-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathanother_neural_net.py
393 lines (339 loc) · 14.3 KB
/
another_neural_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
import argparse
import torch
from torch import nn
from torch import optim
from torchvision import models
from PIL import Image
from torchvision import transforms
import torch.nn.functional as F
from torchvision import datasets, transforms
from torch.utils.data.distributed import DistributedSampler
from torch.utils.data import DataLoader
from torch.autograd import Variable
import os
import numpy as np
import glob
import time
def get_image_paths(root):
count = 0
index = 0
image_paths = []
labels = []
for dir in os.listdir(root):
os.chdir(root+'/'+dir)
count += len(glob.glob('*.JPEG'))
labels += [index] * len(glob.glob('*.JPEG'))
for img in glob.glob('*.JPEG'):
img_path = root+'/'+dir+'/'+img
image_paths.append(img_path)
#print(img_path)
print(count)
return image_paths
def load_split_train_test(datadir, valid_size = .2):
train_transforms = transforms.Compose([transforms.Resize((224,224)),
transforms.ToTensor(),
])
test_transforms = transforms.Compose([transforms.Resize((224,224)),
transforms.ToTensor(),
])
train_data = datasets.ImageFolder(datadir,
transform=train_transforms)
test_data = datasets.ImageFolder(datadir,
transform=test_transforms)
num_train = len(train_data)
indices = list(range(num_train))
split = int(np.floor(valid_size * num_train))
np.random.shuffle(indices)
train_idx, test_idx = indices[split:], indices[:split]
dist_sampler_train = DistributedSampler(train_idx)
dist_sampler_test = DistributedSampler(test_idx)
trainloader = torch.utils.data.DataLoader(train_data,
sampler=dist_sampler_train, batch_size=64)
testloader = torch.utils.data.DataLoader(test_data,
sampler=dist_sampler_test, batch_size=64)
return trainloader, testloader
# prase the local_rank argument from command line for the current process
parser = argparse.ArgumentParser()
parser.add_argument("--local_rank", default=0, type=int)
args = parser.parse_args()
# setup the distributed backend for managing the distributed training
torch.distributed.init_process_group('gloo')
# Define a transform to normalize the data
transform = transforms.Compose([transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,)),
])
# Download and load the training data
trainset = datasets.MNIST('~/.pytorch/MNIST_data/', download=True, train=True, transform=transform)
# trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True)
# Setup the distributed sampler to split the dataset to each GPU.
dist_sampler = DistributedSampler(trainset)
trainloader = DataLoader(trainset, sampler=dist_sampler)
if torch.cuda.is_available():
print("Cuda Device Available")
device_ids = list(range(torch.cuda.device_count()))
print(device_ids)
device = torch.device("cuda", args.local_rank)
print("Name of the Cuda Device: ", torch.cuda.get_device_name())
print("GPU Computational Capablity: ", torch.cuda.get_device_capability())
else:
device = torch.device("cpu", args.local_rank)
print('No GPU. switching to CPU')
def resnet50(device, trainloader, testloader):
model = models.resnet50(pretrained=True)
preprocess = transforms.Compose([
#transforms.Resize(259),
#transforms.CenterCrop(224),
transforms.ToTensor(),
#transforms.Normalize(
#mean=[0.485, 0.456, 0.406],
#std=[0.229, 0.224, 0.225])
])
for param in model.parameters():
param.requires_grad = False
model.fc = nn.Sequential(nn.Linear(2048, 512),
nn.ReLU(),
nn.Dropout(0.2),
nn.Linear(512, 10),
nn.LogSoftmax(dim=1))
criterion = nn.NLLLoss()
optimizer = optim.Adam(model.fc.parameters(), lr=0.003)
model = model.to(device)
t1 = time.time()
epochs = 3
steps = 0
running_loss = 0
print_every = 1
train_losses, test_losses = [], []
for epoch in range(epochs):
print("Hi")
for inputs, labels in trainloader:
steps += 1
print(labels)
