Skip to content

Commit

Permalink
style: forgotten lint fix (#4688)
Browse files Browse the repository at this point in the history
* lint

* undo fake commit

* undo fake commit

* forgotten space
  • Loading branch information
ataymano authored Mar 8, 2024
1 parent 80e832f commit 9837a0e
Showing 1 changed file with 42 additions and 25 deletions.
67 changes: 42 additions & 25 deletions vowpalwabbit/core/src/reductions/active.cc
Original file line number Diff line number Diff line change
Expand Up @@ -32,25 +32,37 @@ using namespace VW::reductions;
namespace
{
float get_active_coin_bias(float example_count, float avg_loss, float alt_label_error_rate_diff, float mellowness)
{//implementation follows https://web.archive.org/web/20120525164352/http://books.nips.cc/papers/files/nips23/NIPS2010_0363.pdf
const float mellow_log_e_count_over_e_count = mellowness * (std::log(example_count + 1.f) + 0.0001f) / (example_count + 0.0001f);
{ // implementation follows
// https://web.archive.org/web/20120525164352/http://books.nips.cc/papers/files/nips23/NIPS2010_0363.pdf
const float mellow_log_e_count_over_e_count =
mellowness * (std::log(example_count + 1.f) + 0.0001f) / (example_count + 0.0001f);
const float sqrt_mellow_lecoec = std::sqrt(mellow_log_e_count_over_e_count);
// loss should be in [0,1]
avg_loss = VW::math::clamp(avg_loss, 0.f, 1.f);

const float sqrt_avg_loss_plus_sqrt_alt_loss = std::min(1.f, //std::sqrt(avg_loss) + // commented out because two square roots appears to conservative.
std::sqrt(avg_loss + alt_label_error_rate_diff));//emperical variance deflater.
//std::cout << "example_count = " << example_count << " avg_loss = " << avg_loss << " alt_label_error_rate_diff = " << alt_label_error_rate_diff << " mellowness = " << mellowness << " mlecoc = " << mellow_log_e_count_over_e_count
// << " sqrt_mellow_lecoec = " << sqrt_mellow_lecoec << " double sqrt = " << sqrt_avg_loss_plus_sqrt_alt_loss << std::endl;

if (alt_label_error_rate_diff <= sqrt_mellow_lecoec * sqrt_avg_loss_plus_sqrt_alt_loss//deflater in use.
+ mellow_log_e_count_over_e_count) { return 1; }
//old equation
// const float rs = (sqrt_avg_loss_plus_sqrt_alt_loss + std::sqrt(sqrt_avg_loss_plus_sqrt_alt_loss * sqrt_avg_loss_plus_sqrt_alt_loss + 4 * alt_label_error_rate_diff)) / (2 * alt_label_error_rate_diff);
// return mellow_log_e_count_over_e_count * rs * rs;
const float sqrt_s = (sqrt_mellow_lecoec + std::sqrt(mellow_log_e_count_over_e_count+4*alt_label_error_rate_diff*mellow_log_e_count_over_e_count)) / 2*alt_label_error_rate_diff;
const float sqrt_avg_loss_plus_sqrt_alt_loss =
std::min(1.f, // std::sqrt(avg_loss) + // commented out because two square roots appears to conservative.
std::sqrt(avg_loss + alt_label_error_rate_diff)); // emperical variance deflater.
// std::cout << "example_count = " << example_count << " avg_loss = " << avg_loss << " alt_label_error_rate_diff = "
// << alt_label_error_rate_diff << " mellowness = " << mellowness << " mlecoc = " << mellow_log_e_count_over_e_count
// << " sqrt_mellow_lecoec = " << sqrt_mellow_lecoec << " double sqrt = " << sqrt_avg_loss_plus_sqrt_alt_loss
//<< std::endl;

if (alt_label_error_rate_diff <= sqrt_mellow_lecoec * sqrt_avg_loss_plus_sqrt_alt_loss // deflater in use.
+ mellow_log_e_count_over_e_count)
{
return 1;
}
// old equation
// const float rs = (sqrt_avg_loss_plus_sqrt_alt_loss + std::sqrt(sqrt_avg_loss_plus_sqrt_alt_loss *
// sqrt_avg_loss_plus_sqrt_alt_loss + 4 * alt_label_error_rate_diff)) / (2 * alt_label_error_rate_diff); return
// mellow_log_e_count_over_e_count * rs * rs;
const float sqrt_s = (sqrt_mellow_lecoec +
std::sqrt(mellow_log_e_count_over_e_count +
4 * alt_label_error_rate_diff * mellow_log_e_count_over_e_count)) /
2 * alt_label_error_rate_diff;
// std::cout << "sqrt_s = " << sqrt_s << std::endl;
return sqrt_s*sqrt_s;
return sqrt_s * sqrt_s;
}

