Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Could you share the training log of your faster rcnn(vgg16)? #1

Open
zzdang opened this issue Jul 14, 2018 · 2 comments
Open

Could you share the training log of your faster rcnn(vgg16)? #1

zzdang opened this issue Jul 14, 2018 · 2 comments

Comments

@zzdang
Copy link

zzdang commented Jul 14, 2018

Hi ,I'm training gluon-cv's faster rcnn(vgg16 and VOC). But,the 7 epoch mAP is 0.52 ,I think it is lower than I expected.
Could you share the training log of your faster rcnn(vgg16)? So I can find some mistake about my training.

@WalterMa
Copy link
Owner

Currently, the best map on VOC07 tests set is 0.6190 after 11 epoch training, much lower than original. I'm still working on this.
For now, use Gloun-CV will be a better choice, since it supports faster-rcnn after v0.2.

@Ram-Godavarthi
Copy link

Hi,
I have done training on my own dataset and i got 70% accuracy after 4 epochs..
I want to visualize the output.. so i tried with demo script.. i gave 1 input image and tried with the trained model. i changed the class names in demo script.
but i got this error.. Could you please let me know whats the problem.. Thank You

Traceback (most recent call last):
File "demo_faster_rcnn.py", line 65, in
cls, scores, bboxes = net(data.as_in_context(ctx), im_info.as_in_context(ctx))
File "/home/ubuntu/anaconda3/lib/python3.6/site-packages/mxnet/gluon/block.py", line 413, in call
return self.forward(*args)
File "/home/ubuntu/anaconda3/lib/python3.6/site-packages/mxnet/gluon/block.py", line 629, in forward
return self.hybrid_forward(ndarray, x, *args, **params)
File "/home/ubuntu/gluon-faster-rcnn/rcnn/rcnn.py", line 69, in hybrid_forward
rois = self.proposal(rpn_cls_prob, rpn_bbox_pred, im_info)
File "/home/ubuntu/anaconda3/lib/python3.6/site-packages/mxnet/gluon/block.py", line 413, in call
return self.forward(*args)
File "/home/ubuntu/anaconda3/lib/python3.6/site-packages/mxnet/gluon/block.py", line 629, in forward
return self.hybrid_forward(ndarray, x, *args, **params)
File "/home/ubuntu/gluon-faster-rcnn/rcnn/proposal.py", line 32, in hybrid_forward
threshold=self.rpn_nms_threshold, rpn_min_size=self.rpn_min_size)
File "", line 82, in MultiProposal
File "/home/ubuntu/anaconda3/lib/python3.6/site-packages/mxnet/_ctypes/ndarray.py", line 92, in _imperative_invoke
ctypes.byref(out_stypes)))
File "/home/ubuntu/anaconda3/lib/python3.6/site-packages/mxnet/base.py", line 149, in check_call
raise MXNetError(py_str(_LIB.MXGetLastError()))
mxnet.base.MXNetError: Cannot find argument 'cls_prob', Possible Arguments:
rpn_pre_nms_top_n : int, optional, default='6000'
Number of top scoring boxes to keep after applying NMS to RPN proposals
rpn_post_nms_top_n : int, optional, default='300'
Overlap threshold used for non-maximumsuppresion(suppress boxes with IoU >= this threshold
threshold : float, optional, default=0.7
NMS value, below which to suppress.
rpn_min_size : int, optional, default='16'
Minimum height or width in proposal
scales : tuple of , optional, default=[4,8,16,32]
Used to generate anchor windows by enumerating scales
ratios : tuple of , optional, default=[0.5,1,2]
Used to generate anchor windows by enumerating ratios
feature_stride : int, optional, default='16'
The size of the receptive field each unit in the convolution layer of the rpn,for example the product of all stride's prior to this layer.
output_score : boolean, optional, default=0
Add score to outputs
iou_loss : boolean, optional, default=0
Usage of IoU Loss
, in operator _contrib_MultiProposal(name="", feature_stride="16", ratios="(0.5, 1, 2)", rpn_min_size="16", scales="(8, 16, 32)", rpn_post_nms_top_n="300", rpn_pre_nms_top_n="6000", threshold="0.7", cls_prob="
[[[[9.2525011e-01 9.8686647e-01 9.9559492e-01 ... 9.6093690e-01
9.3473071e-01 8.3388972e-01]
[9.8144472e-01 9.9909139e-01 9.9984789e-01 ... 9.9409735e-01
9.8589975e-01 9.3193233e-01]
[9.8883343e-01 9.9964535e-01 9.9995410e-01 ... 9.9763453e-01
9.9354243e-01 9.5571983e-01]
...
[9.8543328e-01 9.9948043e-01 9.9991584e-01 ... 9.9969471e-01
9.9917930e-01 9.8851913e-01]
[9.7469234e-01 9.9870670e-01 9.9970120e-01 ... 9.9901140e-01
9.9767345e-01 9.7834754e-01]
[9.0814865e-01 9.8365211e-01 9.9276966e-01 ... 9.8466349e-01
9.7399849e-01 9.0880662e-01]]

