-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathadvection_2d.f90
406 lines (330 loc) · 14.7 KB
/
advection_2d.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
!>@author
!>Paul Connolly, The University of Manchester
!>@brief
!>advection code for the thermal cloud model
module advection_2d
use numerics_type
private
public :: mpdata, first_order_upstream_2d, dissipation, smagorinsky
contains
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! Simple first order upstream scheme !
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!>@author
!>Paul J. Connolly, The University of Manchester
!>@brief
!>perform 1 time-step of 2-d first order upstream method
!>@param[in] dt
!>@param[in] dx,dy
!>@param[in] ip,kp,halo
!>@param[in] u
!>@param[in] w
!>@param[inout] psi
subroutine first_order_upstream_2d(dt,dx,dy,ip,kp,halo,u,w,psi)
use numerics_type
implicit none
real(wp), intent(in) :: dt, dx, dy
integer(i4b), intent(in) :: ip, kp, halo
real(wp), dimension(-halo+1:kp+halo,-halo+1:ip+halo), intent(in) :: u, w
real(wp), dimension(-halo+1:kp+halo,-halo+1:ip+halo), intent(inout) :: psi
! locals
real(wp), dimension(kp,ip) :: fx_r, fx_l, fy_r, fy_l
fx_r=( (u(1:kp,1:ip)+abs(u(1:kp,1:ip)))*psi(1:kp,1:ip)+ &
(u(1:kp,1:ip)-abs(u(1:kp,1:ip)))*psi(1:kp,2:ip+1) )*dt/(2._wp*dx)
fx_l=( (u(1:kp,0:ip-1)+abs(u(1:kp,0:ip-1)))*psi(1:kp,0:ip-1)+ &
(u(1:kp,0:ip-1)-abs(u(1:kp,0:ip-1)))*psi(1:kp,1:ip) )*dt/(2._wp*dx)
fy_r=( (w(1:kp,1:ip)+abs(w(1:kp,1:ip)))*psi(1:kp,1:ip)+ &
(w(1:kp,1:ip)-abs(w(1:kp,1:ip)))*psi(2:kp+1,1:ip) )*dt/(2._wp*dy)
fy_l=( (w(0:kp-1,1:ip)+abs(w(0:kp-1,1:ip)))*psi(0:kp-1,1:ip)+ &
(w(0:kp-1,1:ip)-abs(w(0:kp-1,1:ip)))*psi(1:kp,1:ip) )*dt/(2._wp*dy)
psi(1:kp,1:ip)=psi(1:kp,1:ip)-(fx_r-fx_l)-(fy_r-fy_l)
end subroutine first_order_upstream_2d
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! multi-dimensional advection using the smolarkiewicz scheme
! advect using 1st order upstream
! then re-advect using 1st order upstream with antidiffusive velocities to
! correct diffusiveness of the 1st order upstream and iterate
! nft option is also coded
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
subroutine mpdata(kord,ip,kp,o_halo,x,z,dx,dz,dt,u,w,q_k,monotone)
use numerics_type
implicit none
integer(i4b), intent(in) :: kord,ip, kp, o_halo
real(wp), dimension(-o_halo+1:ip+o_halo), intent(in) :: x
real(wp), dimension(-o_halo+1:kp+o_halo), intent(in) :: z
real(wp), intent(in) :: dx,dz,dt
real(wp), dimension(-o_halo+1:kp+o_halo,-o_halo+1:ip+o_halo), intent(in) :: u,w
real(wp), dimension(-o_halo+1:kp+o_halo,-o_halo+1:ip+o_halo), intent(inout) :: q_k
real(wp), dimension(-o_halo+1:kp+o_halo,-o_halo+1:ip+o_halo) :: ut,vt,wt,q_kp1,q_k_old, &
