-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
54 lines (39 loc) · 1.31 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import os
import numpy as np
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing import image
from flask import Flask, request, render_template
from werkzeug.utils import secure_filename
app = Flask(__name__)
MODEL_PATH = 'best_vgg16_model.h5'
model = load_model(MODEL_PATH)
def model_predict(img_path, model):
img = image.load_img(img_path, target_size=(224, 224))
x = image.img_to_array(img)
x = x/255
x = np.expand_dims(x, axis=0)
pred = model.predict(x)
pred = np.argmax(pred, axis=1)
arg_pred = pred[0]
return 'Car brand is ' + os.listdir('Datasets/Test/')[arg_pred].capitalize()
@app.route('/', methods=['GET'])
def index():
return render_template('index.html')
@app.route('/predict',methods=['GET','POST'])
def predict():
if request.method == 'POST':
# Get the file from post request
f = request.files['file']
# Save the file to ./uploads
if not os.path.exists('uploads'):
os.mkdir('uploads')
basepath = os.path.dirname(__file__)
filepath = os.path.join(
basepath, 'uploads', secure_filename(f.filename)
)
f.save(filepath)
pred = model_predict(filepath, model)
return pred
return None
if __name__ == '__main__':
app.run(debug=True)