float query_decision(const active& a, float updates_to_change_prediction, float example_count)
Expand All @@ -61,8 +73,10 @@ float query_decision(const active& a, float updates_to_change_prediction, float
{
// const auto weighted_queries = static_cast<float>(a._shared_data->weighted_labeled_examples);
const float avg_loss = (static_cast<float>(a._shared_data->sum_loss) / example_count);
//+ std::sqrt((1.f + 0.5f * std::log(example_count)) / (weighted_queries + 0.0001f)); Commented this out, not following why we need it from the theory.
// std::cout << "avg_loss = " << avg_loss << " weighted_queries = " << weighted_queries << " sum_loss = " << a._shared_data->sum_loss << " example_count = " << example_count << std::endl;
//+ std::sqrt((1.f + 0.5f * std::log(example_count)) / (weighted_queries + 0.0001f)); Commented this out, not
// following why we need it from the theory.
// std::cout << "avg_loss = " << avg_loss << " weighted_queries = " << weighted_queries << " sum_loss = " <<
// a._shared_data->sum_loss << " example_count = " << example_count << std::endl;
bias = get_active_coin_bias(example_count, avg_loss, updates_to_change_prediction / example_count, a.active_c0);
}
// std::cout << "bias = " << bias << std::endl;
Expand Down Expand Up @@ -122,31 +136,32 @@ void predict_or_learn_active(active& a, learner& base, VW::example& ec)

template <bool is_learn>
void predict_or_learn_active_direct(active& a, learner& base, VW::example& ec)
{
{
if (is_learn) { base.learn(ec); }
else { base.predict(ec); }

if (ec.l.simple.label == FLT_MAX)
{
if (std::string(ec.tag.begin(), ec.tag.begin()+6) == "query?")
{
if (std::string(ec.tag.begin(), ec.tag.begin() + 6) == "query?")
{
const float threshold = (a._shared_data->max_label + a._shared_data->min_label) * 0.5f;
// We want to understand the change in prediction if the label were to be
// the opposite of what was predicted. 0 and 1 are used for the expected min
// and max labels to be coming in from the active interactor.
ec.l.simple.label = (ec.pred.scalar >= threshold) ? a._min_seen_label : a._max_seen_label;
ec.confidence = std::abs(ec.pred.scalar - threshold) / base.sensitivity(ec);
ec.l.simple.label = FLT_MAX;
ec.pred.scalar = query_decision(a, ec.confidence, static_cast<float>(a._shared_data->weighted_unlabeled_examples));
ec.pred.scalar =
query_decision(a, ec.confidence, static_cast<float>(a._shared_data->weighted_unlabeled_examples));
}
}
else
{
{
// Update seen labels based on the current example's label.
a._min_seen_label = std::min(ec.l.simple.label, a._min_seen_label);
a._max_seen_label = std::max(ec.l.simple.label, a._max_seen_label);
}
}
}
}

void active_print_result(
VW::io::writer* f, float res, float weight, const VW::v_array<char>& tag, VW::io::logger& logger)
Expand Down Expand Up @@ -232,7 +247,9 @@ std::shared_ptr<VW::LEARNER::learner> VW::reductions::active_setup(VW::setup_bas
option_group_definition new_options("[Reduction] Active Learning");
new_options.add(make_option("active", active_option).keep().necessary().help("Enable active learning"))
.add(make_option("simulation", simulation).help("Active learning simulation mode"))
.add(make_option("direct", direct).help("Active learning via the tag and predictions interface. Tag should start with \"query?\" to get query decision. Returned prediction is either -1 for no or the importance weight for yes."))
.add(make_option("direct", direct)
.help("Active learning via the tag and predictions interface. Tag should start with \"query?\" to get "
"query decision. Returned prediction is either -1 for no or the importance weight for yes."))
.add(make_option("mellowness", active_c0)
.keep()
.default_value(1.f)
Expand Down

0 comments on commit 9837a0e

Please sign in to comment.