Skip to content

Commit

Permalink
feat: direct interface for active.cc and variable rename for understa…
Browse files Browse the repository at this point in the history
…ndability (#4671)

* updated active.cc

* updates to active.cc

* updates to tests

* revert accidental help change in diff

* removed diagnostic print statements

---------

Co-authored-by: Alina Beygelzimer <beygel@yahooinc.com>
Co-authored-by: Alexey Taymanov <41013086+ataymano@users.noreply.github.com>
  • Loading branch information
3 people authored Mar 7, 2024
1 parent 2004e72 commit 80e832f
Show file tree
Hide file tree
Showing 3 changed files with 78 additions and 32 deletions.
19 changes: 6 additions & 13 deletions test/train-sets/ref/active-simulation.t24.stderr
Original file line number Diff line number Diff line change
Expand Up @@ -11,20 +11,13 @@ Output pred = SCALAR
average since example example current current current
loss last counter weight label predict features
1.000000 1.000000 1 1.0 -1.0000 0.0000 128
0.791125 0.755288 2 6.8 -1.0000 -0.1309 44
1.274829 1.444750 8 26.3 1.0000 -0.2020 34
1.083985 0.895011 73 52.8 1.0000 0.0214 21
0.887295 0.693362 130 106.3 -1.0000 -0.3071 146
0.788245 0.690009 233 213.6 -1.0000 0.0421 47
0.664628 0.541195 398 427.4 -1.0000 -0.1863 68
0.634406 0.604328 835 856.9 -1.0000 -0.4327 40

finished run
number of examples = 1000
weighted example sum = 1014.004519
weighted label sum = -68.618036
average loss = 0.630964
best constant = -0.067670
best constant's loss = 0.995421
weighted example sum = 1.000000
weighted label sum = -1.000000
average loss = 1.000000
best constant = -1.000000
best constant's loss = 0.000000
total feature number = 78739
total queries = 474
total queries = 1
8 changes: 6 additions & 2 deletions test/train-sets/ref/help.stdout
Original file line number Diff line number Diff line change
Expand Up @@ -221,8 +221,12 @@ Weight Options:
[Reduction] Active Learning Options:
--active Enable active learning (type: bool, keep, necessary)
--simulation Active learning simulation mode (type: bool)
--mellowness arg Active learning mellowness parameter c_0. Default 8 (type: float,
default: 8, keep)
--direct Active learning via the tag and predictions interface. Tag should
start with "query?" to get query decision. Returned prediction
is either -1 for no or the importance weight for yes. (type:
bool)
--mellowness arg Active learning mellowness parameter c_0. Default 1. (type: float,
default: 1, keep)
[Reduction] Active Learning with Cover Options:
--active_cover Enable active learning with cover (type: bool, keep, necessary)
--mellowness arg Active learning mellowness parameter c_0 (type: float, default:
Expand Down
83 changes: 66 additions & 17 deletions vowpalwabbit/core/src/reductions/active.cc
Original file line number Diff line number Diff line change
Expand Up @@ -31,31 +31,41 @@ using namespace VW::config;
using namespace VW::reductions;
namespace
{
float get_active_coin_bias(float k, float avg_loss, float g, float c0)
{
const float b = c0 * (std::log(k + 1.f) + 0.0001f) / (k + 0.0001f);
const float sb = std::sqrt(b);
float get_active_coin_bias(float example_count, float avg_loss, float alt_label_error_rate_diff, float mellowness)
{//implementation follows https://web.archive.org/web/20120525164352/http://books.nips.cc/papers/files/nips23/NIPS2010_0363.pdf
const float mellow_log_e_count_over_e_count = mellowness * (std::log(example_count + 1.f) + 0.0001f) / (example_count + 0.0001f);
const float sqrt_mellow_lecoec = std::sqrt(mellow_log_e_count_over_e_count);
// loss should be in [0,1]
avg_loss = VW::math::clamp(avg_loss, 0.f, 1.f);

const float sl = std::sqrt(avg_loss) + std::sqrt(avg_loss + g);
if (g <= sb * sl + b) { return 1; }
const float rs = (sl + std::sqrt(sl * sl + 4 * g)) / (2 * g);
return b * rs * rs;
const float sqrt_avg_loss_plus_sqrt_alt_loss = std::min(1.f, //std::sqrt(avg_loss) + // commented out because two square roots appears to conservative.
std::sqrt(avg_loss + alt_label_error_rate_diff));//emperical variance deflater.
//std::cout << "example_count = " << example_count << " avg_loss = " << avg_loss << " alt_label_error_rate_diff = " << alt_label_error_rate_diff << " mellowness = " << mellowness << " mlecoc = " << mellow_log_e_count_over_e_count
// << " sqrt_mellow_lecoec = " << sqrt_mellow_lecoec << " double sqrt = " << sqrt_avg_loss_plus_sqrt_alt_loss << std::endl;

