-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimportance_sampling.py
183 lines (137 loc) · 6.17 KB
/
importance_sampling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import torch as T
import torch.nn as nn
import torch.nn.functional as F
from torchviz import make_dot
import gym
import numpy as np
from collections import deque
class TransitionMemory:
def __init__(self, mem_size):
self.mem_size = mem_size
self.buffer = deque(maxlen=mem_size)
def get_all(self, clear=True):
transitions = map(list, zip(*self.buffer))
if clear:
self.buffer.clear()
return transitions
def store(self, transition):
self.buffer.append(transition)
class PolicyNetwork(nn.Module):
def __init__(self, input_shape, output_shape, hidden_layer_dims):
super(PolicyNetwork, self).__init__()
layers = [nn.Linear(*input_shape, hidden_layer_dims[0])]
for index, dim in enumerate(hidden_layer_dims[1:]):
layers.append(nn.Linear(hidden_layer_dims[index], dim))
layers.append(nn.Linear(hidden_layer_dims[-1], *output_shape))
self.layers = nn.ModuleList(layers)
self.optimizer = T.optim.Adam(self.parameters(), lr=0.001)
def forward(self, states):
for layer in self.layers[:-1]:
states = F.relu(layer(states))
return F.softmax(self.layers[-1](states), dim=-1)
def evaluate(self, states, actions):
action_probs = self.forward(states)
dist = T.distributions.Categorical(action_probs)
log_probs = dist.log_prob(actions)
entropy = dist.entropy()
return log_probs, entropy
class Agent(object):
def __init__(self, gamma, input_shape, output_shape, update_interval=2000, K=10):
self.gamma = gamma
self.update_interval = update_interval
self.K = K
self.policy = PolicyNetwork(input_shape, output_shape, [64, 64])
self.policy_old = PolicyNetwork(input_shape, output_shape, [64, 64])
self.memory = TransitionMemory(update_interval)
self.update()
def move(self, state):
action_probs = self.policy_old(T.tensor(state, dtype=T.float))
action_taken = T.distributions.Categorical(action_probs).sample()
return action_taken.item()
def evaluate(self, clear=True):
(states, actions, rewards, dones) = self.memory.get_all(clear)
discounted_rewards, R = np.zeros_like(rewards), 0
for index, (reward, done) in enumerate(zip(rewards[::-1], dones[::-1])):
discounted_rewards[len(rewards) - index - 1] = R = reward + self.gamma * R * (1 - done)
discounted_rewards = (discounted_rewards - discounted_rewards.mean()) / (discounted_rewards.std() + 1e-5)
states = T.tensor(states).float()
actions = T.tensor(actions).float()
discounted_rewards = T.tensor(discounted_rewards).float()
log_probs, _ = self.policy_old.evaluate(states, actions)
return states, actions, discounted_rewards, dones, log_probs
def store(self, transition):
self.memory.store(transition)
def update(self):
self.policy_old.load_state_dict(self.policy.state_dict())
self.policy_old.eval()
def learn(self):
self.policy.train()
losses = []
states, actions, rewards, dones, old_log_probs = self.evaluate()
for _ in range(self.K):
log_probs, dist_entropy = self.policy.evaluate(states, actions)
importance_sampling, baseline, Z, len_counter = np.zeros_like(old_log_probs.detach()), 0, 0, 0
for index, (p, q, reward, done) in enumerate(zip(log_probs.data.numpy()[::-1],
old_log_probs.data.numpy()[::-1],
rewards.data.numpy()[::-1],
dones[::-1])):
ratio = np.exp(p - q)
importance_sampling[len(importance_sampling) - index - 1] = ratio
Z = reward + Z * self.gamma * (1 - done)
len_counter = 1 + len_counter * (1 - done)
baseline += ratio * Z / len_counter
importance_sampling = T.tensor(importance_sampling)
baseline /= importance_sampling.sum()
loss_is = ((-log_probs * (rewards - baseline)) / importance_sampling).sum() / importance_sampling.sum()
loss_entropy = (-0.0001 * dist_entropy).mean()
loss = loss_is + loss_entropy
losses.append(loss.item())
# visualize
# make_dot(loss, params=dict(self.policy.named_parameters())).render("attached")
# raise SystemError
self.policy.optimizer.zero_grad()
loss.backward(retain_graph=True)
T.nn.utils.clip_grad_norm_(self.policy.parameters(), 40)
self.policy.optimizer.step()
self.update()
return losses
def learn(env, agent, episodes=500):
print('Episode: Mean Reward: Mean Loss: Mean Step')
rewards = []
losses = [0]
steps = []
num_episodes = episodes
time_step = 0
for episode in range(num_episodes):
done = False
state = env.reset()
total_reward = 0
n_steps = 0
while not done:
time_step += 1
action = agent.move(state)
state_, reward, done, _ = env.step(action)
agent.store((state, action, reward, done))
state = state_
total_reward += reward
n_steps += 1
if time_step % agent.update_interval == 0:
loss = agent.learn()
losses.extend(loss)
rewards.append(total_reward)
steps.append(n_steps)
if episode % (episodes // 10) == 0 and episode != 0:
print(f'{episode:5d} : {np.mean(rewards):06.2f} '
f': {np.mean(losses):06.4f} : {np.mean(steps):06.2f}')
rewards = []
losses = [0]
steps = []
print(f'{episode:5d} : {np.mean(rewards):06.2f} '
f': {np.mean(losses):06.4f} : {np.mean(steps):06.2f}')
return losses, rewards
if __name__ == '__main__':
env = gym.make('CartPole-v1')
# env = gym.make('LunarLander-v2')
agent = Agent(0.9, env.observation_space.shape, [env.action_space.n],
update_interval=100, K=2)
learn(env, agent, 1000)