-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRANDOMFOREST.py
384 lines (286 loc) · 9.65 KB
/
RANDOMFOREST.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
import numpy as np
import pandas as pd
import sys
import math
import random
#### Handling Categorical Data #####
discrete_col =list()
def handle_categorical_data(file):
columns=file.columns.values
for column in columns:
text_digit_vals={}
def convert_to_int(val):
return text_digit_vals[val]
if file[column].dtype!=np.int64 and file[column].dtype!=np.float64:
discrete_col.append(column)
column_contents=file[column].values.tolist()
uniques=set(column_contents)
x=0
for unique in uniques:
if unique not in text_digit_vals:
text_digit_vals[unique]=x
x+=1
file[column]=list(map(convert_to_int,file[column]))
return file
file_name= 'project3_dataset2.txt'
file=pd.read_csv(file_name,sep='\t',header=None)
file=handle_categorical_data(file)
Gini=0
str_set=set()
data_matrix=file.as_matrix()
row,col=data_matrix.shape
###### K- Fold Cross Validation #########
k_folds=10
fold_size=math.ceil(row/10.0)
no_of_trees=6
###### K- Fold Cross Validation #########
class TreeNode(object):
def __init__(self, gini, split_a,max_split_val):
self.gini=gini
self.attribute=split_a;
self.val = max_split_val
self.left_s = None
self.right_s = None
self.label=None
class decision_Tree(object):
def main(self,data_matrix,test_matrix):
print("Training the data ")
root= self.build_a_tree(data_matrix,1)
self.root = root
original_label_list=list()
r,c=test_matrix.shape
for i in range(0,r):
original_label_list.append(test_matrix[i][-1])
print("Predicting the Labels")
accuracy_result=self.predict(root,test_matrix,original_label_list)
return accuracy_result
def accuracy_cal(self,test_label,original_label):
x=0
true_positive=0
true_negative=0
false_positive=0
false_negative=0
for i in range(0,len(original_label)):
if original_label[i]==1 and test_label[i]==1:
true_positive=true_positive+1
if original_label[i]==0 and test_label[i]==0:
true_negative=true_negative+1
if original_label[i]==0 and test_label[i]==1:
false_positive=false_positive+1
if original_label[i]==1 and test_label[i]==0:
false_negative=false_negative+1
if true_positive==0 and true_negative==0 and false_negative==0 and false_positive==0:
accuracy=0
else:
accuracy=(true_negative+true_positive)/(true_positive+true_negative+false_negative+false_positive)
if true_positive + false_positive > 0:
precision = true_positive/(true_positive+false_positive)
else :
precision=0
if true_positive + false_negative > 0 :
recall=true_positive/(true_positive+false_negative)
else:
recall = 0
if precision!=0 or recall!=0 :
F_Measure=2*precision*recall/(precision+recall)
else:
F_Measure = 0
print("accuracy inside accuracy cal ",accuracy)
print("precision inside accuracy cal ",precision)
print("recall inside accuracy cal ",recall)
print("f-measure inside accuracy cal ",F_Measure)
return accuracy,precision,recall,F_Measure
def entire_Gini(self,data_matrix):
r,c=data_matrix.shape
label_as_One=0
label_as_Zero=0
for i in range(0,r):
if data_matrix[i][-1]==1:
label_as_One=label_as_One+1
else:
label_as_Zero=label_as_Zero+1
Gini=1-((label_as_Zero/r)**2+(label_as_One/r)**2)
return Gini
def gini(self,data_matrix,attribute,val,gini_t):
r,c=data_matrix.shape
index_col= data_matrix[:,attribute]
class_label = data_matrix[:,-1]
less_than_val_count=0;
more_than_val_count=0;
p_less_group=0;
p_more_group=0;
less_than_list=list()
more_than_list=list()
for i in range (0, r):
if index_col[i]<val:
less_than_val_count=less_than_val_count+1
less_than_list.append(data_matrix[i])
else:
more_than_val_count=more_than_val_count+1
more_than_list.append(data_matrix[i])
for i in range(0, r):
if class_label[i]==1 and index_col[i]<val:
p_less_group=p_less_group+1;
if class_label[i]==1 and index_col[i]>=val:
p_more_group=p_more_group+1;
try:
p_less_ratio= p_less_group/less_than_val_count
except ZeroDivisionError:
p_less_ratio = 0.0
q_less_ratio=1-p_less_ratio
try:
p_more_ratio=p_more_group/more_than_val_count
except ZeroDivisionError:
p_more_ratio = 0.0
q_more_ratio= 1-p_more_ratio
gini_gain=gini_t-(((less_than_val_count/float(r))*(1-(p_less_ratio**2)- (q_less_ratio**2))) + ((more_than_val_count/float(r))*(1-(p_more_ratio**2)-(q_more_ratio**2))))
return [gini_gain,less_than_list,more_than_list]
def split(self,data_matrix):
gini_t=self.entire_Gini(data_matrix)
#print("EntireGini:",gini_t)
split_attribute=0
left_split=list()
right_split=list()
r,c= data_matrix.shape
max_gini=-sys.maxsize - 1
max_split_val=0
list_range=list(range(0,data_matrix.shape[1]-1))
