-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathextract_vae.py
56 lines (49 loc) · 1.89 KB
/
extract_vae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import os
import numpy as np
import librosa
import soundfile as sf
import pandas as pd
import torch
from tqdm import tqdm
from vae_modules.autoencoder_wrapper import Autoencoder
import glob
import argparse
def main(datapath, output_dir):
audios = glob.glob(os.path.join(datapath, '*.wav'))
device = 'cuda'
os.makedirs(output_dir, exist_ok=True)
max_sample = 10000000000
autoencoder = Autoencoder('./pretrained_models/audio-vae.pt',
'stable_vae',
quantization_first=True)
autoencoder.to(device)
autoencoder.eval()
with torch.no_grad():
latents = []
step = 0
for i in tqdm(range(len(audios))):
audio_id = audios[i].split('/')[-1].split('.wav')[0]
audio_clip, sr = librosa.load(audios[i], sr=24000)
desired_length = 10 * sr
if len(audio_clip) < desired_length:
padding = desired_length - len(audio_clip)
audio_clip = np.pad(audio_clip, (0, padding), mode='constant')
if np.abs(audio_clip).max() > 1:
audio_clip /= np.abs(audio_clip).max()
audio_clip = torch.tensor(audio_clip).unsqueeze(0).to(device)
audio_clip = autoencoder(audio=audio_clip.unsqueeze(1))
audio_clip = audio_clip.cpu()[0]
torch.save(audio_clip, f'{output_dir}/{audio_id}.pt')
latents.append(audio_clip)
step += 1
if step >= max_sample:
break
latents = torch.cat(latents, dim=-1)
print('shift: ' + f'{-latents.mean()}')
print('scale: ' + f'{1/latents.std()}')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--data_dir', type=str, required=True)
parser.add_argument('--output_dir', type=str, required=True)
args = parser.parse_args()
main(args.data_dir, args.output_dir)