|
| 1 | +from PIL import Image |
| 2 | +from torch.utils import data |
| 3 | +from torchvision import transforms |
| 4 | +from torchvision.datasets import CIFAR10 |
| 5 | +import numpy as np |
| 6 | +import torch |
| 7 | +import random |
| 8 | +from dataset.pgd_attack import PgdAttack |
| 9 | + |
| 10 | + |
| 11 | +class CleanLabelPoisonedCIFAR10(data.Dataset): |
| 12 | + |
| 13 | + def __init__(self, root, |
| 14 | + transform=None, |
| 15 | + poison_ratio=0.1, |
| 16 | + target=0, |
| 17 | + patch_size=5, |
| 18 | + random_loc=False, |
| 19 | + upper_right=True, |
| 20 | + bottom_left=False, |
| 21 | + augmentation=True, |
| 22 | + black_trigger=False, |
| 23 | + pgd_alpha: float = 2 / 255, |
| 24 | + pgd_eps: float = 8 / 255, |
| 25 | + pgd_iter=7, |
| 26 | + robust_model=None): |
| 27 | + |
| 28 | + self.root = root |
| 29 | + self.poison_ratio = poison_ratio |
| 30 | + self.target_label = target |
| 31 | + self.patch_size = patch_size |
| 32 | + self.random_loc = random_loc |
| 33 | + self.upper_right = upper_right |
| 34 | + self.bottom_left = bottom_left |
| 35 | + self.pgd_alpha = pgd_alpha |
| 36 | + self.pgd_eps = pgd_eps |
| 37 | + self.pgd_iter = pgd_iter |
| 38 | + self.model = robust_model |
| 39 | + self.attacker = PgdAttack(self.model, self.pgd_eps, self.pgd_iter, self.pgd_alpha) |
| 40 | + |
| 41 | + if random_loc: |
| 42 | + print('Using random location') |
| 43 | + if upper_right: |
| 44 | + print('Using fixed location of Upper Right') |
| 45 | + if bottom_left: |
| 46 | + print('Using fixed location of Bottom Left') |
| 47 | + |
| 48 | + # init trigger |
| 49 | + trans_trigger = transforms.Compose( |
| 50 | + [transforms.Resize((patch_size, patch_size)), transforms.ToTensor()] |
| 51 | + ) |
| 52 | + trigger = Image.open("dataset/triggers/htbd.png").convert("RGB") |
| 53 | + if black_trigger: |
| 54 | + print('Using black trigger') |
| 55 | + trigger = Image.open("dataset/triggers/clbd.png").convert("RGB") |
| 56 | + self.trigger = trans_trigger(trigger) |
| 57 | + |
| 58 | + normalize = transforms.Normalize(mean = (0.4914, 0.4822, 0.4465), std = (0.2470, 0.2435, 0.2616)) |
| 59 | + |
| 60 | + if pgd_alpha is None: |
| 61 | + pgd_alpha = 1.5 * pgd_eps / pgd_iter |
| 62 | + self.pgd_alpha: float = pgd_alpha |
| 63 | + self.pgd_eps: float = pgd_eps |
| 64 | + self.pgd_iter: int = pgd_iter |
| 65 | + |
| 66 | + if augmentation: |
| 67 | + self.transform = transforms.Compose([ |
| 68 | + transforms.ToPILImage(), |
| 69 | + transforms.RandomCrop(32, padding=4), |
| 70 | + transforms.RandomHorizontalFlip(), |
| 71 | + transforms.ToTensor(), |
| 72 | + normalize |
| 73 | + ]) |
| 74 | + else: |
| 75 | + self.transform = transforms.Compose([ |
| 76 | + transforms.ToPILImage(), |
| 77 | + transforms.ToTensor(), |
| 78 | + normalize |
| 79 | + ]) |
| 80 | + |
| 81 | + dataset = CIFAR10(root, train=True, download=True) |
| 82 | + |
| 83 | + self.imgs = dataset.data |
| 84 | + self.labels = dataset.targets |
| 85 | + self.image_size = self.imgs.shape[1] |
| 86 | + |
| 87 | + if self.poison_ratio != 0.0: |
| 88 | + self.imgs = torch.tensor(np.transpose(self.imgs, (0, 3, 1, 2)), dtype=torch.float32) / 255. |
| 89 | + target_index, other_index = self.separate_img() |
| 90 | + self.poison_num = int(len(target_index) * self.poison_ratio) |
| 91 | + target_imgs = self.imgs[target_index[:self.poison_num]] |
| 92 | + target_imgs = self.attacker(target_imgs, self.target_label * torch.ones(len(target_imgs), dtype=torch.long)) # (N,3,32,32) |
| 93 | + target_imgs = self.add_trigger(target_imgs) |
| 94 | + self.imgs[target_index[:self.poison_num]] = target_imgs |
| 95 | + print('poison images = {}'.format(self.poison_num)) |
| 96 | + else: |
| 97 | + print("Point ratio is zero!") |
| 98 | + |
| 99 | + def __getitem__(self, index): |
| 100 | + img = self.transform(self.imgs[index]) |
| 101 | + return img, self.labels[index] |
| 102 | + |
| 103 | + def __len__(self): |
| 104 | + return len(self.imgs) |
| 105 | + |
| 106 | + def separate_img(self): |
| 107 | + """ |
| 108 | + Collect all the images, which belong to the target class |
| 109 | + """ |
| 110 | + dataset = CIFAR10(self.root, train=True, download=True) |
| 111 | + target_img_index = [] |
| 112 | + other_img_index = [] |
| 113 | + all_data = dataset.data |
| 114 | + all_label = dataset.targets |
| 115 | + for i in range(len(all_data)): |
| 116 | + if self.target_label == all_label[i]: |
| 117 | + target_img_index.append(i) |
| 118 | + else: |
| 119 | + other_img_index.append(i) |
| 120 | + return torch.tensor(target_img_index), torch.tensor(other_img_index) |
| 121 | + |
| 122 | + def add_trigger(self, img): |
| 123 | + |
| 124 | + if self.random_loc: |
| 125 | + start_x = random.randint(0, self.image_size - self.patch_size) |
| 126 | + start_y = random.randint(0, self.image_size - self.patch_size) |
| 127 | + elif self.upper_right: |
| 128 | + start_x = self.image_size - self.patch_size - 3 |
| 129 | + start_y = self.image_size - self.patch_size - 3 |
| 130 | + elif self.bottom_left: |
| 131 | + start_x = 3 |
| 132 | + start_y = 3 |
| 133 | + else: |
| 134 | + assert False |
| 135 | + |
| 136 | + img[:, :, start_x: start_x + self.patch_size, start_y: start_y + self.patch_size] = self.trigger |
| 137 | + return img |
| 138 | + |
0 commit comments