-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_imagenet.py
381 lines (316 loc) · 14.8 KB
/
train_imagenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
# This module is adapted from https://github.com/pytorch/examples/blob/master/imagenet/main.py
import argparse
import os
import time
import sys
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
import torch.optim
import torchvision.transforms as transforms
import torchvision.datasets as datasets
from torch.autograd import Variable
import math
import numpy as np
from utils_imagenet import *
from validation import validate, validate_pgd, validate_pgd_random, validate_random
import torchvision.models as models
from model.resnet_imagenet import ResNet50
def parse_args():
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
parser.add_argument('--data', default='./data/val', help='path to dataset')
parser.add_argument('-c', '--config', default='config.yml', type=str, metavar='Path',
help='path to the config file (default: config.yml)')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
help='evaluate model on validation set')
parser.add_argument('--eval_model_path', default=None, type=str, help='path to the RPF model')
parser.add_argument('--pretrained', dest='pretrained', action='store_true',
help='use pre-trained model')
parser.add_argument('--lr', default=0.02, type=float,
help='initial learning rate')
parser.add_argument('--lr_schedule', default='cosine',
choices=['multistep', 'cosine'])
parser.add_argument('--epochs', default=90, type=int,
help='total training epochs')
parser.add_argument('--batch_size', default=1024, type=int,
help='training batch size')
parser.add_argument('--clip_eps', default=4, type=float,
help='epsilon')
parser.add_argument('--fgsm_step', default=4, type=float,
help='step size (alpha)')
parser.add_argument('--save_dir', default=None, type=str, help='Output directory')
parser.add_argument('--adv_train', action='store_true', help='if adv_train')
# random setting
parser.add_argument('--rp', action='store_true', help='if random projection')
parser.add_argument('--rp_out_channel', default=0, type=int, help='number of rp output channels')
parser.add_argument('--rp_weight_decay', default=5e-4, type=float)
return parser.parse_args()
config = parse_config_file(parse_args())
if config.save_dir is not None:
config.output_name = config.save_dir
if config.lr is not None:
config.TRAIN.lr = config.lr
if config.epochs is not None:
config.TRAIN.epochs = config.epochs
if config.batch_size is not None:
config.DATA.batch_size = config.batch_size
if config.clip_eps is not None:
config.ADV.clip_eps = config.clip_eps
if config.fgsm_step is not None:
config.ADV.fgsm_step = config.fgsm_step
def main():
# Parase config file and initiate logging
logger = initiate_logger(config.output_name)
# print = logger.info
cudnn.benchmark = True
# Scale and initialize the parameters
best_pgd_acc = 0
best_epoch = 0
standard_acc_at_best_pgd = 0
best_pgd_acc_k50 = 0
config.ADV.n_repeats = 1
config.TRAIN.epochs = int(math.ceil(config.TRAIN.epochs / config.ADV.n_repeats))
config.ADV.fgsm_step /= config.DATA.max_color_value
config.ADV.clip_eps /= config.DATA.max_color_value
# Create output folder
if not os.path.isdir(config.output_name):
os.makedirs(config.output_name)
# Log the config details
logger.info(pad_str(' ARGUMENTS '))
for k, v in config.items(): logger.info('{}: {}'.format(k, v))
logger.info(pad_str(''))
if os.path.exists(os.path.join(config.output_name, 'model_latest.pth')):
config.pretrained = False
model = ResNet50(pretrained=config.pretrained, rp=config.rp, rp_out_channel=config.rp_out_channel).cuda()
logger.info(model)
# Wrap the model into DataParallel
model = torch.nn.DataParallel(model)
# Criterion:
criterion = nn.CrossEntropyLoss().cuda()
# Optimizer:
optimizer = torch.optim.SGD(model.parameters(), config.TRAIN.lr,
