-
Notifications
You must be signed in to change notification settings - Fork 0
/
nonDomSort.m
209 lines (199 loc) · 8.38 KB
/
nonDomSort.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
function f = nonDomSort(x, M, d)
%% function f = non_domination_sort_mod(x, M, d)
% This function sort the current popultion based on non-domination. All the
% individuals in the first front are given a rank of 1, the second front
% individuals are assigned rank 2 and so on. After assigning the rank the
% crowding in each front is calculated.
% Copyright (c) 2009, Aravind Seshadri
% All rights reserved.
%
% Redistribution and use in source and binary forms, with or without
% modification, are permitted provided that the following conditions are
% met:
%
% * Redistributions of source code must retain the above copyright
% notice, this list of conditions and the following disclaimer.
% * Redistributions in binary form must reproduce the above copyright
% notice, this list of conditions and the following disclaimer in
% the documentation and/or other materials provided with the distribution
%
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
% AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
% ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
% LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
% CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
% SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
% INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
% CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
% ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
% POSSIBILITY OF SUCH DAMAGE.
[N, m] = size(x);
clear m
% Initialize the front number to 1.
front = 1;
% There is nothing to this assignment, used only to manipulate easily in
% MATLAB.
F(front).f = [];
individual = [];
%% Non-Dominated sort.
% The initialized population is sorted based on non-domination. The fast
% sort algorithm [1] is described as below for each
% • for each individual p in main population P do the following
% – Initialize Sp = []. This set would contain all the individuals that is
% being dominated by p.
% – Initialize np = 0. This would be the number of individuals that domi-
% nate p.
% – for each individual q in P
% * if p dominated q then
% · add q to the set Sp i.e. Sp = Sp ? {q}
% * else if q dominates p then
% · increment the domination counter for p i.e. np = np + 1
% – if np = 0 i.e. no individuals dominate p then p belongs to the first
% front; Set rank of individual p to one i.e prank = 1. Update the first
% front set by adding p to front one i.e F1 = F1 ? {p}
% • This is carried out for all the individuals in main population P.
% • Initialize the front counter to one. i = 1
% • following is carried out while the ith front is nonempty i.e. Fi != []
% – Q = []. The set for storing the individuals for (i + 1)th front.
% – for each individual p in front Fi
% * for each individual q in Sp (Sp is the set of individuals
% dominated by p)
% · nq = nq?1, decrement the domination count for individual q.
% · if nq = 0 then none of the individuals in the subsequent
% fronts would dominate q. Hence set qrank = i + 1. Update
% the set Q with individual q i.e. Q = Q ? q.
% – Increment the front counter by one.
% – Now the set Q is the next front and hence Fi = Q.
%
% This algorithm is better than the original NSGA ([2]) since it utilize
% the information about the set that an individual dominate (Sp) and
% number of individuals that dominate the individual (np).
%
for i = 1 : N
% Number of individuals that dominate this individual
individual(i).n = 0;
% Individuals which this individual dominate
individual(i).p = [];
for j = 1 : N
dom_less = 0;
dom_equal = 0;
dom_more = 0;
for k = 1 : M
if (x(i,d + k) < x(j,d + k))
dom_less = dom_less + 1;
elseif (x(i,d + k) == x(j,d + k))
dom_equal = dom_equal + 1;
else
dom_more = dom_more + 1;
end
end
if dom_less == 0 && dom_equal ~= M
individual(i).n = individual(i).n + 1;
elseif dom_more == 0 && dom_equal ~= M
individual(i).p = [individual(i).p j];
end
end
if individual(i).n == 0
x(i,M + d + 1) = 1;
F(front).f = [F(front).f i];
end
end
% Find the subsequent fronts
while ~isempty(F(front).f)
Q = [];
for i = 1 : length(F(front).f)
if ~isempty(individual(F(front).f(i)).p)
for j = 1 : length(individual(F(front).f(i)).p)
individual(individual(F(front).f(i)).p(j)).n = ...
individual(individual(F(front).f(i)).p(j)).n - 1;
if individual(individual(F(front).f(i)).p(j)).n == 0
x(individual(F(front).f(i)).p(j),M + d + 1) = ...
front + 1;
Q = [Q individual(F(front).f(i)).p(j)];
end
end
end
end
front = front + 1;
F(front).f = Q;
end
[temp,index_of_fronts] = sort(x(:,M + d + 1));
for i = 1 : length(index_of_fronts)
sorted_based_on_front(i,:) = x(index_of_fronts(i),:);
end
current_index = 0;
%% Crowding distance
%The crowing distance is calculated as below
% • For each front Fi, n is the number of individuals.
% – initialize the distance to be zero for all the individuals i.e. Fi(dj ) = 0,
% where j corresponds to the jth individual in front Fi.
% – for each objective function m
% * Sort the individuals in front Fi based on objective m i.e. I =
% sort(Fi,m).
% * Assign infinite distance to boundary values for each individual
% in Fi i.e. I(d1) = ? and I(dn) = ?
% * for k = 2 to (n ? 1)
% · I(dk) = I(dk) + (I(k + 1).m ? I(k ? 1).m)/fmax(m) - fmin(m)
% · I(k).m is the value of the mth objective function of the kth
% individual in I
% Find the crowding distance for each individual in each front
z=[];
for front = 1 : (length(F) - 1)
% objective = [];
distance = 0;
y = [];
previous_index = current_index + 1;
for i = 1 : length(F(front).f)
y(i,:) = sorted_based_on_front(current_index + i,:);
end
current_index = current_index + i;
% Sort each individual based on the objective
sorted_based_on_objective = [];
for i = 1 : M
[sorted_based_on_objective, index_of_objectives] = ...
sort(y(:,d + i));
sorted_based_on_objective = [];
for j = 1 : length(index_of_objectives)
sorted_based_on_objective(j,:) = y(index_of_objectives(j),:);
end
f_max = ...
sorted_based_on_objective(length(index_of_objectives), d + i);
f_min = sorted_based_on_objective(1, d + i);
y(index_of_objectives(length(index_of_objectives)),M + d + 1 + i)...
= Inf;
y(index_of_objectives(1),M + d + 1 + i) = Inf;
for j = 2 : length(index_of_objectives) - 1
next_obj = sorted_based_on_objective(j + 1,d + i);
previous_obj = sorted_based_on_objective(j - 1,d + i);
if (f_max - f_min == 0)
y(index_of_objectives(j),M + d + 1 + i) = Inf;
else
y(index_of_objectives(j),M + d + 1 + i) = ...
(next_obj - previous_obj)/(f_max - f_min);
end
end
end
distance = [];
distance(:,1) = zeros(length(F(front).f),1);
for i = 1 : M
distance(:,1) = distance(:,1) + y(:,M + d + 1 + i);
end
y(:,M + d + 2) = distance;
y = y(:,1 : M + d + 2);
z(previous_index:current_index,:) = y;
end
% if ~empty(z)
if size(z,2)~=0
f = z();
else
f=x;
end
%% References
% [1] *Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and T. Meyarivan*, |A Fast
% Elitist Multiobjective Genetic Algorithm: NSGA-II|, IEEE Transactions on
% Evolutionary Computation 6 (2002), no. 2, 182 ~ 197.
%
% [2] *N. Srinivas and Kalyanmoy Deb*, |Multiobjective Optimization Using
% Nondominated Sorting in Genetic Algorithms|, Evolutionary Computation 2
% (1994), no. 3, 221 ~ 248.