-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathutils.py
252 lines (186 loc) · 7.49 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import os
import time
import copy
import torch
import random
import shutil
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
from dataset import *
from models.resnet import resnet18, resnet50, resnet152
from pruning_utils import *
__all__ = ['setup_model_dataset', 'setup_seed',
'train', 'test',
'save_checkpoint', 'load_weight_pt_trans', 'load_ticket']
def setup_model_dataset(args):
#prepare dataset
if args.dataset == 'cifar10':
classes = 10
train_loader, val_loader, test_loader = cifar10_dataloaders(batch_size= args.batch_size, data_dir =args.data)
elif args.dataset == 'cifar100':
classes = 100
train_loader, val_loader, test_loader = cifar100_dataloaders(batch_size= args.batch_size, data_dir =args.data)
elif args.dataset == 'svhn':
classes = 10
train_loader, val_loader, test_loader = svhn_dataloaders(batch_size= args.batch_size, data_dir =args.data)
elif args.dataset == 'fmnist':
classes = 10
train_loader, val_loader, test_loader = fashionmnist_dataloaders(batch_size= args.batch_size, data_dir =args.data)
else:
raise ValueError("Unknown Dataset")
#prepare model
if args.arch == 'resnet18':
model = resnet18(num_classes = classes)
elif args.arch == 'resnet50':
model = resnet50(num_classes = classes)
elif args.arch == 'resnet152':
model = resnet152(num_classes = classes)
else:
raise ValueError("Unknown Model")
if args.dataset == 'fmnist':
model.conv1 = nn.Conv2d(1, 64, kernel_size=3, stride=1, padding=1, bias=False)
return model, train_loader, val_loader, test_loader
def train(train_loader, model, criterion, optimizer, epoch, args):
losses = AverageMeter()
top1 = AverageMeter()
# switch to train mode
model.train()
start = time.time()
for i, (image, target) in enumerate(train_loader):
if epoch < args.warmup:
warmup_lr(epoch, i+1, optimizer, one_epoch_step=len(train_loader), args=args)
image = image.cuda()
target = target.cuda()
# compute output
output_clean = model(image)
loss = criterion(output_clean, target)
optimizer.zero_grad()
loss.backward()
optimizer.step()
output = output_clean.float()
loss = loss.float()
# measure accuracy and record loss
prec1 = accuracy(output.data, target)[0]
losses.update(loss.item(), image.size(0))
top1.update(prec1.item(), image.size(0))
if i % args.print_freq == 0:
end = time.time()
print('Epoch: [{0}][{1}/{2}]\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Accuracy {top1.val:.3f} ({top1.avg:.3f})\t'
'Time {3:.2f}'.format(
epoch, i, len(train_loader), end-start, loss=losses, top1=top1))
start = time.time()
print('train_accuracy {top1.avg:.3f}'.format(top1=top1))
return top1.avg
def test(val_loader, model, criterion, args):
"""
Run evaluation
"""
losses = AverageMeter()
top1 = AverageMeter()
# switch to evaluate mode
model.eval()
for i, (image, target) in enumerate(val_loader):
image = image.cuda()
target = target.cuda()
# compute output
with torch.no_grad():
output = model(image)
loss = criterion(output, target)
output = output.float()
loss = loss.float()
# measure accuracy and record loss
prec1 = accuracy(output.data, target)[0]
losses.update(loss.item(), image.size(0))
top1.update(prec1.item(), image.size(0))
if i % args.print_freq == 0:
print('Test: [{0}/{1}]\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Accuracy {top1.val:.3f} ({top1.avg:.3f})'.format(
i, len(val_loader), loss=losses, top1=top1))
print('valid_accuracy {top1.avg:.3f}'
.format(top1=top1))
return top1.avg
def save_checkpoint(state, is_SA_best, save_path, pruning, filename='checkpoint.pth.tar'):
filepath = os.path.join(save_path, str(pruning)+filename)
torch.save(state, filepath)
if is_SA_best:
shutil.copyfile(filepath, os.path.join(save_path, str(pruning)+'model_SA_best.pth.tar'))
def load_weight_pt_trans(model, initalization, args):
print('loading pretrained weight')
loading_weight = extract_main_weight(initalization, fc=args.fc, conv1=args.conv1)
for key in loading_weight.keys():
if not (key in model.state_dict().keys()):
print(key)
assert False
print('*number of loading weight={}'.format(len(loading_weight.keys())))
print('*number of model weight={}'.format(len(model.state_dict().keys())))
model.load_state_dict(loading_weight, strict=False)
def load_ticket(model, args):
# weight
if args.pretrained:
initalization = torch.load(args.pretrained, map_location = torch.device('cuda:'+str(args.gpu)))
if args.dict_key:
print('loading from {}'.format(args.dict_key))
initalization = initalization[args.dict_key]
if args.load_all:
loading_weight = copy.deepcopy(initalization)
else:
loading_weight = extract_main_weight(initalization, fc=False, conv1=False)
for key in loading_weight.keys():
assert key in model.state_dict().keys()
print('*number of loading weight={}'.format(len(loading_weight.keys())))
print('*number of model weight={}'.format(len(model.state_dict().keys())))
model.load_state_dict(loading_weight, strict=False)
# mask
if args.mask_dir:
current_mask_weight = torch.load(args.mask_dir, map_location = torch.device('cuda:'+str(args.gpu)))
if 'state_dict' in current_mask_weight.keys():
current_mask_weight = current_mask_weight['state_dict']
current_mask = extract_mask(current_mask_weight)
if args.reverse_mask:
current_mask = reverse_mask(current_mask)
prune_model_custom(model, current_mask, conv1=args.conv1)
check_sparsity(model, conv1=args.conv1)
def warmup_lr(epoch, step, optimizer, one_epoch_step, args):
overall_steps = args.warmup*one_epoch_step
current_steps = epoch*one_epoch_step + step
lr = args.lr * current_steps/overall_steps
lr = min(lr, args.lr)
for p in optimizer.param_groups:
p['lr']=lr
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True