-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathCLEModels.py
129 lines (107 loc) · 5.13 KB
/
CLEModels.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
# Copyright Software Engineering Analytics Lab (SEAL), Wayne State University, 2022
# Authors: Jaydeb Sarker <jaydebsarker@wayne.edu> and Amiangshu Bosu <abosu@wayne.edu>
# This program is free software; you can redistribute it and/or
#modify it under the terms of the GNU General Public License
# version 3 as published by the Free Software Foundation.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
from sklearn.ensemble import GradientBoostingClassifier, RandomForestClassifier
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model import LogisticRegression
from sklearn.svm import LinearSVC
from sklearn.tree import DecisionTreeClassifier
from nltk import word_tokenize
from sklearn_pandas import DataFrameMapper
from sklearn.model_selection import GridSearchCV
import numpy as np
from pprint import pprint
import nltk
try:
nltk.data.find('tokenizers/punkt')
except LookupError:
nltk.download('punkt')
mystop_words = ['i', 'me', 'my', 'myself', 'we', 'our', 'ourselves', 'you', 'your',
'yourself', 'yourselves', 'he', 'him', 'his', 'himself', 'she', 'her',
'herself', 'it', 'its', 'itself', 'they', 'them', 'their', 'themselves',
'this', 'that', 'these', 'those', 'am', 'is', 'are', 'was', 'were', 'be', 'been', 'being',
'have', 'has', 'had', 'having', 'do', 'does', 'did', 'doing', 'a', 'an', 'the',
'and', 'if', 'or', 'as', 'until', 'of', 'at', 'by', 'between', 'into',
'through', 'during', 'to', 'from', 'in', 'out', 'on', 'off', 'then', 'once', 'here',
'there', 'all', 'any', 'both', 'each', 'few', 'more',
'other', 'some', 'such', 'than', 'too', 'very', 's', 't', 'can', 'will', 'don', 'should', 'now']
class CLEModel:
def __init__(self, X_train, Y_train, algo="RF", tuning=False):
self.algo = algo
self.vectorizer = TfidfVectorizer(tokenizer=word_tokenize, sublinear_tf=True, max_df=0.5,
stop_words=mystop_words, min_df=20)
self.mapper = None
self.Y = None
self.X = None
self.clf = self.get_classifier()
self.__prepare_data(X_train, Y_train)
if tuning:
self.grid_search_parameter()
else:
self.model = self.train()
def __prepare_data(self, X_train, Y_train):
self.mapper = DataFrameMapper([
('message', self.vectorizer),
('profane_count', None),
('emoticon_count', None),
('anger_count', None),
])
self.Y = np.ravel(Y_train)
self.X = self.mapper.fit_transform(X_train) # adding the profanity count columns with bagofwords
# print("Created TF-IDF representations")
def get_classifier(self):
algo = self.algo
if algo == "GBT":
return GradientBoostingClassifier(max_features='auto', n_iter_no_change=5)
elif algo == "RF":
return RandomForestClassifier(n_jobs=-1, min_samples_split=5)
elif algo == "DT":
return DecisionTreeClassifier(max_features='auto')
elif algo == "SVM":
return LinearSVC()
elif algo == "LR":
return LogisticRegression()
def grid_search_parameter(self):
param_gid=None
if self.algo =='RF':
param_grid = {
'max_depth': [ 10, 20, 50, None],
'criterion': ['gini', 'entropy'],
'max_features': ['auto', 'sqrt', 'log2'],
'min_samples_leaf': [1, 2, 3, 4, 5],
'min_samples_split': [2, 4, 6, 7, 8, 10],
'n_estimators': [100, 200, 300, 400, 500, 750, 1000]
}
elif self.algo =='DT':
param_grid = {
'splitter': ['best', 'random'],
'criterion': ['gini', 'entropy'],
'max_features': ['auto', 'sqrt', 'log2'],
'min_samples_leaf': [1, 2, 3, 4, 5],
'min_samples_split': [2, 4, 6, 7, 8, 10]
}
else:
# This method can be extended to tune hyperparameters for other algorithms.
print("Tuning not implemented for the selected algorithm..")
exit(0)
grid_search_model = GridSearchCV(estimator=self.clf, param_grid=param_grid,
cv=10, n_jobs=-1, verbose=3, return_train_score=True)
grid_search_model.fit(self.X, self.Y)
pprint(grid_search_model.best_params_)
best_grid = grid_search_model.best_estimator_
def train(self):
print("Training the model with " + str(len(self.Y)) + " instances and " + str(
self.X.shape[1]) + " features")
self.clf.fit(self.X, self.Y)
print("Model training complete ..")
return self.clf
def predict(self, X_test):
X_test_mapped = self.mapper.transform(X_test)
predictions = self.model.predict(X_test_mapped)
return np.expand_dims(predictions, 1)