no_of_cols_to_select=math.ceil((c-1)*0.2)
idx_col=random.sample(list_range,no_of_cols_to_select)
attributes = np.random.choice(range(c-1),c-1,replace=False)
for index in idx_col:
if index in discrete_col:
if index in str_set:
list_range.remove(index)
idx_col=random.sample(list_range,no_of_cols_to_select)
else:
str_set.add(index)
for attribute in idx_col:
sorted_matrix=sorted(data_matrix,key=lambda x:x[attribute])
sorted_matrix=np.asarray(sorted_matrix)
att_from_sorted=sorted_matrix[:,attribute]
max_gini_value=-sys.maxsize-1
cont_split_val=0
for i in att_from_sorted: #np.unique
gini_list=self.gini(data_matrix,attribute,i,gini_t)
gini_list=np.array(gini_list,dtype=object)
gini_gain=gini_list[0]
l_split_cont=gini_list[1]
r_split_cont= gini_list[2]
cont_split_val=i
if(float(gini_gain)>max_gini_value):
max_gini_value=float(gini_gain)
group1=l_split_cont
group2=r_split_cont
split_val=cont_split_val
if max_gini_value>max_gini:
max_gini=max_gini_value
left_split=group1
right_split=group2
split_attribute=attribute
max_split_val=split_val
#print("Final max",max_gini)
#print("index of splitting attribute", split_attribute)
#print("splitting val" , max_split_val)
return max_gini,split_attribute,max_split_val,left_split,right_split
def make_terminal(self,data):
labels = np.array([rw[-1] for rw in data])
labels =labels.astype(int)
unique, counts = np.unique(labels, return_counts=True)
count = zip(unique, counts)
count = sorted(count, key = lambda x: x[1], reverse=True)
max_value = count[0][0]
return max_value
def build_a_tree(self,data_matrix,depth):
max_gini, split_att, max_split_val,left,right=self.split(data_matrix)
left=np.asarray(left)
right=np.asarray(right)
root = TreeNode(max_gini,split_att,max_split_val)
left_len= len(left)
right_len=len(right)
if left_len==0 or right_len==0:
if left_len==0:
root.label=self.make_terminal(right)
return root
elif right_len==0:
root.label=self.make_terminal(left)
return root
root.left_s = self.build_a_tree(left,depth+1)
root.right_s = self.build_a_tree(right, depth+1)
return root
def predict_classification(self,node, row):
current=node
if row[node.attribute]<node.val:
node=node.left_s
if node!=None:
predicted_label=self.predict_classification(node,row)
return predicted_label
else:
return current.label
else :
node=node.right_s
if node!=None:
predicted_label=self.predict_classification(node,row)
return predicted_label
else:
return current.label
def predict(self,node,test_matrix,original_label_list):
Accuracy=0.0
Accuracy_list=list()
predicted_label_list=list()
for row in test_matrix:
predicted_label=self.predict_classification(node,row)
predicted_label_list.append(predicted_label)
return predicted_label_list
def RandomForest(self,data, test_matrix):
original_label_list=list()
r,c=test_matrix.shape
for i in range(0,r):
original_label_list.append(test_matrix[i][c-1])
label_mat=np.zeros((test_matrix.shape[0],1))
label_array=list()
for i in range(0,no_of_trees):
data_percent=int(data.shape[0]*0.632)
idx=random.sample(range(0,data.shape[0]),data_percent)
data_part1= data[idx,:]
data_remaining_percent= data.shape[0] - len(idx)
idx2=random.sample(range(0,len(idx)), data_remaining_percent)
data_part2=data_part1[idx2,:]
total_data= np.vstack((data_part1,data_part2))
result=self.main(total_data,test_matrix)
result=np.asarray(result)
result=result.reshape(len(result),1)
label_mat= np.concatenate((label_mat, result), axis=1)
label_mat=np.delete(label_mat, 0, 1)
for row in label_mat:
row =row.astype(int)
counts = np.bincount(row)
max_value=np.argmax(counts)
label_array.append(max_value)
accuracy_val=self.accuracy_cal(label_array,original_label_list)
return accuracy_val
def k_fold(self,data_matrix,fold_size):
Accuracy_list=list()
Precision_list=list()
Recall_list=list()
F_Measure_list=list()
for i in range(0,k_folds):
test_label=list()
testdata_matrix=data_matrix[i*fold_size:i*fold_size+fold_size,:]
traindata_matrix=np.delete(data_matrix,np.s_[i*fold_size:i*fold_size+fold_size],0)
result=self.RandomForest(traindata_matrix,testdata_matrix)
Accuracy_list.append(result[0])
Precision_list.append(result[1])
Recall_list.append(result[2])
F_Measure_list.append(result[3])
print("*********Final Results*************")
avg_accuracy=(sum(Accuracy_list)/10.0)
avg_precision=(sum(Precision_list)/10.0)
avg_recall=(sum(Recall_list)/10.0)
avg_fmeasure=(sum(F_Measure_list)/10.0)
print("Average accuracy is: ", avg_accuracy)
print("Average precision is: ", avg_precision)
print("Average recall is: ", avg_recall)
print("Average f-measure is: ", avg_fmeasure)
obj= decision_Tree()
obj.k_fold(data_matrix,fold_size)