[[9.0745032e-01 9.8171026e-01 9.9309546e-01 ... 9.4973421e-01
9.1728598e-01 8.1418854e-01]
[9.7337264e-01 9.9846858e-01 9.9970394e-01 ... 9.9094427e-01
9.7995251e-01 9.1768110e-01]
[9.8243284e-01 9.9936765e-01 9.9990177e-01 ... 9.9625152e-01
9.9037081e-01 9.4557309e-01]
...
[9.7682333e-01 9.9898654e-01 9.9980742e-01 ... 9.9938107e-01
9.9859077e-01 9.8415011e-01]
[9.6041822e-01 9.9727988e-01 9.9929476e-01 ... 9.9794215e-01
9.9601054e-01 9.7078675e-01]
[8.7193352e-01 9.7200722e-01 9.8639816e-01 ... 9.7515827e-01
9.6249181e-01 8.8967586e-01]]

[[5.2806801e-01 5.3886396e-01 5.5010569e-01 ... 5.2669793e-01
5.2231640e-01 5.0962281e-01]
[5.3768706e-01 5.5899465e-01 5.7622200e-01 ... 5.5065542e-01
5.4214233e-01 5.2825642e-01]
[5.4670048e-01 5.8282024e-01 6.0394657e-01 ... 5.6064773e-01
5.5870861e-01 5.4004127e-01]
...
[5.3445053e-01 5.7814318e-01 6.0343522e-01 ... 5.9942263e-01
5.9564185e-01 5.6060779e-01]
[5.3276056e-01 5.7079929e-01 5.9411222e-01 ... 5.9032643e-01
5.8910215e-01 5.5843079e-01]
[5.2759832e-01 5.5251533e-01 5.7285386e-01 ... 5.6627262e-01
5.6415069e-01 5.4235542e-01]]

...

[[1.6489255e-01 5.4860741e-02 2.7824294e-02 ... 1.1167015e-01
1.5454119e-01 2.7348977e-01]
[7.4070774e-02 1.0540956e-02 3.4242510e-03 ... 3.8886167e-02
6.8945184e-02 1.8131968e-01]
[6.2780201e-02 6.9735665e-03 1.9518270e-03 ... 2.3429820e-02
4.5364555e-02 1.4465846e-01]
...
[8.8465296e-02 1.4774417e-02 5.4020169e-03 ... 1.1072693e-02
1.9699827e-02 8.5111000e-02]
[1.4203803e-01 3.7630506e-02 2.2168955e-02 ... 3.7781410e-02
5.5475168e-02 1.4689194e-01]
[2.8729475e-01 1.7887905e-01 1.5341425e-01 ... 1.8521468e-01
2.1700267e-01 3.0219343e-01]]

[[7.6535888e-02 1.3174757e-02 4.5662634e-03 ... 3.9024629e-02
6.6420421e-02 1.6296616e-01]
[1.8801216e-02 8.8067626e-04 1.5799509e-04 ... 5.9979130e-03
1.4321312e-02 6.7583486e-02]
[1.2135372e-02 3.7127602e-04 5.5430377e-05 ... 2.5837927e-03
6.8379878e-03 4.4826828e-02]
...
[1.6011752e-02 5.7889975e-04 1.1127151e-04 ... 3.9832355e-04
9.8138128e-04 1.2958074e-02]
[2.6029671e-02 1.4883390e-03 3.9916934e-04 ... 1.2645581e-03
2.7250603e-03 2.4580965e-02]
[1.0069502e-01 1.9385004e-02 9.5264316e-03 ... 1.9384181e-02
3.1448375e-02 1.0509791e-01]]

[[4.3997696e-01 3.9228746e-01 3.6535779e-01 ... 4.2972672e-01
4.3877992e-01 4.6890491e-01]
[4.0322891e-01 3.3196816e-01 3.0024055e-01 ... 3.9013031e-01
4.0616569e-01 4.5436901e-01]
[4.0472379e-01 3.2188171e-01 2.8730047e-01 ... 3.8169590e-01
3.9514536e-01 4.5027012e-01]
...
[4.1938949e-01 3.4382537e-01 3.1303972e-01 ... 3.3924583e-01
3.4913608e-01 4.1282722e-01]
[4.3390730e-01 3.7113073e-01 3.4658235e-01 ... 3.7191394e-01
3.8552991e-01 4.3190357e-01]
[4.6732298e-01 4.3559861e-01 4.2490643e-01 ... 4.4331262e-01
4.5451128e-01 4.7383672e-01]]]]
<NDArray 1x18x37x37 @gpu(0)>")

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants