex flow
statements. The
<a
href="https://docs.python.org/3/library/functions.html#zip"
class="reference internal"
title="zip"
><code class="sourceCode python"><span class="bu">zip</span>()</code></a
>
function would do a great job for this use case:
</p>
<pre><code>>>> list(zip(*matrix))
[(1, 5, 9), (2, 6, 10), (3, 7, 11), (4, 8, 12)]</code></pre>
<p>
See
<a
href="controlflow.html#tut-unpacking-arguments"
class="reference internal"
><span class="std std-ref">Unpacking Argument Lists</span></a
>
for details on the asterisk in this line.
</p>
<p><span id="tut-del"></span></p>
<h2 id="the-del-statement">
<span class="section-number">5.2. </span>The <code>del</code> statement<a
href="#the-del-statement"
class="headerlink"
title="Permalink to this headline"
>¶</a
>
</h2>
<p>
There is a way to remove an item from a list given its index instead of
its value: the
<a
href="https://docs.python.org/3/reference/simple_stmts.html#del"
class="reference internal"
><code class="xref std std-keyword docutils literal notranslate"
>del</code
></a
>
statement. This differs from the <code>pop()</code> method which returns a
value. The <code>del</code> statement can also be used to remove slices
from a list or clear the entire list (which we did earlier by assignment
of an empty list to the slice). For example:
</p>
<pre><code>>>> a = [-1, 1, 66.25, 333, 333, 1234.5]
>>> del a[0]
>>> a
[1, 66.25, 333, 333, 1234.5]
>>> del a[2:4]
>>> a
[1, 66.25, 1234.5]
>>> del a[:]
>>> a
[]</code></pre>
<p>
<a
href="https://docs.python.org/3/reference/simple_stmts.html#del"
class="reference internal"
><code class="xref std std-keyword docutils literal notranslate"
>del</code
></a
>
can also be used to delete entire variables:
</p>
<pre><code>>>> del a</code></pre>
<p>
Referencing the name <code>a</code> hereafter is an error (at least until
another value is assigned to it). We’ll find other uses for
<a
href="https://docs.python.org/3/reference/simple_stmts.html#del"
class="reference internal"
><code class="xref std std-keyword docutils literal notranslate"
>del</code
></a
>
later.
</p>
<p><span id="tut-tuples"></span></p>
<h2 id="tuples-and-sequences">
<span class="section-number">5.3. </span>Tuples and Sequences<a
href="#tuples-and-sequences"
class="headerlink"
title="Permalink to this headline"
>¶</a
>
</h2>
<p>
We saw that lists and strings have many common properties, such as
indexing and slicing operations. They are two examples of
<em>sequence</em> data types (see
<a
href="https://docs.python.org/3/library/stdtypes.html#typesseq"
class="reference internal"
><span class="std std-ref">Sequence Types — list, tuple, range</span></a
>). Since Python is an evolving language, other sequence data types may be
added. There is also another standard sequence data type: the
<em>tuple</em>.
</p>
<p>
A tuple consists of a number of values separated by commas, for instance:
</p>
<pre><code>>>> t = 12345, 54321, 'hello!'
>>> t[0]
12345
>>> t
(12345, 54321, 'hello!')
>>> # Tuples may be nested:
... u = t, (1, 2, 3, 4, 5)
>>> u
((12345, 54321, 'hello!'), (1, 2, 3, 4, 5))
>>> # Tuples are immutable:
... t[0] = 88888
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not support item assignment
>>> # but they can contain mutable objects:
... v = ([1, 2, 3], [3, 2, 1])
>>> v
([1, 2, 3], [3, 2, 1])</code></pre>
<p>
As you see, on output tuples are always enclosed in parentheses, so that
nested tuples are interpreted correctly; they may be input with or without
surrounding parentheses, although often parentheses are necessary anyway
(if the tuple is part of a larger expression). It is not possible to
assign to the individual items of a tuple, however it is possible to
create tuples which contain mutable objects, such as lists.
</p>
<p>
Though tuples may seem similar to lists, they are often used in different
situations and for different purposes. Tuples are
<a
href="https://docs.python.org/3/glossary.html#term-immutable"
class="reference internal"
><span class="xref std std-term">immutable</span></a
>, and usually contain a heterogeneous sequence of elements that are
accessed via unpacking (see later in this section) or indexing (or even by
attribute in the case of
<a
href="https://docs.python.org/3/library/collections.html#collections.namedtuple"
class="reference internal"
title="collections.namedtuple"
><code class="sourceCode python">namedtuples</code></a
>). Lists are
<a
href="https://docs.python.org/3/glossary.html#term-mutable"
class="reference internal"
><span class="xref std std-term">mutable</span></a
>, and their elements are usually homogeneous and are accessed by
iterating over the list.