ut_sav,vt_sav,wt_sav
real(wp) :: fip,fim,small=1e-15_wp, &
u_j_bar1, u_div1, u_j_bar2, u_div2, u_j_bar3, u_div3, &
psi_i_max, psi_i_min, psi_ip_max,psi_ip_min, beta_i_down, beta_i_up, &
beta_ip_down, beta_ip_up, minglobal
integer(i4b) i,j,k,it
logical :: monotone
minglobal=minval(q_k(:,:))
q_k=q_k-minglobal
if(sum(q_k).lt.small) return
! zero arrays
ut=0._wp
wt=0._wp
ut_sav=0._wp
wt_sav=0._wp
q_kp1=0._wp
q_k_old=0._wp
! save old data
q_k_old(-o_halo+1:kp+o_halo,-o_halo+1:ip+o_halo)=q_k
do it=1,kord
if(it.eq.1) then
ut(-o_halo+1:kp+o_halo,-o_halo+1:ip+o_halo)=u
wt(-o_halo+1:kp+o_halo,-o_halo+1:ip+o_halo)=w
else
do i=-o_halo+2,ip+o_halo-1
do k=-o_halo+2,kp+o_halo-1
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! now calculate the anti-diffusive velocities
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
u_j_bar1=0._wp
u_div1=0._wp
! calculate the part of the anti-diffusive velocities associated
! with cross derivatives
! equation 13 page 330 of smolark (1984)
! journal of computational physics
u_j_bar1=u_j_bar1+0.5_wp*dt*ut(k,i)* &
0.25_wp*(wt(k,i+1)+wt(k,i)+wt(k-1,i+1)+wt(k-1,i)) &
* (q_k_old(k+1,i+1)+q_k_old(k+1,i)-q_k_old(k-1,i+1)-q_k_old(k-1,i))/ &
(q_k_old(k+1,i+1)+q_k_old(k+1,i)+q_k_old(k-1,i+1)+q_k_old(k-1,i)+small )/dz
! for divergent flow: eq 38 smolarkiewicz 1984
u_div1=u_div1+(wt(k,i)+wt(k,i+1)-wt(k-1,i)-wt(k-1,i+1))/dz
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
u_j_bar3=0._wp
u_div3=0._wp
u_j_bar3=u_j_bar3+0.5_wp*dt*wt(k,i)* &
0.25_wp*(ut(k+1,i)+ut(k,i)+ut(k+1,i-1)+ut(k,i-1)) &
* (q_k_old(k+1,i+1)+q_k_old(k,i+1)-q_k_old(k+1,i-1)-q_k_old(k,i-1))/ &
(q_k_old(k+1,i+1)+q_k_old(k,i+1)+q_k_old(k+1,i-1)+q_k_old(k,i-1)+small )/dx
! for divergent flow: eq 38 smolarkiewicz 1984
u_div3=u_div3+(ut(k,i)+ut(k+1,i)-ut(k,i-1)-ut(k+1,i-1))/dx
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!
!!!!
ut_sav(k,i)=(abs(ut(k,i))*dx-dt*ut(k,i)*ut(k,i) ) * &
(q_k_old(k,i+1)-q_k_old(k,i) ) / &
(q_k_old(k,i+1)+q_k_old(k,i)+small) /dx - u_j_bar1
! divergent flow: eq 38 smolarkiewicz 1984
ut_sav(k,i)=ut_sav(k,i) - 0.25_wp*dt*ut(k,i)* &
( (ut(k,i+1)-ut(k,i-1))/dx-u_div1 )
!!!!
wt_sav(k,i)=(abs(wt(k,i))*dz-dt*wt(k,i)*wt(k,i) ) * &
(q_k_old(k+1,i)-q_k_old(k,i) ) / &
(q_k_old(k+1,i)+q_k_old(k,i)+small) /dz - u_j_bar3
! divergent flow: eq 38 smolarkiewicz 1984
wt_sav(k,i)=wt_sav(k,i) - 0.25_wp*dt*wt(k,i)* &
( (wt(k+1,i)-wt(k-1,i))/dz-u_div3 )
!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
enddo
enddo
ut=ut_sav
wt=wt_sav
endif
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! Non oscillatory forward in time (NFT) flux limiter - !
! Smolarkiewicz and Grabowski (1990) !
