-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbias_spread.py
70 lines (62 loc) · 1.68 KB
/
bias_spread.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
#functions to calculate bias and spread for rank histograms
#see Jolliffe and Primo 2008
import numpy as np
def bias(rank_hist_vals): #spot linear trend in rank histogram
rank_hist_vals=np.array(rank_hist_vals)
k=len(rank_hist_vals)
#set values for k even
if k%2==0:
half=k/2
a=-(2*half-1)
b=2
#set values for k odd
if k%2==1:
half=(k-1)/2
a=-half
b=1
vec=np.empty(k)
#calculate elements of the vector
for n in range(k):
vec[n]=a+n*b
#normalize vector so it has length 1
vec=vec/np.sqrt(np.sum(vec**2))
#calculate x values
e=np.sum(rank_hist_vals)/k
x=np.sqrt(e)*(rank_hist_vals-e)/e
u=np.sum(np.multiply(vec,x))
return u**2
def spread(rank_hist_vals):
rank_hist_vals=np.array(rank_hist_vals)
k=len(rank_hist_vals)
#set values for k even
if k%2==0:
half=int(k/2)
a=(half-1)
b=2
#set values for k odd
if k%2==1:
half=int((k-1)/2)
a=half**2
b=2*half+1
vec=np.empty(k)
for n in range(half):
vec[n]=a-n*b
if k%2==0:
vec[half:]=np.flip(vec[:half])
if k%2==1:
vec[half]=a-half*b
vec[half+1:]=np.flip(vec[:half])
#normalize vector so it has length 1
vec=vec/np.sqrt(np.sum(vec**2))
#calculate x values
e=np.sum(rank_hist_vals)/k
x=np.sqrt(e)*(rank_hist_vals-e)/e
u=np.sum(np.multiply(vec,x))
return u**2
def chisquared(rank_hist_vals):
rank_hist_vals=np.array(rank_hist_vals)
k=len(rank_hist_vals)
e=np.sum(rank_hist_vals)/k
x=np.sqrt(e)*(rank_hist_vals-e)/e
chisq=np.sum(np.multiply(x,x))
return chisq