</p>
<p>
A special problem is the construction of tuples containing 0 or 1 items:
the syntax has some extra quirks to accommodate these. Empty tuples are
constructed by an empty pair of parentheses; a tuple with one item is
constructed by following a value with a comma (it is not sufficient to
enclose a single value in parentheses). Ugly, but effective. For example:
</p>
<pre><code>>>> empty = ()
>>> singleton = 'hello', # <-- note trailing comma
>>> len(empty)
0
>>> len(singleton)
1
>>> singleton
('hello',)</code></pre>
<p>
The statement <code>t = 12345, 54321, 'hello!'</code> is an example of
<em>tuple packing</em>: the values <code>12345</code>,
<code>54321</code> and <code>'hello!'</code> are packed together in a
tuple. The reverse operation is also possible:
</p>
<pre><code>>>> x, y, z = t</code></pre>
<p>
This is called, appropriately enough, <em>sequence unpacking</em> and
works for any sequence on the right-hand side. Sequence unpacking requires
that there are as many variables on the left side of the equals sign as
there are elements in the sequence. Note that multiple assignment is
really just a combination of tuple packing and sequence unpacking.
</p>
<p><span id="tut-sets"></span></p>
<h2 id="sets">
<span class="section-number">5.4. </span>Sets<a
href="#sets"
class="headerlink"
title="Permalink to this headline"
>¶</a
>
</h2>
<p>
Python also includes a data type for <em>sets</em>. A set is an unordered
collection with no duplicate elements. Basic uses include membership
testing and eliminating duplicate entries. Set objects also support
mathematical operations like union, intersection, difference, and
symmetric difference.
</p>
<p>
Curly braces or the
<a
href="https://docs.python.org/3/library/stdtypes.html#set"
class="reference internal"
title="set"
><code class="sourceCode python"><span class="bu">set</span>()</code></a
>
function can be used to create sets. Note: to create an empty set you have
to use <code>set()</code>, not <code>{}</code>; the latter creates an
empty dictionary, a data structure that we discuss in the next section.
</p>
<p>Here is a brief demonstration:</p>
<pre><code>>>> basket = {'apple', 'orange', 'apple', 'pear', 'orange', 'banana'}
>>> print(basket) # show that duplicates have been removed
{'orange', 'banana', 'pear', 'apple'}
>>> 'orange' in basket # fast membership testing
True
>>> 'crabgrass' in basket
False
>>> # Demonstrate set operations on unique letters from two words
...
>>> a = set('abracadabra')
>>> b = set('alacazam')
>>> a # unique letters in a
{'a', 'r', 'b', 'c', 'd'}
>>> a - b # letters in a but not in b
{'r', 'd', 'b'}
>>> a | b # letters in a or b or both
{'a', 'c', 'r', 'd', 'b', 'm', 'z', 'l'}
>>> a & b # letters in both a and b
{'a', 'c'}
>>> a ^ b # letters in a or b but not both
{'r', 'd', 'b', 'm', 'z', 'l'}</code></pre>
<p>
Similarly to
<a href="#tut-listcomps" class="reference internal"
><span class="std std-ref">list comprehensions</span></a
>, set comprehensions are also supported:
</p>
<pre><code>>>> a = {x for x in 'abracadabra' if x not in 'abc'}
>>> a
{'r', 'd'}</code></pre>
<p><span id="tut-dictionaries"></span></p>
<h2 id="dictionaries">
<span class="section-number">5.5. </span>Dictionaries<a
href="#dictionaries"
class="headerlink"
title="Permalink to this headline"
>¶</a
>
</h2>
<p>
Another useful data type built into Python is the <em>dictionary</em> (see
<a
href="https://docs.python.org/3/library/stdtypes.html#typesmapping"
class="reference internal"
><span class="std std-ref">Mapping Types — dict</span></a
>). Dictionaries are sometimes found in other languages as “associative
memories” or “associative arrays”. Unlike sequences, which are indexed by
a range of numbers, dictionaries are indexed by <em>keys</em>, which can
be any immutable type; strings and numbers can always be keys. Tuples can
be used as keys if they contain only strings, numbers, or tuples; if a
tuple contains any mutable object either directly or indirectly, it cannot
be used as a key. You can’t use lists as keys, since lists can be modified
in place using index assignments, slice assignments, or methods like
<code>append()</code> and <code>extend()</code>.