if (alt_label_error_rate_diff <= sqrt_mellow_lecoec * sqrt_avg_loss_plus_sqrt_alt_loss//deflater in use.
+ mellow_log_e_count_over_e_count) { return 1; }
//old equation
// const float rs = (sqrt_avg_loss_plus_sqrt_alt_loss + std::sqrt(sqrt_avg_loss_plus_sqrt_alt_loss * sqrt_avg_loss_plus_sqrt_alt_loss + 4 * alt_label_error_rate_diff)) / (2 * alt_label_error_rate_diff);
// return mellow_log_e_count_over_e_count * rs * rs;
const float sqrt_s = (sqrt_mellow_lecoec + std::sqrt(mellow_log_e_count_over_e_count+4*alt_label_error_rate_diff*mellow_log_e_count_over_e_count)) / 2*alt_label_error_rate_diff;
// std::cout << "sqrt_s = " << sqrt_s << std::endl;
return sqrt_s*sqrt_s;
}

float query_decision(const active& a, float ec_revert_weight, float k)
float query_decision(const active& a, float updates_to_change_prediction, float example_count)
{
float bias;
if (k <= 1.f) { bias = 1.f; }
if (example_count <= 1.f) { bias = 1.f; }
else
{
const auto weighted_queries = static_cast<float>(a._shared_data->weighted_labeled_examples);
const float avg_loss = (static_cast<float>(a._shared_data->sum_loss) / k) +
std::sqrt((1.f + 0.5f * std::log(k)) / (weighted_queries + 0.0001f));
bias = get_active_coin_bias(k, avg_loss, ec_revert_weight / k, a.active_c0);
// const auto weighted_queries = static_cast<float>(a._shared_data->weighted_labeled_examples);
const float avg_loss = (static_cast<float>(a._shared_data->sum_loss) / example_count);
//+ std::sqrt((1.f + 0.5f * std::log(example_count)) / (weighted_queries + 0.0001f)); Commented this out, not following why we need it from the theory.
// std::cout << "avg_loss = " << avg_loss << " weighted_queries = " << weighted_queries << " sum_loss = " << a._shared_data->sum_loss << " example_count = " << example_count << std::endl;
bias = get_active_coin_bias(example_count, avg_loss, updates_to_change_prediction / example_count, a.active_c0);
}

// std::cout << "bias = " << bias << std::endl;
return (a._random_state->get_and_update_random() < bias) ? 1.f / bias : -1.f;
}

Expand Down Expand Up @@ -110,6 +120,34 @@ void predict_or_learn_active(active& a, learner& base, VW::example& ec)
}
}

template <bool is_learn>
void predict_or_learn_active_direct(active& a, learner& base, VW::example& ec)
{
if (is_learn) { base.learn(ec); }
else { base.predict(ec); }

if (ec.l.simple.label == FLT_MAX)
{
if (std::string(ec.tag.begin(), ec.tag.begin()+6) == "query?")
{
const float threshold = (a._shared_data->max_label + a._shared_data->min_label) * 0.5f;
// We want to understand the change in prediction if the label were to be
// the opposite of what was predicted. 0 and 1 are used for the expected min
// and max labels to be coming in from the active interactor.
ec.l.simple.label = (ec.pred.scalar >= threshold) ? a._min_seen_label : a._max_seen_label;
ec.confidence = std::abs(ec.pred.scalar - threshold) / base.sensitivity(ec);
ec.l.simple.label = FLT_MAX;
ec.pred.scalar = query_decision(a, ec.confidence, static_cast<float>(a._shared_data->weighted_unlabeled_examples));
}
}
else
{
// Update seen labels based on the current example's label.
a._min_seen_label = std::min(ec.l.simple.label, a._min_seen_label);
a._max_seen_label = std::max(ec.l.simple.label, a._max_seen_label);
}
}

void active_print_result(
VW::io::writer* f, float res, float weight, const VW::v_array<char>& tag, VW::io::logger& logger)
{
Expand Down Expand Up @@ -189,14 +227,16 @@ std::shared_ptr<VW::LEARNER::learner> VW::reductions::active_setup(VW::setup_bas

bool active_option = false;
bool simulation = false;
bool direct = false;
float active_c0;
option_group_definition new_options("[Reduction] Active Learning");
new_options.add(make_option("active", active_option).keep().necessary().help("Enable active learning"))
.add(make_option("simulation", simulation).help("Active learning simulation mode"))
.add(make_option("direct", direct).help("Active learning via the tag and predictions interface. Tag should start with \"query?\" to get query decision. Returned prediction is either -1 for no or the importance weight for yes."))
.add(make_option("mellowness", active_c0)
.keep()
.default_value(8.f)
.help("Active learning mellowness parameter c_0. Default 8"));
.default_value(1.f)
.help("Active learning mellowness parameter c_0. Default 1."));

if (!options.add_parse_and_check_necessary(new_options)) { return nullptr; }

Expand All @@ -223,6 +263,15 @@ std::shared_ptr<VW::LEARNER::learner> VW::reductions::active_setup(VW::setup_bas
print_update_func = VW::details::print_update_simple_label<active>;
reduction_name.append("-simulation");
}
else if (direct)
{
learn_func = predict_or_learn_active_direct<true>;
pred_func = predict_or_learn_active_direct<false>;
update_stats_func = update_stats_active;
output_example_prediction_func = VW::details::output_example_prediction_simple_label<active>;
print_update_func = VW::details::print_update_simple_label<active>;
learn_returns_prediction = base->learn_returns_prediction;
}
else
{
all.reduction_state.active = true;
Expand Down

0 comments on commit 80e832f

Please sign in to comment.