print(steps)
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
logps = model.forward(inputs)
loss = criterion(logps, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
print("trainloader done")
# if steps % print_every == 0:
test_loss = 0
accuracy = 0
model.eval()
if epoch%print_every==0:
with torch.no_grad():
for inputs, labels in testloader:
inputs, labels = inputs.to(device), labels.to(device)
logps = model.forward(inputs)
batch_loss = criterion(logps, labels)
test_loss += batch_loss.item()
ps = torch.exp(logps)
top_p, top_class = ps.topk(1, dim=1)
equals = top_class == labels.view(*top_class.shape)
accuracy += torch.mean(equals.type(torch.FloatTensor)).item()
train_losses.append(running_loss / len(trainloader))
test_losses.append(test_loss / len(testloader))
print(f"Epoch {epoch + 1}/{epochs}.. "
f"Train loss: {running_loss / print_every:.3f}.. "
f"Test loss: {test_loss / len(testloader):.3f}.. "
f"Test accuracy: {accuracy / len(testloader):.3f}")
running_loss = 0
model.train()
#print("Saving Model")
#torch.save(model,
# '/home/vasudev_sridhar007/project/Performance-Comparison-of-TensorFlow-PyTorch-and-their-Distributed-Counterparts/imagenette2/aerialmodel.pth') #########NEED TO CHANGE THIS PATH ACC TO GCP DIRS
print("Training time per epoch is {} seconds".format(time.time() - t1))
####
test_transforms = transforms.Compose([transforms.Resize((224, 224)),
transforms.ToTensor()
])
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
#model = torch.load(
# '/home/vasudev_sridhar007/project/Performance-Comparison-of-TensorFlow-PyTorch-and-their-Distributed-Counterparts/imagenette2/aerialmodel.pth') #########NEED TO CHANGE THIS PATH ACC TO GCP DIRS
#model.eval()
model = model.to(device)
def predict_image(image):
image_tensor = test_transforms(image).float()
image_tensor = image_tensor.unsqueeze_(0)
input = Variable(image_tensor)
input = input.to(device)
output = model(input)
index = output.data.cpu().numpy().argmax()
return index
def get_random_images(num):
data = datasets.ImageFolder(data_dir, transform=test_transforms)
classes = data.classes
indices = list(range(len(data)))
np.random.shuffle(indices)
idx = indices[:num]
sampler = DistributedSampler(idx)
loader = torch.utils.data.DataLoader(data,
sampler=sampler, batch_size=num)
dataiter = iter(loader)
images, labels = dataiter.next()
return images, labels
t1 = time.time()
to_pil = transforms.ToPILImage()
images, labels = get_random_images(1000)
# fig=plt.figure(figsize=(10,10))
for ii in range(len(images)):
print(ii + 1)
image = to_pil(images[ii])
index = predict_image(image)
# sub = fig.add_subplot(1, len(images), ii+1)
res = int(labels[ii]) == index
# sub.set_title(str(trainloader.dataset.classes[index]) + ":" + str(res))
# plt.axis('off')
##plt.imshow(image)
# plt.show()
print("Inference time is {} seconds".format(time.time() - t1))
def vgg16(device, trainloader, testloader):
# Image transformations
image_transforms = {
# Train uses data augmentation
'train':
transforms.Compose([
transforms.RandomResizedCrop(size=256, scale=(0.8, 1.0)),
transforms.RandomRotation(degrees=15),
transforms.ColorJitter(),
transforms.RandomHorizontalFlip(),
transforms.CenterCrop(size=224), # Image net standards
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225]) # Imagenet standards
]),
# Validation does not use augmentation
'valid':
transforms.Compose([
transforms.Resize(size=256),
transforms.CenterCrop(size=224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
}
model = models.vgg16(pretrained=True)
# print(model)
for param in model.parameters():
param.requires_grad = False
model.classifier[6] = nn.Sequential(
nn.Linear(4096, 256),
nn.ReLU(),
nn.Dropout(0.4),
nn.Linear(256, 10),
nn.LogSoftmax(dim=1))
criterion = nn.NLLLoss()
optimizer = optim.Adam(model.parameters())
model.to(device)
t1 = time.time()
# Early stopping details
n_epochs_stop = 1
