Skip to content

Volcano-Risk-Reduction-in-Canada/volcano_deform_detection

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Volcanic Deformation Detection using InSAR data


To run detection

Usage for testing all interferograms (converted to grayscale and save in png format) in data folder:

DATA_DIR="data/"
OUT_DIR="output/"
MODEL_NAME="models/Model1.pd"

python getProbmap_fn.py --out_dir="$OUT_DIR" --data_dir="$DATA_DIR" --model_name="$MODEL_NAME"

Download models:


To retrain

We trained our models with Matlab. You can download the pretrained model here: model2.mat. Dataset is saved in two folders named 'deform' and stratified' under the main data folder 'data/deform' and 'data/stratified'. For more details, please see comments in runTrain.m.

The new model in mat file can be converted to newmodel.pd to use with Python Tensorflow as follows.

% In Matlab
mode_name = 'new_model'
modeldir = 'results/'
modeldir = 'models/'
load([modeldir, modelname, '.mat']);
exportONNXNetwork(netFineTune, [modeldir, modelname, '.onnx']);
# In Python, read onnx model and convert to pd graph
import onnx
from onnx_tf.backend import prepare

modeldir = 'results/'
mode_name = 'new_model'
onnx_model = onnx.load(modeldir + model_name + ".onnx") 
tf_rep = prepare(onnx_model)  
tf_rep.export_graph(modeldir + model_name + ".pd") 

References:

[Paper1] Application of Machine Learning to Classification of Volcanic Deformation in Routinely Generated InSAR Data, N Anantrasirichai, J Biggs, F Albino, P Hill, D Bull Journal of Geophysical Research: Solid Earth, 2018. [https://doi.org/10.1029/2018JB015911]

[Paper1] A deep learning approach to detecting volcano deformation from satellite imagery using synthetic datasets, N Anantrasirichai, J Biggs, F Albino, D Bull Remote Sensing of Environment 230, 2019. [https://doi.org/10.1016/j.rse.2019.04.032]

DOI

About

Fork of COMET ML deformation detection models and code

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 75.3%
  • MATLAB 24.7%