momentum=config.TRAIN.momentum,
weight_decay=config.TRAIN.weight_decay)
# scheduler
if config.lr_schedule == 'cosine':
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, float(config.epochs))
if os.path.exists(os.path.join(config.output_name, 'model_latest.pth')):
model_path = os.path.join(config.output_name, 'model_latest.pth')
checkpoint = torch.load(model_path)
config.TRAIN.start_epoch = checkpoint['epoch'] + 1
best_pgd_acc = checkpoint['best_pgd_acc']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
logger.info("=> Automatic resume from '{}' (epoch {})"
.format(model_path, checkpoint['epoch']))
else:
logger.info("Train from scratch")
# Initiate data loaders
traindir = os.path.join(config.data, 'train')
valdir = os.path.join(config.data, 'val')
train_dataset = datasets.ImageFolder(
traindir,
transforms.Compose([
transforms.RandomResizedCrop(config.DATA.crop_size),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
]))
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=config.DATA.batch_size, shuffle=True,
num_workers=config.DATA.workers, pin_memory=True, sampler=None)
val_loader = torch.utils.data.DataLoader(
datasets.ImageFolder(valdir, transforms.Compose([
transforms.Resize(config.DATA.img_size),
transforms.CenterCrop(config.DATA.crop_size),
transforms.ToTensor(),
])),
batch_size=config.DATA.batch_size, shuffle=False,
num_workers=config.DATA.workers, pin_memory=True)
# If in evaluate mode: perform validation on PGD attacks as well as clean samples
if config.evaluate:
# load model
if config.eval_model_path is None:
print('Eval_model_path not defined')
exit()
else:
model_path = config.eval_model_path
checkpoint = torch.load(model_path)
config.TRAIN.start_epoch = checkpoint['epoch'] + 1
best_pgd_acc = checkpoint['best_pgd_acc']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
logger.info("=> Automatic resume from '{}' (epoch {})"
.format(model_path, checkpoint['epoch']))
logger.info(pad_str(' Performing PGD Attacks '))
validate_random(val_loader, model, criterion, config, logger)
for pgd_param in config.ADV.pgd_attack:
validate_pgd_random(val_loader, model, criterion, pgd_param[0], pgd_param[1], config, logger)
return
for epoch in range(config.TRAIN.start_epoch, config.TRAIN.epochs):
if config.lr_schedule == 'cosine':
scheduler.step()
logging.info('epoch %d lr %e', epoch, scheduler.get_lr()[0])
else:
adjust_learning_rate(config.TRAIN.lr, optimizer, epoch, config.ADV.n_repeats)
if config.adv_train:
train_pgd(train_loader, model, criterion, optimizer, epoch, logger)
else:
train(train_loader, model, criterion, optimizer, epoch, logger)
# evaluate on validation set
if epoch % 2 == 0:
if config.adv_train:
if config.rp:
pgd_acc = validate_pgd_random(val_loader, model, criterion, 10, 1.0 / 255.0, config, logger)
standard_acc = validate_random(val_loader, model, criterion, config, logger)
else:
pgd_acc = validate_pgd(val_loader, model, criterion, 10, 1.0 / 255.0, config, logger)
standard_acc = validate(val_loader, model, criterion, config, logger)
else:
if config.rp:
pgd_acc = validate_random(val_loader, model, criterion, config, logger)
standard_acc = pgd_acc
else:
pgd_acc = validate(val_loader, model, criterion, config, logger)
standard_acc = pgd_acc
# remember best prec@1 and save checkpoint
is_best = pgd_acc > best_pgd_acc
best_pgd_acc = max(pgd_acc, best_pgd_acc)
if is_best:
best_epoch = epoch
standard_acc_at_best_pgd = standard_acc
if config.adv_train:
best_pgd_acc_k50 = validate_pgd_random(val_loader, model, criterion, 50, 1.0 / 255.0, config, logger)
else:
best_pgd_acc_k50 = 0.0
save_checkpoint({
'epoch': epoch,
'arch': config.TRAIN.arch,
'state_dict': model.state_dict(),
'best_pgd_acc': best_pgd_acc,
'standard_acc': standard_acc,
'optimizer': optimizer.state_dict(),
}, is_best, config.output_name)
# 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
logger.info('Current Best PGD Acc: {:.3f}, Achieved at [{:d}] Epoch, with Standard Acc: {:.3f},'
