-
Notifications
You must be signed in to change notification settings - Fork 18
/
test_extractor_pa.py
executable file
·108 lines (90 loc) · 4.48 KB
/
test_extractor_pa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
"""
This code allows you to evaluate performance of a single feature extractor + pa with NCC
on the test splits of all datasets (ilsvrc_2012, omniglot, aircraft, cu_birds, dtd, quickdraw, fungi,
vgg_flower, traffic_sign, mscoco, mnist, cifar10, cifar100).
To test the url model on the test splits of all datasets, run:
python test_extractor_pa.py --model.name=url --model.dir ./saved_results/url
To test the url model on the test splits of ilsrvc_2012, dtd, vgg_flower, quickdraw,
comment the line 'testsets = ALL_METADATASET_NAMES' and run:
python test_extractor_pa.py --model.name=url --model.dir ./saved_results/url -data.test ilsrvc_2012 dtd vgg_flower quickdraw
"""
import os
import torch
import tensorflow as tf
import numpy as np
from tqdm import tqdm
from tabulate import tabulate
from utils import check_dir
from models.losses import prototype_loss, knn_loss, lr_loss, scm_loss, svm_loss
from models.model_utils import CheckPointer
from models.model_helpers import get_model
from models.pa import apply_selection, pa
from data.meta_dataset_reader import (MetaDatasetEpisodeReader, MetaDatasetBatchReader, TRAIN_METADATASET_NAMES,
ALL_METADATASET_NAMES)
from config import args
def main():
TEST_SIZE = 600
# Setting up datasets
trainsets, valsets, testsets = args['data.train'], args['data.val'], args['data.test']
testsets = ALL_METADATASET_NAMES # comment this line to test the model on args['data.test']
if args['test.mode'] == 'mdl':
# multi-domain learning setting, meta-train on 8 training sets
trainsets = TRAIN_METADATASET_NAMES
elif args['test.mode'] == 'sdl':
# single-domain learning setting, meta-train on ImageNet
trainsets = ['ilsvrc_2012']
test_loader = MetaDatasetEpisodeReader('test', trainsets, trainsets, testsets, test_type=args['test.type'])
model = get_model(None, args)
checkpointer = CheckPointer(args, model, optimizer=None)
checkpointer.restore_model(ckpt='best', strict=False)
model.eval()
accs_names = ['NCC']
var_accs = dict()
config = tf.compat.v1.ConfigProto()
config.gpu_options.allow_growth = False
with tf.compat.v1.Session(config=config) as session:
# go over each test domain
for dataset in testsets:
if dataset in trainsets:
lr = 0.1
else:
lr = 1
print(dataset)
var_accs[dataset] = {name: [] for name in accs_names}
for i in tqdm(range(TEST_SIZE)):
with torch.no_grad():
sample = test_loader.get_test_task(session, dataset)
context_features = model.embed(sample['context_images'])
target_features = model.embed(sample['target_images'])
context_labels = sample['context_labels']
target_labels = sample['target_labels']
# optimize selection parameters and perform feature selection
selection_params = pa(context_features, context_labels, max_iter=40, lr=lr, distance=args['test.distance'])
selected_context = apply_selection(context_features, selection_params)
selected_target = apply_selection(target_features, selection_params)
_, stats_dict, _ = prototype_loss(
selected_context, context_labels,
selected_target, target_labels, distance=args['test.distance'])
var_accs[dataset]['NCC'].append(stats_dict['acc'])
dataset_acc = np.array(var_accs[dataset]['NCC']) * 100
print(f"{dataset}: test_acc {dataset_acc.mean():.2f}%")
# Print nice results table
print('results of {}'.format(args['model.name']))
rows = []
for dataset_name in testsets:
row = [dataset_name]
for model_name in accs_names:
acc = np.array(var_accs[dataset_name][model_name]) * 100
mean_acc = acc.mean()
conf = (1.96 * acc.std()) / np.sqrt(len(acc))
row.append(f"{mean_acc:0.2f} +- {conf:0.2f}")
rows.append(row)
out_path = os.path.join(args['out.dir'], 'weights')
out_path = check_dir(out_path, True)
out_path = os.path.join(out_path, '{}-{}-{}-{}-test-results.npy'.format(args['model.name'], args['test.type'], 'pa', args['test.distance']))
np.save(out_path, {'rows': rows})
table = tabulate(rows, headers=['model \\ data'] + accs_names, floatfmt=".2f")
print(table)
print("\n")
if __name__ == '__main__':
main()