Skip to content

Latest commit

 

History

History
68 lines (58 loc) · 2 KB

README.md

File metadata and controls

68 lines (58 loc) · 2 KB

CRScope

CRash Scope (CRScope) is a ML-guided crash classifier of a given JavaScript engine crash-dump file.

Installation

  1. Install dependencies

    sudo apt update
    sudo apt install python-pip python-dev
    
    sudo pip install pandas==0.23.0
    sudo pip install scipy==1.0.0
    sudo pip install scikit-learn==0.20.3
    sudo pip install imbalanced-learn==0.3.3
    sudo pip install matplotlib==2.1.0
    sudo pip install python-docx==0.8.6
    sudo pip install XlsxWriter==1.0.2
    sudo pip install joblib==0.11
    
  2. Clone CRScope

    git clone https://github.com/WSP-LAB/CRScope.git
    cd CRScope
    

Usage

  1. Prepare the csv file that contains feature information of each crash instance.

    • We provide sample csv files in ./data directory.
  2. Run CRScope

    usage: CRScope.py [-h]
                      [-e {chakra,v8,spider,chakra_v8,chakra_spider,v8_spider,all}]
                      [-s {under,over}] [-o OPTION] [-c {crscope,exniffer,combi}]
                      [-v VERSION]
                      datafile
    
    • -s, -o: Sampling method for balancing security and non-security data

      • -s over: Oversampling
        • -o 1: RandomOverSampler
        • -o 2: ADASYN
        • -o 3: SMOTE
      • -s under: Undersampling
        • -o 1: RandomUnderSampler
        • -o 2: TomekLinks
        • -o 3: CondensedNearestNeighbour
        • -o 4: OneSidedSelection
        • -o 5: EditedNearestNeighbours
        • -o 6: NeighbourhoodCleaningRule
      • reference: https://imbalanced-learn.readthedocs.io/en/stable/user_guide.html
    • -c: The choice for using which type of feature

      • crscope: CRScope
      • exniffer: Exniffer
      • combi: CRScope + Exniffer
    • -e, -v: For naming result directory and files

      • -e: A directory with the selected engine name will be created
      • -v: Result files with the version name will be created
    • For example,

       $ ./CRScope.py -e chakra -s over -o 1 -c crscope -v chakra_crscope_v1 ./data/chakra.csv
      
  3. The final reports will be saved in result directory.

More details can be found in the paper.