-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathget_mean_and_std.py
46 lines (35 loc) · 1.25 KB
/
get_mean_and_std.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import os
import torch
from siamese.dataset import PersonsImages
EPOCH = 50
DATASET_PATH = os.getenv("DATASET_PATH")
if __name__ == "__main__":
# dataset
dataset = PersonsImages(DATASET_PATH)
means1 = torch.tensor([0], dtype=torch.float)
std1 = torch.tensor([0], dtype=torch.float)
means2 = torch.tensor([0], dtype=torch.float)
std2 = torch.tensor([0], dtype=torch.float)
means3 = torch.tensor([0], dtype=torch.float)
std3 = torch.tensor([0], dtype=torch.float)
for img_label, img_target, _, in dataset:
img_label = img_label.unsqueeze(dim=1)
img_target = img_target.unsqueeze(dim=1)
means1 += img_label[0].mean()
means1 += img_target[0].mean()
std1 += img_label[0].std()
std1 += img_target[0].std()
means2 += img_label[1].mean()
means2 += img_target[1].mean()
std2 += img_label[1].std()
std2 += img_target[1].std()
means3 += img_label[2].mean()
means3 += img_target[2].mean()
std3 += img_label[2].std()
std3 += img_target[2].std()
print(means1 / len(dataset))
print(std1 / len(dataset))
print(means2 / len(dataset))
print(std2 / len(dataset))
print(means3 / len(dataset))
print(std3 / len(dataset))