-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdqn.py
163 lines (123 loc) · 4.9 KB
/
dqn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import torch as T
import torch.nn as nn
import torch.nn.functional as F
from torchviz import make_dot
import gym
import numpy as np
from collections import deque
class ReplayBuffer:
def __init__(self, mem_size):
self.mem_size = mem_size
self.buffer = deque(maxlen=mem_size)
def sample(self, batch_size):
sample_size = min(batch_size, len(self.buffer))
sample_indices = np.random.choice(len(self.buffer), sample_size)
samples = np.array(self.buffer, dtype=object)[sample_indices]
return map(list, zip(*samples))
def store(self, transition):
self.buffer.append(transition)
class DeepQN(nn.Module):
def __init__(self, input_shape, output_shape, hidden_layer_dims):
super(DeepQN, self).__init__()
layers = []
layers.append(nn.Linear(*input_shape, hidden_layer_dims[0]))
for index, dim in enumerate(hidden_layer_dims[1:]):
layers.append(nn.Linear(hidden_layer_dims[index], dim))
layers.append(nn.Linear(hidden_layer_dims[-1], *output_shape))
self.layers = nn.ModuleList(layers)
self.loss = nn.MSELoss()
self.optimizer = T.optim.Adam(self.parameters(), lr=0.001)
def forward(self, states):
for layer in self.layers[:-1]:
states = F.relu(layer(states))
return self.layers[-1](states)
def learn(self, predictions, targets):
loss = self.loss(input=predictions, target=targets)
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
return loss
class Agent:
def __init__(self, epsilon, gamma, input_shape, output_shape):
self.epsilon = epsilon
self.gamma = gamma
self.output_shape = output_shape
self.q_eval = DeepQN(input_shape, output_shape, [64, 64])
self.q_target = DeepQN(input_shape, output_shape, [64, 64])
self.memory = ReplayBuffer(10000)
self.tau = 8
self.batch_size = 128
self.learn_step = 0
self.update()
def move(self, state):
if np.random.random() < self.epsilon:
return np.random.choice(*self.output_shape)
else:
self.q_eval.eval()
state = T.tensor([state]).float()
action = self.q_eval(state).max(axis=1)[1]
return action.item()
def update(self):
if self.learn_step % self.tau == 0:
self.q_target.load_state_dict(self.q_eval.state_dict())
self.q_target.eval()
def sample(self):
(actions, states, states_, rewards, terminals) = \
self.memory.sample(self.batch_size)
actions = T.tensor(actions).long()
states = T.tensor(states).float()
states_ = T.tensor(states_).float()
rewards = T.tensor(rewards).float()
terminals = T.tensor(terminals).long()
return actions, states, states_, rewards, terminals
def learn(self, state, action, state_, reward, done):
self.learn_step += 1
self.q_eval.train()
self.memory.store((action, state, state_, reward, done))
actions, states, states_, rewards, terminals = self.sample()
indices = np.arange(len(actions))
q_eval = self.q_eval(states)[indices, actions]
q_target = self.q_target(states_).detach().max(axis=1)[0]
q_target = rewards + self.gamma * q_target * (1 - terminals)
loss = self.q_eval.learn(q_eval, q_target)
self.epsilon *= 0.95 if self.epsilon > 0.1 else 1.0
# visualize
# make_dot(loss, params=dict(self.q_eval.named_parameters())).render("attached")
self.update()
return loss.item()
def learn(env, agent, episodes=500):
print('Episode: Mean Reward: Mean Loss: Mean Step')
rewards = []
losses = [0]
steps = []
num_episodes = episodes
for episode in range(num_episodes):
done = False
state = env.reset()
total_reward = 0
n_steps = 0
while not done:
action = agent.move(state)
state_, reward, done, _ = env.step(action)
loss = agent.learn(state, action, state_, reward, done)
state = state_
total_reward += reward
n_steps += 1
if loss:
losses.append(loss)
rewards.append(total_reward)
steps.append(n_steps)
if episode % (episodes // 10) == 0 and episode != 0:
print(f'{episode:5d} : {np.mean(rewards):06.2f} '
f': {np.mean(losses):06.4f} : {np.mean(steps):06.2f}')
rewards = []
losses = [0]
steps = []
print(f'{episode:5d} : {np.mean(rewards):06.2f} '
f': {np.mean(losses):06.4f} : {np.mean(steps):06.2f}')
return losses, rewards
if __name__ == '__main__':
env = gym.make('CartPole-v1')
# env = gym.make('LunarLander-v2')
agent = Agent(1.0, 0.9, env.observation_space.shape, [env.action_space.n])
learn(env, agent, 500)