forked from EleutherAI/gpt-neox
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate.py
executable file
·96 lines (87 loc) · 3.37 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
#!/usr/bin/env python
# Copyright (c) 2024 EleutherAI
# This file is based on code by the authors denoted below and has been modified from its original version.
#
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from megatron.utils import print_rank_0, setup_for_inference_or_eval
from megatron.text_generation_utils import (
generate_samples_input_from_file,
generate_samples_from_prompt,
generate_samples_unconditional,
generate_samples_interactive,
precompute_logits,
)
def main(input_args=None, overwrite_values=None):
"""
Generate text/sample model
"""
model, neox_args = setup_for_inference_or_eval(
use_cache=True, input_args=input_args, overwrite_values=overwrite_values
)
if neox_args.recompute:
model.module.inference_mode(
use_cache=False
) # don't use kv cache if recomputing
if neox_args.text_gen_type == "unconditional":
print_rank_0(
f"Generating samples unconditionally and saving results to {neox_args.sample_output_file}"
)
generate_samples_unconditional(
neox_args=neox_args,
model=model,
number_of_samples=neox_args.num_samples,
output_file=neox_args.sample_output_file,
maximum_tokens=neox_args.maximum_tokens,
recompute=neox_args.recompute,
temperature=neox_args.temperature,
top_k=neox_args.top_k,
top_p=neox_args.top_p,
)
elif neox_args.text_gen_type == "input-file":
print_rank_0(
f"Generating samples from input file {neox_args.sample_input_file}"
)
assert neox_args.sample_input_file is not None
generate_samples_input_from_file(
neox_args=neox_args,
model=model,
input_file=neox_args.sample_input_file,
output_file=neox_args.sample_output_file,
maximum_tokens=neox_args.maximum_tokens,
prompt_end=neox_args.prompt_end,
recompute=neox_args.recompute,
temperature=neox_args.temperature,
top_k=neox_args.top_k,
top_p=neox_args.top_p,
)
elif neox_args.text_gen_type == "interactive":
generate_samples_interactive(
neox_args=neox_args,
model=model,
recompute=neox_args.recompute,
temperature=neox_args.temperature,
maximum_tokens=neox_args.maximum_tokens,
prompt_end=neox_args.prompt_end,
top_k=neox_args.top_k,
top_p=neox_args.top_p,
)
elif neox_args.text_gen_type == "precompute":
precompute_logits(neox_args=neox_args, model=model)
else:
raise ValueError(
f"`text_gen_type` either not specified or not recognised: {neox_args.text_gen_type}"
)
if __name__ == "__main__":
main()