-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtest_pose.py
131 lines (105 loc) · 4.98 KB
/
test_pose.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import torch
from skimage.transform import resize as imresize
import numpy as np
from path import Path
import argparse
from tqdm import tqdm
# from imageio import imread
import sys
sys.path.append('./common/')
import models
from loss.inverse_warp import pose_vec2mat
parser = argparse.ArgumentParser(description='Script for PoseNet testing with corresponding groundTruth from KITTI Odometry',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("--pretrained-posenet", required=True, type=str, help="pretrained PoseNet path")
parser.add_argument("--img-height", default=256, type=int, help="Image height")
parser.add_argument("--img-width", default=320, type=int, help="Image width")
parser.add_argument("--no-resize", action='store_true', help="no resizing is done")
parser.add_argument("--dataset-dir", type=str, help="Dataset directory")
parser.add_argument('--sequence-length', type=int, metavar='N', help='sequence length for testing', default=5)
parser.add_argument("--sequences", default=['indoor_aggresive_dark'], type=str, nargs='*', help="sequences to test")
parser.add_argument("--output-dir", default=None, type=str, help="Output directory for saving predictions in a big 3D numpy file")
parser.add_argument('--resnet-layers', required=True, type=int, default=18, choices=[18, 50], help='depth network architecture.')
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
def load_tensor_image(img, args):
h,w,_ = img.shape
if (h != args.img_height or w != args.img_width):
img = imresize(img, (args.img_height, args.img_width)).astype(np.float32)
img = np.transpose(img, (2, 0, 1))
img = (torch.from_numpy(img).float() / 2**14)
tensor_img = ((img.unsqueeze(0)-0.45)/0.225).to(device)
return tensor_img
@torch.no_grad()
def main():
args = parser.parse_args()
# load models
disp_pose_net = models.DispPoseResNet(args.resnet_layers, False, num_channel=1).to(device)
pose_net = disp_pose_net.PoseResNet
weights = torch.load(args.pretrained_posenet)
pose_net.load_state_dict(weights['state_dict'], strict=False)
pose_net.eval()
seq_length = 5
# load data loader
from eval_vivid.pose_evaluation_utils import test_framework_VIVID as test_framework
dataset_dir = Path(args.dataset_dir)
framework = test_framework(dataset_dir, args.sequences, seq_length=seq_length, step=1)
print('{} snippets to test'.format(len(framework)))
errors = np.zeros((len(framework), 2), np.float32)
if args.output_dir is not None:
output_dir = Path(args.output_dir)
output_dir.makedirs_p()
predictions_array = np.zeros((len(framework), seq_length, 3, 4))
for j, sample in enumerate(tqdm(framework)):
imgs = sample['imgs']
squence_imgs = []
for i, img in enumerate(imgs):
img = load_tensor_image(img, args)
squence_imgs.append(img)
global_pose = np.eye(4)
poses = []
poses.append(global_pose[0:3, :])
for iter in range(seq_length - 1):
pose = pose_net(squence_imgs[iter], squence_imgs[iter + 1])
pose_mat = pose_vec2mat(pose).squeeze(0).cpu().numpy()
pose_mat = np.vstack([pose_mat, np.array([0, 0, 0, 1])])
global_pose = global_pose @ np.linalg.inv(pose_mat)
poses.append(global_pose[0:3, :])
final_poses = np.stack(poses, axis=0)
if args.output_dir is not None:
predictions_array[j] = final_poses
ATE, RE = compute_pose_error(sample['poses'], final_poses)
errors[j] = ATE, RE
mean_errors = errors.mean(0)
std_errors = errors.std(0)
error_names = ['ATE', 'RE']
print('')
print("Results")
print("\t {:>10}, {:>10}".format(*error_names))
print("mean \t {:10.4f}, {:10.4f}".format(*mean_errors))
print("std \t {:10.4f}, {:10.4f}".format(*std_errors))
if args.output_dir is not None:
np.save(output_dir/'predictions.npy', predictions_array)
def compute_pose_error(gt, pred):
RE = 0
snippet_length = gt.shape[0]
scale_factor = np.sum(gt[:, :, -1] * pred[:, :, -1])/np.sum(pred[:, :, -1] ** 2)
ATE = np.linalg.norm((gt[:, :, -1] - scale_factor * pred[:, :, -1]).reshape(-1))
for gt_pose, pred_pose in zip(gt, pred):
# Residual matrix to which we compute angle's sin and cos
R = gt_pose[:, :3] @ np.linalg.inv(pred_pose[:, :3])
s = np.linalg.norm([R[0, 1]-R[1, 0],
R[1, 2]-R[2, 1],
R[0, 2]-R[2, 0]])
c = np.trace(R) - 1
# Note: we actually compute double of cos and sin, but arctan2 is invariant to scale
RE += np.arctan2(s, c)
return ATE/snippet_length, RE/snippet_length
def compute_pose(pose_net, tgt_img, ref_imgs):
poses = []
for ref_img in ref_imgs:
pose = pose_net(tgt_img, ref_img).unsqueeze(1)
poses.append(pose)
poses = torch.cat(poses, 1)
return poses
if __name__ == '__main__':
main()