min_val_loss = np.Inf
epochs_no_improve = 0
print_every = 1
epochs = 3
running_loss = 0
checkpoint_path = "/content/drive/MyDrive/Documents/imagenette2/vgg16model.pth"
# Main loop
for epoch in range(epochs):
# Initialize validation loss for epoch
val_loss = 0
# Training loop
for data, targets in trainloader:
# Generate predictions
out = model(data)
# Calculate loss
loss = criterion(out, targets)
# Backpropagation
loss.backward()
# Update model parameters
optimizer.step()
running_loss += loss.item()
accuracy = 0
if epoch%print_every == 0:
# Validation loop
for data, targets in testloader:
data, targets = data.to(device), targets.to(device) ###### added code by Vaibhav
# Generate predictions
out = model(data)
# Calculate loss
loss = criterion(out, targets)
val_loss += loss.item()
###### added code by Vaibhav################
ps = torch.exp(out)
top_p, top_class = ps.topk(1, dim=1)
equals = top_class == targets.view(*top_class.shape)
accuracy += torch.mean(equals.type(torch.FloatTensor)).item()
#################################
# Average validation loss
#val_loss = val_loss / len(trainloader)
final_model = model
# If the validation loss is at a minimum
if val_loss < min_val_loss:
# Save the model
# torch.save(model, checkpoint_path)
final_model = model
epochs_no_improve = 0
min_val_loss = val_loss
else:
epochs_no_improve += 1
# Check early stopping condition
if epochs_no_improve == n_epochs_stop:
print('Early stopping!')
# Load in the best model
# model = torch.load(checkpoint_path)
model = final_model
###### added code by Vaibhav################
print(f"Epoch {epoch + 1}/{epochs}.. "
f"Train loss: {running_loss / print_every:.3f}.. "
f"Test loss: {val_loss / len(testloader):.3f}.. "
f"Test accuracy: {accuracy / len(testloader):.3f}")
running_loss = 0
#################################
print("Training time per epoch is {} seconds".format(time.time() - t1))
test_transforms = transforms.Compose([transforms.Resize((224, 224)),
transforms.ToTensor()
])
def predict_image(image):
image_tensor = test_transforms(image).float()
image_tensor = image_tensor.unsqueeze_(0)
input = Variable(image_tensor)
input = input.to(device)
output = model(input)
index = output.data.cpu().numpy().argmax()
return index
def get_random_images(num):
data = datasets.ImageFolder(data_dir, transform=test_transforms)
classes = data.classes
indices = list(range(len(data)))
np.random.shuffle(indices)
idx = indices[:num]
sampler = DistributedSampler(idx)
loader = torch.utils.data.DataLoader(data,
sampler=sampler, batch_size=num)
dataiter = iter(loader)
images, labels = dataiter.next()
return images, labels
t1 = time.time()
to_pil = transforms.ToPILImage()
images, labels = get_random_images(1000)
# fig=plt.figure(figsize=(10,10))
for ii in range(len(images)):
print(ii + 1)
image = to_pil(images[ii])
index = predict_image(image)
# sub = fig.add_subplot(1, len(images), ii+1)
res = int(labels[ii]) == index
# sub.set_title(str(trainloader.dataset.classes[index]) + ":" + str(res))
# plt.axis('off')
##plt.imshow(image)
# plt.show()
print("Inference time is {} seconds".format(time.time() - t1))
data_dir = '/home/vasudev_sridhar007/project/Performance-Comparison-of-TensorFlow-PyTorch-and-their-Distributed-Counterparts/imagenette2/train'
root = '/home/vasudev_sridhar007/project/Performance-Comparison-of-TensorFlow-PyTorch-and-their-Distributed-Counterparts/imagenette2/val'
trainloader, testloader = load_split_train_test(data_dir, .2)
#resnet50(device, trainloader, testloader)
vgg16(device, trainloader, testloader)
# python3 -m torch.distributed.launch --nproc_per_node=4 --nnodes=2 --node_rank=0 --master_addr="10.182.0.2" --master_port=1234 another_neural_net.py
# python3 -m torch.distributed.launch --nproc_per_node=4 --nnodes=2 --node_rank=1 --master_addr="10.182.0.2" --master_port=1234 another_neural_net.py