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
if((it.ge.2).and.monotone) then
do i=-o_halo+3,ip+o_halo-2
do k=-o_halo+3,kp+o_halo-2
! x direction - note: should the last q in the max/min be q+1?
psi_i_max=max(q_k(k,i-1),q_k(k,i),q_k(k,i+1), &
q_k_old(k,i-1),q_k_old(k,i),q_k_old(k,i+1))
psi_i_min=min(q_k(k,i-1),q_k(k,i),q_k(k,i+1), &
q_k_old(k,i-1),q_k_old(k,i),q_k_old(k,i+1))
psi_ip_max=max(q_k(k,i),q_k(k,i+1),q_k(k,i+2), &
q_k_old(k,i),q_k_old(k,i+1),q_k_old(k,i+2))
psi_ip_min=min(q_k(k,i),q_k(k,i+1),q_k(k,i+2), &
q_k_old(k,i),q_k_old(k,i+1),q_k_old(k,i+2))
! for 3-d add another term to the betas
beta_i_up=(psi_i_max-q_k_old(k,i)) / &
(dt/dx*(max(ut(k,i-1),0._wp)*q_k_old(k,i-1)-min(ut(k,i),0._wp)*q_k_old(k,i+1))+ &
dt/dz*(max(wt(k-1,i),0._wp)*q_k_old(k-1,i)-min(wt(k,i),0._wp)*q_k_old(k+1,i)) &
+small)
beta_i_down=(q_k_old(k,i)-psi_i_min) / &
(dt/dx*(max(ut(k,i),0._wp)*q_k_old(k,i)-min(ut(k,i-1),0._wp)*q_k_old(k,i)) + &
dt/dz*(max(wt(k,i),0._wp)*q_k_old(k,i)-min(wt(k-1,i),0._wp)*q_k_old(k,i)) &
+small)
beta_ip_up=(psi_ip_max-q_k_old(k,i+1)) / &
(dt/dx*(max(ut(k,i),0._wp)*q_k_old(k,i)-min(ut(k,i+1),0._wp)*q_k_old(k,i+2)) + &
dt/dz*(max(wt(k,i),0._wp)*q_k_old(k,i)-min(wt(k+1,i),0._wp)*q_k_old(k+2,i)) &
+small)
beta_ip_down=(q_k_old(k,i+1)-psi_ip_min) / &
(dt/dx*(max(ut(k,i+1),0._wp)*q_k_old(k,i+1)-min(ut(k,i),0._wp)*q_k_old(k,i+1)) + &
dt/dz*(max(wt(k+1,i),0._wp)*q_k_old(k+1,i)-min(wt(k,i),0._wp)*q_k_old(k+1,i)) &
+small)
ut_sav(k,i)=min(1._wp,beta_i_down,beta_ip_up)*max(ut(k,i),0._wp) + &
min(1._wp,beta_i_up,beta_ip_down)*min(ut(k,i),0._wp)
! z direction - note: should the last q in the max/min be q+1?
psi_i_max=max(q_k(k-1,i),q_k(k,i),q_k(k+1,i), &
q_k_old(k-1,i),q_k_old(k,i),q_k_old(k+1,i))
psi_i_min=min(q_k(k-1,i),q_k(k,i),q_k(k+1,i), &
q_k_old(k-1,i),q_k_old(k,i),q_k_old(k+1,i))
psi_ip_max=max(q_k(k,i),q_k(k+1,i),q_k(k+2,i), &
q_k_old(k,i),q_k_old(k+1,i),q_k_old(k+2,i))
psi_ip_min=min(q_k(k,i),q_k(k+1,i),q_k(k+2,i), &
q_k_old(k,i),q_k_old(k+1,i),q_k_old(k+2,i))
! for 3-d add another term to the betas
beta_i_up=(psi_i_max-q_k_old(k,i)) / &
(dt/dx*(max(ut(k,i-1),0._wp)*q_k_old(k,i-1)-min(ut(k,i),0._wp)*q_k_old(k,i+1)) +&
dt/dz*(max(wt(k-1,i),0._wp)*q_k_old(k-1,i)-min(wt(k,i),0._wp)*q_k_old(k+1,i)) &
+small)
beta_i_down=(q_k_old(k,i)-psi_i_min) / &
(dt/dx*(max(ut(k,i),0._wp)*q_k_old(k,i)-min(ut(k,i-1),0._wp)*q_k_old(k,i)) + &
dt/dz*(max(wt(k,i),0._wp)*q_k_old(k,i)-min(wt(k-1,i),0._wp)*q_k_old(k,i)) &
+small)
beta_ip_up=(psi_ip_max-q_k_old(k+1,i)) / &
(dt/dx*(max(ut(k,i),0._wp)*q_k_old(k,i)-min(ut(k,i+1),0._wp)*q_k_old(k,i+2)) + &
dt/dz*(max(wt(k,i),0._wp)*q_k_old(k,i)-min(wt(k+1,i),0._wp)*q_k_old(k+2,i)) &
+small)
beta_ip_down=(q_k_old(k+1,i)-psi_ip_min) / &
(dt/dx*(max(ut(k,i+1),0._wp)*q_k_old(k,i+1)-min(ut(k,i),0._wp)*q_k_old(k,i+1)) +&
dt/dz*(max(wt(k+1,i),0._wp)*q_k_old(k+1,i)-min(wt(k,i),0._wp)*q_k_old(k+1,i)) &
+small)
wt_sav(k,i)=min(1._wp,beta_i_down,beta_ip_up)*max(wt(k,i),0._wp) + &
min(1._wp,beta_i_up,beta_ip_down)*min(wt(k,i),0._wp)
enddo
enddo
ut=ut_sav
wt=wt_sav
endif
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! upstream scheme using ut, wt !