' with K50 Acc: {:.3f}'.format(best_pgd_acc, best_epoch, standard_acc_at_best_pgd, best_pgd_acc_k50))
# Automatically perform PGD Attacks at the end of training
logger.info(pad_str(' Performing PGD Attacks '))
for pgd_param in config.ADV.pgd_attack:
validate_pgd_random(val_loader, model, criterion, pgd_param[0], pgd_param[1], config, logger)
def train(train_loader, model, criterion, optimizer, epoch, logger):
mean = torch.Tensor(np.array(config.TRAIN.mean)[:, np.newaxis, np.newaxis])
mean = mean.expand(3, config.DATA.crop_size, config.DATA.crop_size).cuda()
std = torch.Tensor(np.array(config.TRAIN.std)[:, np.newaxis, np.newaxis])
std = std.expand(3, config.DATA.crop_size, config.DATA.crop_size).cuda()
# Initialize the meters
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to train mode
model.train()
for i, (input, target) in enumerate(train_loader):
_iters = epoch * len(train_loader) + i
end = time.time()
input = input.cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
data_time.update(time.time() - end)
# random select a path
if config.rp:
model.module.random_rp_matrix()
in1 = input
in1.clamp_(0, 1.0)
in1.sub_(mean).div_(std)
output = model(in1)
loss = criterion(output, target)
prec1, prec5 = accuracy(output, target, topk=(1, 5))
losses.update(loss.item(), input.size(0))
top1.update(prec1[0], input.size(0))
top5.update(prec5[0], input.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % config.TRAIN.print_freq == 0:
logger.info('Train Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {cls_loss.val:.4f} ({cls_loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
epoch, i, len(train_loader), batch_time=batch_time,
data_time=data_time, top1=top1, top5=top5, cls_loss=losses))
sys.stdout.flush()
def train_pgd(train_loader, model, criterion, optimizer, epoch, logger):
mean = torch.Tensor(np.array(config.TRAIN.mean)[:, np.newaxis, np.newaxis])
mean = mean.expand(3, config.DATA.crop_size, config.DATA.crop_size).cuda()
std = torch.Tensor(np.array(config.TRAIN.std)[:, np.newaxis, np.newaxis])
std = std.expand(3, config.DATA.crop_size, config.DATA.crop_size).cuda()
# Initialize the meters
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to train mode
model.train()
for i, (input, target) in enumerate(train_loader):
_iters = epoch * len(train_loader) + i
# random select a path to attack
if config.rp:
model.module.random_rp_matrix()
end = time.time()
input = input.cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
data_time.update(time.time() - end)
delta = torch.zeros_like(input).cuda()
if config.ADV.delta_init == 'random':
delta.uniform_(-config.ADV.clip_eps, config.ADV.clip_eps)
delta.requires_grad = True
for _ in range(config.ADV.attack_iters):
in1 = input + delta
in1.clamp_(0, 1.0)
in1.sub_(mean).div_(std)
output = model(in1)
loss = criterion(output, target)
loss.backward()
grad = delta.grad.detach()
delta.data = delta.data + config.ADV.fgsm_step * torch.sign(grad)
delta.data.clamp_(-config.ADV.clip_eps, config.ADV.clip_eps)
delta.grad.zero_()
delta = delta.detach()
# random select a path to infer
if config.rp:
model.module.random_rp_matrix()
in1 = input + delta
in1.clamp_(0, 1.0)
in1.sub_(mean).div_(std)
output = model(in1)
loss = criterion(output, target)
prec1, prec5 = accuracy(output, target, topk=(1, 5))
losses.update(loss.item(), input.size(0))
top1.update(prec1[0], input.size(0))
top5.update(prec5[0], input.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % config.TRAIN.print_freq == 0:
logger.info('Train Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {cls_loss.val:.4f} ({cls_loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
epoch, i, len(train_loader), batch_time=batch_time,
data_time=data_time, top1=top1, top5=top5, cls_loss=losses))
sys.stdout.flush()
if __name__ == '__main__':
main()