-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathserver.R
executable file
·194 lines (170 loc) · 6.95 KB
/
server.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
#
# This is the server logic of a Shiny web application. You can run the
# application by clicking 'Run App' above.
#
# Find out more about building applications with Shiny here:
#
# http://shiny.rstudio.com/
#
# Install, if not already
#install.packages("shiny")
#install.packages("dplyr")
#install.packages("recommenderlab")
library(shiny)
library(dplyr)
library(recommenderlab)
load("RData/reviews.RData")
load("RData/beers.RData")
load("RData/breweries.RData")
load("RData/styles.RData")
load("RData/beer_rating_matrix.RData")
load("RData/beer_rec20.RData")
# Define server logic
shinyServer(function(input, output) {
### Retrieve recommendations for Beers
output$beer <- renderDataTable({
## Top Recommendations ##
if (input$rec1 == "general"){
beer1 <- reviews %>%
group_by(beer_name) %>%
summarize(n_obs = n(),
avg_rating = round(mean(review_overall), digits=2),
avg_abv = round(mean(beer_abv, na.rm = TRUE), digits=2)) %>%
filter(n_obs >= input$reviews1) %>%
filter(avg_abv >= input$abv1[1], avg_abv <= input$abv1[2]) %>%
select(beer_name, avg_rating, avg_abv) %>%
top_n(n = input$n1, wt = avg_rating) %>%
arrange(desc(avg_rating))
colnames(beer1) <- c("Beer Name", "Average Overall Rating", "Alcohol %")
return(beer1)
}
else if (input$rec1 == "category"){
if (input$cat == "brewery"){
beer2 <- reviews %>%
filter(brewery_name == input$brew) %>%
group_by(beer_name) %>%
summarize(n_obs = n(),
avg_rating = round(mean(review_overall), digits=2),
avg_abv = round(mean(beer_abv, na.rm = TRUE), digits=2)) %>%
filter(n_obs >= input$reviews1) %>%
filter(avg_abv >= input$abv1[1], avg_abv <= input$abv1[2]) %>%
select(beer_name, avg_rating, avg_abv) %>%
top_n(n = input$n1, wt = avg_rating) %>%
arrange(desc(avg_rating))
colnames(beer2) <- c("Beer Name", "Average Overall Rating", "Alcohol %")
return(beer2)
}
else if (input$cat == "style"){
beer3 <- reviews %>%
filter(beer_style == input$sty) %>%
group_by(beer_name) %>%
summarize(n_obs = n(),
avg_rating = round(mean(review_overall), digits=2),
avg_abv = round(mean(beer_abv, na.rm = TRUE), digits=2)) %>%
filter(n_obs >= input$reviews1) %>%
filter(avg_abv >= input$abv1[1], avg_abv <= input$abv1[2]) %>%
select(beer_name, avg_rating, avg_abv) %>%
top_n(n = input$n1, wt = avg_rating) %>%
arrange(desc(avg_rating))
colnames(beer3) <- c("Beer Name", "Average Overall Rating", "Alcohol %")
return(beer3)
}
}
## Item-Based Collaborative Filtering
else if (input$rec1 == "individual"){
# get user inputs for their beer ratings
beers_to_rate <- reactive({
rated_beers <- c(input$rated_beer1, input$rated_beer2, input$rated_beer3)
rated_beers
})
beer_ratings <- reactive({
ratings_of_beers <- c(input$beer_rating1, input$beer_rating2, input$beer_rating3)
ratings_of_beers
})
# create rating matrix for current user
ratings <- matrix(NA, nrow=1, ncol = ncol(r))
colnames(ratings) <- colnames(r)
for(i in 1:3)
ratings[1, beers_to_rate()[i]] <- input[[paste0("beer_rating", i)]] #as.numeric(paste0(beer_ratings()[i]))
# do prediction
realRatings <- as(ratings, "realRatingMatrix")
prediction <- predict(beer_rec20, realRatings, n = input$n1)
df <- cbind("Beer Name" = getList(prediction)[[1]],
"predicted Rating" = sprintf("%1.1f", getRatings(prediction)[[1]]))
return(df)
}
},
options = list(pageLength = 15,
lengthChange = FALSE))
### Retrieve top recommendations for Breweries ###
output$brewery <- renderDataTable({
if (input$rec2 == "general"){
brewery1 <- reviews %>%
group_by(brewery_name) %>%
summarize(n_obs = n(),
avg_rating = round(mean(review_overall), digits=2),
avg_abv = round(mean(beer_abv, na.rm = TRUE), digits=2)) %>%
filter(n_obs >= input$reviews2) %>%
filter(avg_abv >= input$abv2[1], avg_abv <= input$abv2[2]) %>%
select(brewery_name, avg_rating, avg_abv) %>%
top_n(n = input$n2, wt = avg_rating) %>%
arrange(desc(avg_rating))
colnames(brewery1) <- c("Brewery Name", "Average Overall Rating", "Alcohol %")
return(brewery1)
}
else if (input$rec2 == "category"){
brewery2 <- reviews %>%
filter(beer_style == input$cat2) %>%
group_by(brewery_name) %>%
summarize(n_obs = n(),
avg_rating = round(mean(review_overall), digits=2),
avg_abv = round(mean(beer_abv, na.rm = TRUE), digits=2)) %>%
filter(n_obs >= input$reviews2) %>%
filter(avg_abv >= input$abv2[1], avg_abv <= input$abv2[2]) %>%
select(brewery_name, avg_rating, avg_abv) %>%
top_n(n = input$n2, wt = avg_rating) %>%
arrange(desc(avg_rating))
colnames(brewery2) <- c("Brewery Name", "Average Overall Rating", "Alcohol %")
return(brewery2)
}
},
options = list(pageLength = 15,
lengthChange = FALSE)
)
### Retrieve top recommendations for Beer Styles ###
output$style <- renderDataTable({
## General top beer styles
if (input$rec3 == "general"){
style1 <- reviews %>%
group_by(beer_style) %>%
summarize(n_obs = n(),
avg_rating = round(mean(review_overall), digits=2),
avg_abv = round(mean(beer_abv, na.rm = TRUE), digits=2)) %>%
filter(n_obs >= input$reviews3) %>%
filter(avg_abv >= input$abv3[1], avg_abv <= input$abv3[2]) %>%
select(beer_style, avg_rating, avg_abv) %>%
top_n(n = input$n3, wt = avg_rating) %>%
arrange(desc(avg_rating))
colnames(style1) <- c("Beer Style Name", "Average Overall Rating", "Alcohol %")
return(style1)
}
## top beer styles by brewery
else if (input$rec3 == "category"){
style2 <- reviews %>%
filter(brewery_name == input$cat3) %>%
group_by(beer_style) %>%
summarize(n_obs = n(),
avg_rating = round(mean(review_overall), digits=2),
avg_abv = round(mean(beer_abv, na.rm = TRUE), digits=2)) %>%
filter(n_obs >= input$reviews3) %>%
filter(avg_abv >= input$abv3[1], avg_abv <= input$abv3[2]) %>%
select(beer_style, avg_rating, avg_abv) %>%
top_n(n = input$n3, wt = avg_rating) %>%
arrange(desc(avg_rating))
colnames(style2) <- c("Beer Style Name", "Average Overall Rating", "Alcohol %")
return(style2)
}
},
options = list(pageLength = 15,
lengthChange = FALSE))
})