Skip to content

Latest commit

 

History

History
96 lines (82 loc) · 3.57 KB

README.md

File metadata and controls

96 lines (82 loc) · 3.57 KB

A Multi-Type Multi-Span Network for Reading Comprehension that Requires Discrete Reasoning

This repo contains the code of the following paper:

A Multi-Type Multi-Span Network for Reading Comprehension that Requires Discrete Reasoning. Minghao Hu, Yuxing Peng, Zhen Huang, Dongsheng Li. EMNLP 2019.

In this paper, we propose the Multi-Type Multi-Span Network (MTMSN) for reading comprehension that requires discrete reasoning.

The network contains:

  • a multi-type answer predictor that supports the prediction of various answer types (e.g., date, number, and span);
  • a multi-span extractor that dynamically produces one or multiple text strings;
  • an arithmetic expression reranking mechanism that re-ranks candidate expressions to further confirm the prediction.

Pre-trained Models

To reproduce our results, we release the following pre-trained models:

Requirements

Download the uncased BERT-Base model and unzip it in the current directory.

Train

Make sure drop_dataset_train.json and drop_dataset_dev.json are placed in DATA_DIR.

Then set up the environment:

export DATA_DIR=data/drop
export BERT_DIR=bert-base-uncased

Run the following command to train the base model:

python -m bert.run_mtmsn \
  --vocab_file $BERT_DIR/vocab.txt \
  --bert_config_file $BERT_DIR/config.json \
  --init_checkpoint $BERT_DIR/pytorch_model.bin \
  --do_train \
  --do_predict \
  --do_lower_case \
  --train_file $DATA_DIR/drop_dataset_train.json \
  --predict_file $DATA_DIR/drop_dataset_dev.json \
  --train_batch_size 12 \
  --predict_batch_size 24 \
  --num_train_epochs 10.0 \
  --learning_rate 3e-5 \
  --max_seq_length 512 \
  --span_extraction \
  --addition_subtraction \
  --counting \
  --negation \
  --gradient_accumulation_steps 2 \
  --output_dir out/mtmsn_base

The above model was trained on a single GPU with 16GB memory. Once the training is done, you can check out the dev result in out/mtmsn_base/performance.txt.

To train the large model, make sure there are 4 GPUs with 16GB memory per card and run the following command:

python -m bert.run_mtmsn \
  --vocab_file $BERT_DIR/vocab.txt \
  --bert_config_file $BERT_DIR/config.json \
  --init_checkpoint $BERT_DIR/pytorch_model.bin \
  --do_train \
  --do_predict \
  --do_lower_case \
  --train_file $DATA_DIR/drop_dataset_train.json \
  --predict_file $DATA_DIR/drop_dataset_dev.json \
  --train_batch_size 24 \
  --predict_batch_size 48 \
  --num_train_epochs 5.0 \
  --learning_rate 3e-5 \
  --max_seq_length 512 \
  --span_extraction \
  --addition_subtraction \
  --counting \
  --negation \
  --gradient_accumulation_steps 2 \
  --optimize_on_cpu \
  --output_dir out/mtmsn_large

Acknowledgements

Our implementation is based on the naqanet model.

If you find the paper or this repository helpful in your work, please use the following citation:

@inproceedings{hu2019multi,
  title={A Multi-Type Multi-Span Network for Reading Comprehension that Requires Discrete Reasoning},
  author={Hu, Minghao and Peng, Yuxing and Huang, Zhen and Li, Dongsheng},
  booktitle={Proceedings of EMNLP},
  year={2019}
}