-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Hua-Ting Yao
committed
Jun 23, 2023
1 parent
49eca75
commit 05d3d6a
Showing
13 changed files
with
3,192 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,2 @@ | ||
.ipynb_checkpoints/ | ||
__pycache__/ |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,226 @@ | ||
import sys | ||
import numpy as np | ||
from re import finditer | ||
import matplotlib.pyplot as plt | ||
from tabulate import tabulate | ||
|
||
|
||
|
||
|
||
def calc_MCC_F_val(prediction, actual): | ||
TP = 0 | ||
TN = 0 | ||
FP = 0 | ||
FN = 0 | ||
prediction_bp=set() | ||
reference_bp=set() | ||
|
||
for i, (a, b) in enumerate(zip(prediction, actual)): | ||
if a != -1: | ||
if i<a: | ||
prediction_bp.add((i,a)) | ||
else: | ||
prediction_bp.add((a,i)) | ||
if b != -1: | ||
if i<b: | ||
reference_bp.add((i,b)) | ||
else: | ||
reference_bp.add((b,i)) | ||
for (i,j) in reference_bp: | ||
if (i,j) in prediction_bp: | ||
TP += 1 | ||
else: | ||
FN+=1 | ||
for i in range(0,len(actual)-1): | ||
for j in range (i+1, len(actual)): | ||
if (i,j) not in reference_bp and (i,j) not in prediction_bp: | ||
TN += 1 | ||
|
||
for (i,j) in prediction_bp: | ||
if (i,j) not in reference_bp: | ||
FP+=1 | ||
|
||
PPV = TP / (TP + FP) | ||
Sensitivity = TP / (TP + FN) | ||
MCC = ((TP * TN) - (FP * FN)) / np.sqrt((TP + FP) * (TP + FN) * (TN + FP) * (TN + FN)) | ||
F_Value = 0.5 * (PPV + Sensitivity) | ||
|
||
return MCC, F_Value, PPV, Sensitivity | ||
|
||
|
||
def parse_dot_bracket(input): | ||
output = np.full(len(input), -1) | ||
more = True | ||
while more: | ||
more = False | ||
|
||
#find matched parenthesis | ||
for x in finditer(r"\([^()]*\)", input): | ||
more = True | ||
output[x.start()] = x.end()-1 | ||
output[x.end()-1] = x.start() | ||
|
||
input=input[0:x.start()] + "." + input[x.start()+1:x.end()-1] + "." + input[x.end():] | ||
|
||
return output | ||
|
||
|
||
def calc_overall_MCC_F_val_PPV_Sensitivity(predictions, references): | ||
PPVs=[] | ||
Sensitivities=[] | ||
F_vals=[] | ||
MCCs=[] | ||
for transcript_name in references.keys(): | ||
TP = 0 | ||
TN = 0 | ||
FP = 0 | ||
FN = 0 | ||
prediction_bp=set() | ||
reference_bp=set() | ||
reference = parse_dot_bracket(references[transcript_name][1]) | ||
prediction = parse_dot_bracket(predictions[transcript_name][1]) | ||
|
||
|
||
for i, (a, b) in enumerate(zip(prediction, reference)): | ||
if a != -1: | ||
if i<a: | ||
prediction_bp.add((i,a)) | ||
else: | ||
prediction_bp.add((a,i)) | ||
if b != -1: | ||
if i<b: | ||
reference_bp.add((i,b)) | ||
else: | ||
reference_bp.add((b,i)) | ||
|
||
for (i,j) in reference_bp: | ||
if (i,j) in prediction_bp: | ||
TP += 1 | ||
else: | ||
FN+=1 | ||
for i in range(0,len(reference)-1): | ||
for j in range (i+1, len(reference)): | ||
if (i,j) not in reference_bp and (i,j) not in prediction_bp: | ||
TN += 1 | ||
for (i,j) in prediction_bp: | ||
if (i,j) not in reference_bp: | ||
FP+=1 | ||
|
||
PPV = TP / (TP + FP) | ||
Sensitivity = TP / (TP + FN) | ||
MCC = ((TP * TN) - (FP * FN)) / np.sqrt((TP + FP) * (TP + FN) * (TN + FP) * (TN + FN)) | ||
F_Value = 0.5 * (PPV + Sensitivity) | ||
|
||
PPVs.append(PPV) | ||
Sensitivities.append(Sensitivity) | ||
MCCs.append(MCC) | ||
F_vals.append(F_Value) | ||
|
||
MCC_all=sum(MCCs)/len(references.keys()) | ||
F_Value_all=sum(F_vals)/len(references.keys()) | ||
PPV_all=sum(PPVs)/len(references.keys()) | ||
Sensitivity_all=sum(Sensitivities)/len(references.keys()) | ||
|
||
return MCC_all, F_Value_all, PPV_all, Sensitivity_all, MCCs | ||
|
||
def scatterplot(prediction_1, prediction_2, condition1, condition2): | ||
#scatterplot MCC | ||
|
||
plt.rcParams.update({'font.size': 16}) | ||
plt.rcParams.update({'axes.titlesize': 16}) | ||
plt.rc('xtick', labelsize=16) | ||
plt.rc('ytick', labelsize=16) | ||
fig = plt.figure(figsize=(6,6)) | ||
ax = fig.gca() | ||
ax.plot([0, 1], [0, 1], transform=ax.transAxes, color="#0571b0") | ||