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
do i=-o_halo+2,ip+o_halo-1
do k=-o_halo+2,kp+o_halo-1
fip = 0._wp
! i direction
fip = fip +( ( ut(k,i)+abs(ut(k,i)) )*q_k_old(k,i) + &
( ut(k,i)-abs(ut(k,i)) )*q_k_old(k,i+1) )*dt/(2._wp*dx)
! k direction
fip = fip +( ( wt(k,i)+abs(wt(k,i)) )*q_k_old(k,i) + &
( wt(k,i)-abs(wt(k,i)) )*q_k_old(k+1,i) )*dt/(2._wp*dz)
fim = 0._wp
! i direction
fim = fim +( ( ut(k,i-1)+abs(ut(k,i-1)) )*q_k_old(k,i-1) + &
( ut(k,i-1)-abs(ut(k,i-1)) )*q_k_old(k,i) )*dt/(2._wp*dx)
! k direction
fim = fim +( ( wt(k-1,i)+abs(wt(k-1,i)) )*q_k_old(k-1,i) + &
( wt(k-1,i)-abs(wt(k-1,i)) )*q_k_old(k,i) )*dt/(2._wp*dz)
q_kp1(k,i)=q_k_old(k,i)-(fip-fim)
enddo
enddo
! halos
q_kp1(:,-o_halo+1:0)=q_kp1(:,ip-o_halo+1:ip)
q_kp1(:,ip+1:ip+o_halo)=q_kp1(:,1:o_halo)
! update
q_k_old(-o_halo+2:kp+o_halo-1,-o_halo+2:ip+o_halo-1)= &
q_kp1(-o_halo+2:kp+o_halo-1,-o_halo+2:ip+o_halo-1)
! halos
q_k_old(:,-o_halo+1:0)=q_k_old(:,ip-o_halo+1:ip)
q_k_old(:,ip+1:ip+o_halo)=q_k_old(:,1:o_halo)
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
enddo
q_k(1:kp,1:ip)=q_k_old(1:kp,1:ip)
! halos
q_k(:,-o_halo+1:0)=q_k(:,ip-o_halo+1:ip)
q_k(:,ip+1:ip+o_halo)=q_k(:,1:o_halo)
q_k=q_k+minglobal
end subroutine mpdata
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!>@author
!>Paul J. Connolly, The University of Manchester
!>@brief
!>calculates del2 of prognostic variable
!>@param[in] ip: number of let-right points
!>@param[in] kp: ditto for up-down
!>@param[in] o_halo: halos required for advection scheme
!>@param[in] dt: timestep
!>@param[in] f: prognostic variable
!>@param[inout] delsq: delsq of f
!>@param[in] vis: viscosity
!>@param[in] dx,dz: grid wpacing
!>calculates del**2:
!>\f$ visterm = \frac{\partial ^2}{\partial x^2} f +
!> \frac{\partial ^2}{\partial z^2} f \f$
subroutine dissipation(ip,kp,o_halo,dt,f,delsq,vis,dx,dz)
use numerics_type
implicit none
integer(i4b), intent(in) :: ip,kp,o_halo
real(wp), intent(in) :: dt,dx,dz
real(wp), intent(inout), dimension(1-o_halo:kp+o_halo,1-o_halo:ip+o_halo) :: &
f, vis
real(wp), intent(inout), dimension(1:kp,1:ip) :: delsq
real(wp), dimension(1-o_halo:kp+o_halo,1-o_halo:ip+o_halo) :: f2
f(0,:)=f(1,:)
f(kp+1,:)=f(kp,:)
f2=f
! calculate del^2 using 2nd order difference
! (central difference of forward and backward):
! delsq(1:kp,1:ip) =(f2(1:kp,2:ip+1)-2._wp*f2(1:kp,1:ip)+f2(1:kp,0:ip-1))/dx**2
!