</p>
<p>
It is best to think of a dictionary as a set of <em>key: value</em> pairs,
with the requirement that the keys are unique (within one dictionary). A
pair of braces creates an empty dictionary: <code>{}</code>. Placing a
comma-separated list of key:value pairs within the braces adds initial
key:value pairs to the dictionary; this is also the way dictionaries are
written on output.
</p>
<p>
The main operations on a dictionary are storing a value with some key and
extracting the value given the key. It is also possible to delete a
key:value pair with <code>del</code>. If you store using a key that is
already in use, the old value associated with that key is forgotten. It is
an error to extract a value using a non-existent key.
</p>
<p>
Performing <code>list(d)</code> on a dictionary returns a list of all the
keys used in the dictionary, in insertion order (if you want it sorted,
just use <code>sorted(d)</code> instead). To check whether a single key is
in the dictionary, use the
<a
href="https://docs.python.org/3/reference/expressions.html#in"
class="reference internal"
><code class="xref std std-keyword docutils literal notranslate"
>in</code
></a
>
keyword.
</p>
<p>Here is a small example using a dictionary:</p>
<pre><code>>>> tel = {'jack': 4098, 'sape': 4139}
>>> tel['guido'] = 4127
>>> tel
{'jack': 4098, 'sape': 4139, 'guido': 4127}
>>> tel['jack']
4098
>>> del tel['sape']
>>> tel['irv'] = 4127
>>> tel
{'jack': 4098, 'guido': 4127, 'irv': 4127}
>>> list(tel)
['jack', 'guido', 'irv']
>>> sorted(tel)
['guido', 'irv', 'jack']
>>> 'guido' in tel
True
>>> 'jack' not in tel
False</code></pre>
<p>
The
<a
href="https://docs.python.org/3/library/stdtypes.html#dict"
class="reference internal"
title="dict"
><code class="sourceCode python"
><span class="bu">dict</span>()</code
></a
>
constructor builds dictionaries directly from sequences of key-value
pairs:
</p>
<pre><code>>>> dict([('sape', 4139), ('guido', 4127), ('jack', 4098)])
{'sape': 4139, 'guido': 4127, 'jack': 4098}</code></pre>
<p>
In addition, dict comprehensions can be used to create dictionaries from
arbitrary key and value expressions:
</p>
<pre><code>>>> {x: x**2 for x in (2, 4, 6)}
{2: 4, 4: 16, 6: 36}</code></pre>
<p>
When the keys are simple strings, it is sometimes easier to specify pairs
using keyword arguments:
</p>
<pre><code>>>> dict(sape=4139, guido=4127, jack=4098)
{'sape': 4139, 'guido': 4127, 'jack': 4098}</code></pre>
<p><span id="tut-loopidioms"></span></p>
<h2 id="looping-techniques">
<span class="section-number">5.6. </span>Looping Techniques<a
href="#looping-techniques"
class="headerlink"
title="Permalink to this headline"
>¶</a
>
</h2>
<p>
When looping through dictionaries, the key and corresponding value can be
retrieved at the same time using the <code>items()</code> method.
</p>
<pre><code>>>> knights = {'gallahad': 'the pure', 'robin': 'the brave'}
>>> for k, v in knights.items():
... print(k, v)
...
gallahad the pure
robin the brave</code></pre>
<p>
When looping through a sequence, the position index and corresponding
value can be retrieved at the same time using the
<a
href="https://docs.python.org/3/library/functions.html#enumerate"
class="reference internal"
title="enumerate"
><code class="sourceCode python"
><span class="bu">enumerate</span>()</code
></a
>
function.
</p>
<pre><code>>>> for i, v in enumerate(['tic', 'tac', 'toe']):
... print(i, v)
...
0 tic
1 tac
2 toe</code></pre>
<p>
To loop over two or more sequences at the same time, the entries can be
paired with the
<a
href="https://docs.python.org/3/library/functions.html#zip"
class="reference internal"
title="zip"
><code class="sourceCode python"><span class="bu">zip</span>()</code></a
>
function.
</p>
<pre><code>>>> questions = ['name', 'quest', 'favorite color']
>>> answers = ['lancelot', 'the holy grail', 'blue']
>>> for q, a in zip(questions, answers):
... print('What is your {0}? It is {1}.'.format(q, a))
...
What is your name? It is lancelot.
What is your quest? It is the holy grail.