for transcript_name in prediction_1.keys(): | ||
ax.scatter(prediction_1[transcript_name][2], prediction_2[transcript_name][2], color="#ca0020", alpha=0.7) | ||
ax.set_xlim(left=0.0, right=1.0) | ||
ax.set_ylim(bottom=0.0, top=1.0) | ||
# ax.set_xlabel(condition1) | ||
# ax.set_ylabel(condition2) | ||
ax.set_xlabel("MCC unstrained") | ||
ax.set_ylabel("MCC constrained") | ||
handles, labels = plt.gca().get_legend_handles_labels() | ||
by_label = dict(zip(labels, handles)) | ||
# plt.legend(by_label.values(), by_label.keys()) | ||
#plt.legend() | ||
plt.tight_layout() | ||
# plt.show() | ||
plt.savefig("./MCC_scatter.pdf", dpi=600) | ||
plt.close() | ||
|
||
def stats_table(condition1, MCC_prediction_1_all, F_val_prediction_1_all, PPV_prediction_1_all, Sens_prediction_1_all, | ||
condition2, MCC_prediction_2_all, F_val_prediction_2_all, PPV_prediction_2_all, Sens_prediction_2_all): | ||
|
||
stats=[[condition1, MCC_prediction_1_all, F_val_prediction_1_all, PPV_prediction_1_all, Sens_prediction_1_all], | ||
[condition2, MCC_prediction_2_all, F_val_prediction_2_all, PPV_prediction_2_all, Sens_prediction_2_all]] | ||
|
||
print(tabulate(stats, headers=["prediction", "MCC", "F-val", "PPV", "Sensitivity"])) | ||
print("\n") | ||
|
||
def read_file(inputfile): | ||
dict = {} | ||
line_counter=0 | ||
current_id = "" | ||
with open(inputfile) as file: | ||
for line in file: | ||
line_counter += 1 | ||
line=line.rstrip() | ||
if line.startswith(">"): | ||
name=line[1:] #transcript_name | ||
line_counter = 1 | ||
dict[name]=[] | ||
current_id=name | ||
if line_counter == 2: # RNA sequence | ||
dict[current_id].append(line) | ||
if line_counter == 3: # structure | ||
dict[current_id].append(line) | ||
line_counter = 0 | ||
current_id = "" | ||
return dict | ||
|
||
|
||
if __name__ == "__main__": | ||
|
||
prediction_condition1_file = sys.argv[1] | ||
condition1 = sys.argv[2] | ||
prediction_condition2_file = sys.argv[3] | ||
condition2 = sys.argv[4] | ||
ref_structures_file = sys.argv[5] | ||
|
||
"""store the structures in dicts""" | ||
|
||
prediction_1 = read_file(prediction_condition1_file) | ||
prediction_2 = read_file(prediction_condition2_file) | ||
ref_structures = read_file(ref_structures_file) | ||
|
||
|
||
improved_folding=[] | ||
for transcript_name in prediction_1.keys(): | ||
reference = parse_dot_bracket(ref_structures[transcript_name][1]) | ||
prediction_1_parsed = parse_dot_bracket(prediction_1[transcript_name][1]) | ||
prediction_2_parsed = parse_dot_bracket(prediction_2[transcript_name][1]) | ||
MCC_prediction_1, F_prediction_1,_ , _ = calc_MCC_F_val(prediction_1_parsed, reference) | ||
MCC_prediction_2, F_prediction_2,_ , _ = calc_MCC_F_val(prediction_2_parsed, reference) | ||
|
||
|
||
if MCC_prediction_1 <= MCC_prediction_2: | ||
improved_folding.append(transcript_name) | ||
|
||
prediction_1[transcript_name].append(MCC_prediction_1) | ||
prediction_1[transcript_name].append(F_prediction_1) | ||
prediction_2[transcript_name].append(MCC_prediction_2) | ||
prediction_2[transcript_name].append(F_prediction_2) | ||
|
||
scatterplot(prediction_1, prediction_2, condition1, condition2) | ||
|
||
# print out overall MCC, F-val, PPV, Sensitivity | ||
MCC_prediction_1_all, F_val_prediction_1_all, PPV_prediction_1_all, Sens_prediction_1_all,_ = calc_overall_MCC_F_val_PPV_Sensitivity(prediction_1, ref_structures) | ||
MCC_prediction_2_all, F_val_prediction_2_all, PPV_prediction_2_all, Sens_prediction_2_all,_ = calc_overall_MCC_F_val_PPV_Sensitivity(prediction_2, ref_structures) | ||
|
||
stats_table(condition1, MCC_prediction_1_all, F_val_prediction_1_all, PPV_prediction_1_all, Sens_prediction_1_all, | ||
condition2, MCC_prediction_2_all, F_val_prediction_2_all, PPV_prediction_2_all, Sens_prediction_2_all) | ||
|
||
print("\n") | ||
print("improved structure prediction : "+str(improved_folding)) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.