-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathutils.py
executable file
·138 lines (102 loc) · 4.27 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import os
import random
import logging
import torch
import numpy as np
from seqeval.metrics import precision_score, recall_score, f1_score
from sklearn.metrics import average_precision_score, precision_recall_curve
from transformers import RobertaConfig, RobertaTokenizer
from model import JointLSTM, JointRoberta
MODEL_CLASSES = {
"lstm": (None, JointLSTM, None),
"roberta": (RobertaConfig, JointRoberta, RobertaTokenizer)
}
MODEL_PATH_MAP = {
"lstm": "",
"roberta": "roberta-base"
}
def get_intent_labels(args):
return [label.strip() for label in open(os.path.join(args.data_dir, args.task, args.intent_label_file), 'r', encoding='utf-8')]
def get_slot_labels(args):
return [label.strip() for label in open(os.path.join(args.data_dir, args.task, args.slot_label_file), 'r', encoding='utf-8')]
def get_clean_labels(args):
return [label.strip() for label in open(os.path.join(args.data_dir, args.task, args.slot_label_clean), 'r', encoding='utf-8')]
def get_slots_all(args):
slot_labels = get_slot_labels(args)
hier = ()
if args.task == 'mixatis':
slot_parents = get_clean_labels(args)
hier = (slot_parents, )
slot_type = sorted(set([name[2:] for name in slot_labels if name[:2] == 'B-' or name[:2] == 'I-']))
hier += (slot_type, )
return slot_labels, hier
def load_tokenizer(args):
return MODEL_CLASSES[args.model_type][2].from_pretrained(args.model_name_or_path)
def init_logger():
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO)
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if not args.no_cuda and torch.cuda.is_available():
torch.cuda.manual_seed_all(args.seed)
def compute_metrics(intent_preds, intent_labels, slot_preds, slot_labels):
# print(len(intent_preds), len(intent_labels), len(slot_preds), len(slot_labels))
assert len(intent_preds) == len(intent_labels) == len(slot_preds) == len(slot_labels)
results = {}
intent_result = get_intent_acc(intent_preds, intent_labels)
slot_result = get_slot_metrics(slot_preds, slot_labels)
sementic_result = get_sentence_frame_acc(intent_preds, intent_labels, slot_preds, slot_labels)
mean_intent_slot = (intent_result["intent_acc"] + slot_result["slot_f1"]) / 2
results.update(intent_result)
results.update(slot_result)
results.update(sementic_result)
results["mean_intent_slot"] = mean_intent_slot
return results
def get_slot_metrics(preds, labels):
assert len(preds) == len(labels)
return {
"slot_precision": precision_score(labels, preds),
"slot_recall": recall_score(labels, preds),
"slot_f1": f1_score(labels, preds)
}
def get_intent_acc(preds, labels):
# average_precision = average_precision_score(labels.reshape(-1), preds.reshape(-1))
acc = ((preds == labels).all(1)).mean()
tp = preds == 1.
tl = labels == 1.
correct = np.multiply(tp, tl).sum()
tp = np.sum(tp)
tl = np.sum(tl)
p = correct / tp if tp > 0 else 0.0
r = correct / tl if tl > 0 else 0.0
f1 = 0.0 if p + r == 0.0 else 2 * p * r / (p + r)
return {
"intent_acc": acc,
"intent_f1": f1,
}
def read_prediction_text(args):
return [text.strip() for text in open(os.path.join(args.pred_dir, args.pred_input_file), 'r', encoding='utf-8')]
def get_sentence_frame_acc(intent_preds, intent_labels, slot_preds, slot_labels):
"""For the cases that intent and all the slots are correct (in one sentence)"""
# Get the intent comparison result
intent_result = (intent_preds == intent_labels).all(1)
# Get the slot comparision result
slot_result = []
for preds, labels in zip(slot_preds, slot_labels):
assert len(preds) == len(labels)
one_sent_result = True
for p, l in zip(preds, labels):
if p != l:
one_sent_result = False
break
slot_result.append(one_sent_result)
slot_result = np.array(slot_result)
slot_acc = slot_result.mean()
sementic_acc = np.multiply(intent_result, slot_result).mean()
return {
"semantic_frame_acc": sementic_acc,
"slot_acc": slot_acc
}