What is your favorite color? It is blue.</code></pre>
<p>
To loop over a sequence in reverse, first specify the sequence in a
forward direction and then call the
<a
href="https://docs.python.org/3/library/functions.html#reversed"
class="reference internal"
title="reversed"
><code class="sourceCode python"
><span class="bu">reversed</span>()</code
></a
>
function.
</p>
<pre><code>>>> for i in reversed(range(1, 10, 2)):
... print(i)
...
9
7
5
3
1</code></pre>
<p>
To loop over a sequence in sorted order, use the
<a
href="https://docs.python.org/3/library/functions.html#sorted"
class="reference internal"
title="sorted"
><code class="sourceCode python"
><span class="bu">sorted</span>()</code
></a
>
function which returns a new sorted list while leaving the source
unaltered.
</p>
<pre><code>>>> basket = ['apple', 'orange', 'apple', 'pear', 'orange', 'banana']
>>> for i in sorted(basket):
... print(i)
...
apple
apple
banana
orange
orange
pear</code></pre>
<p>
Using
<a
href="https://docs.python.org/3/library/stdtypes.html#set"
class="reference internal"
title="set"
><code class="sourceCode python"><span class="bu">set</span>()</code></a
>
on a sequence eliminates duplicate elements. The use of
<a
href="https://docs.python.org/3/library/functions.html#sorted"
class="reference internal"
title="sorted"
><code class="sourceCode python"
><span class="bu">sorted</span>()</code
></a
>
in combination with
<a
href="https://docs.python.org/3/library/stdtypes.html#set"
class="reference internal"
title="set"
><code class="sourceCode python"><span class="bu">set</span>()</code></a
>
over a sequence is an idiomatic way to loop over unique elements of the
sequence in sorted order.
</p>
<pre><code>>>> basket = ['apple', 'orange', 'apple', 'pear', 'orange', 'banana']
>>> for f in sorted(set(basket)):
... print(f)
...
apple
banana
orange
pear</code></pre>
<p>
It is sometimes tempting to change a list while you are looping over it;
however, it is often simpler and safer to create a new list instead.
</p>
<pre><code>>>> import math
>>> raw_data = [56.2, float('NaN'), 51.7, 55.3, 52.5, float('NaN'), 47.8]
>>> filtered_data = []
>>> for value in raw_data:
... if not math.isnan(value):
... filtered_data.append(value)
...
>>> filtered_data
[56.2, 51.7, 55.3, 52.5, 47.8]</code></pre>
<p><span id="tut-conditions"></span></p>
<h2 id="more-on-conditions">
<span class="section-number">5.7. </span>More on Conditions<a
href="#more-on-conditions"
class="headerlink"
title="Permalink to this headline"
>¶</a
>
</h2>
<p>
The conditions used in <code>while</code> and <code>if</code> statements
can contain any operators, not just comparisons.
</p>
<p>
The comparison operators <code>in</code> and <code>not in</code> check
whether a value occurs (does not occur) in a sequence. The operators
<code>is</code> and <code>is not</code> compare whether two objects are
really the same object. All comparison operators have the same priority,
which is lower than that of all numerical operators.
</p>
<p>
Comparisons can be chained. For example, <code>a < b == c</code> tests
whether <code>a</code> is less than <code>b</code> and moreover
<code>b</code> equals <code>c</code>.
</p>
<p>
Comparisons may be combined using the Boolean operators
<code>and</code> and <code>or</code>, and the outcome of a comparison (or
of any other Boolean expression) may be negated with <code>not</code>.
These have lower priorities than comparison operators; between them,
<code>not</code> has the highest priority and <code>or</code> the lowest,
so that <code>A and not B or C</code> is equivalent to
<code>(A and (not B)) or C</code>. As always, parentheses can be used to
express the desired composition.
</p>
<p>
The Boolean operators <code>and</code> and <code>or</code> are so-called
<em>short-circuit</em> operators: their arguments are evaluated from left
to right, and evaluation stops as soon as the outcome is determined. For
example, if <code>A</code> and <code>C</code> are true but
<code>B</code> is false, <code>A and B and C</code> does not evaluate the
expression <code>C</code>. When used as a general value and not as a
Boolean, the return value of a short-circuit operator is the last
evaluated argument.
</p>
<p>
It is possible to assign the result of a comparison or other Boolean
expression to a variable. For example,
</p>
<pre><code>>>> string1, string2, string3 = '', 'Trondheim', 'Hammer Dance'
>>> non_null = string1 or string2 or string3
>>> non_null
'Trondheim'</code></pre>
<p>
Note that in Python, unlike C, assignment inside expressions must be done
explicitly with the
<a