! delsq(1:kp,1:ip) = delsq(1:kp,1:ip) + &
! (f2(2:kp+1,1:ip)-2._wp*f2(1:kp,1:ip)+f2(0:kp-1,1:ip))/dz**2
! delsq=delsq*vis(1:kp,1:ip)
delsq(1:kp,1:ip)=(vis(1:kp,1:ip)*(f2(1:kp,2:ip+1)-f2(1:kp,1:ip))/dx- &
vis(1:kp,0:ip-1)*(f2(1:kp,1:ip)-f2(1:kp,0:ip-1))/dx)/dx
delsq(1:kp,1:ip)=delsq(1:kp,1:ip) + &
(vis(1:kp,1:ip)*(f2(2:kp+1,1:ip)-f2(1:kp,1:ip))/dz- &
vis(0:kp-1,1:ip)*(f2(1:kp,1:ip)-f2(0:kp-1,1:ip))/dz)/dz
end subroutine dissipation
!>@author
!>Paul J. Connolly, The University of Manchester
!>@brief
!>calculates smagorinsky-lilly viscosity
!>@param[in] ip: number of left-right points
!>@param[in] kp: ditto for up-down
!>@param[in] o_halo: halos required for advection scheme
!>@param[in] cvis: coefficient for viscosity
!>@param[in] u,w: u and w winds
!>@param[inout] vis: viscosity
!>@param[in] dx,dz
!>calculates smagorinsky-lilly viscosity:
!>\f$ visco = C_s^2\Delta x\Delta y|S|\f$
subroutine smagorinsky(ip,kp,o_halo,cvis,u,w,vis,dx,dz)
use numerics_type
implicit none
integer(i4b), intent(in) :: ip,kp,o_halo
real(wp), intent(in) :: cvis, dx, dz
real(wp), intent(in), dimension(1-o_halo:kp+o_halo,1-o_halo:ip+o_halo) :: &
u,w
real(wp), intent(inout), dimension(1-o_halo:kp+o_halo,1-o_halo:ip+o_halo) :: vis
! local variables:
integer(i4b) :: j, i,k
real(wp), dimension(1-o_halo:kp+o_halo,1-o_halo:ip+o_halo) :: strain
! calculate viscosity using centred differences:
! vis(1:kp,1:ip) = cvis**2._wp*dx*dz* &
! sqrt( ( (u(1:kp,2:ip+1)-u(1:kp,0:ip-1))/ dx )**2 + &
! ( (w(2:kp+1,1:ip)-w(0:kp-1,1:ip))/ dz )**2 + &
! 0.5_wp*( (u(2:kp+1,1:ip)-u(0:kp-1,1:ip))/ dz+ &
! (w(1:kp,2:ip+1)-w(1:kp,0:ip-1))/ dx )**2 )
strain=0._wp
do i=1,ip
do k=1,kp
! 2*s11*s11
strain(k,i)=((u(k+1,i)-u(k+1,i-1))/dx)**2 + &
((u(k,i)-u(k,i-1))/dx)**2
! 2*s33*s33
strain(k,i)=strain(k,i)+ &
((w(k,i)-w(k-1,i))/dz)**2 + &
((w(k+1,i)-w(k,i))/dz)**2
! 2*s13*s13 - du/dz+dw/dx - averaging over 2 points
strain(k,i)=strain(k,i)+ 0.5_wp * &
(((u(k+1,i)-u(k,i))/dz+(w(k,i+1)-w(k,i))/dx)**2 + &
((u(k+1,i-1)-u(k,i-1))/dz+(w(k,i)-w(k,i-1))/dx)**2)
enddo
enddo
vis(1:kp,1:ip) = cvis**2*dx*dz*&
sqrt( 0.5_wp*(strain(1:kp,1:ip)+strain(0:kp-1,1:ip)) )
end subroutine smagorinsky
end module advection_2d