-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_disparity.py
148 lines (116 loc) · 5.78 KB
/
test_disparity.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import numpy as np
from tqdm import tqdm
import torch
import os
import os.path as osp
from argparse import ArgumentParser
from mmcv import Config
from models import MODELS
from dataloaders import build_dataset
from torch.utils.data import DataLoader
from models.metrics.eval_metric import compute_disp_errors, compute_depth_errors
from pytorch_lightning import Trainer, seed_everything
from pytorch_lightning.callbacks import ModelCheckpoint
from utils.visualization import *
import cv2
def parse_args():
parser = ArgumentParser()
# configure file
parser.add_argument('--config', help='config file path')
parser.add_argument('--test_env' , type=str, default='test_day') # test_night, test_rain
parser.add_argument('--save_dir' , type=str, default=' ')
parser.add_argument('--modality' , type=str, required=True)
parser.add_argument('--seed', type=int, default=1024)
parser.add_argument('--ckpt_path', type=str, default=None,
help='pretrained checkpoint path to load')
return parser.parse_args()
@torch.no_grad()
def main():
# parse args
args = parse_args()
# parse cfg
cfg = Config.fromfile(osp.join(args.config))
# show information
print(f'Now training with {args.config}...')
# configure seed
seed_everything(args.seed)
# prepare data loader
dataset_name = cfg.dataset['list'][0]
cfg.dataset[dataset_name].test_env = args.test_env
cfg.dataset[dataset_name].test.modality = args.modality
dataset = build_dataset(cfg.dataset, eval_mode='depth', split='test')
test_loader = DataLoader(dataset['test']['depth'],
batch_size=1,
shuffle=False,
num_workers=cfg.workers_per_gpu,
drop_last=False)
print('{} samples found for evaluation'.format(len(test_loader)))
# define model
model = MODELS.build(name=cfg.model.name, option=cfg)
if args.ckpt_path != None:
print('load pre-trained model from {}'.format(args.ckpt_path))
model.load_state_dict(torch.load(args.ckpt_path)['state_dict'],strict=False)
# model = model.load_from_checkpoint(args.ckpt_path, strict=True)
model.cuda()
model.eval()
if args.save_dir != ' ':
save_dir_all = osp.join(args.save_dir, 'all')
os.makedirs(save_dir_all, exist_ok=True)
# model inference
all_errs_depth = []
all_errs_disp = []
for i, batch in enumerate(tqdm(test_loader)):
tgt_left_in = batch["tgt_left"]
tgt_right_in = batch["tgt_right"]
# tgt_left_vis = batch["tgt_left_eh"]
gt_depth = batch["tgt_depth_gt"]
gt_disp = batch["tgt_disp_gt"]
focal = batch["focal"]
baseline = batch["baseline"]
pred_disp = model.inference_disp(tgt_left_in.cuda(), tgt_right_in.cuda())
pred_depth = baseline[0].cuda() * focal[0].cuda() / (pred_disp +1e-10)
# reshape dimension for evaluation and interpolation, (b,h,w)
if len(pred_depth.shape) == 4:
pred_depth = pred_depth.squeeze(1) # BHW
pred_disp = pred_disp.squeeze(1) # BHW
elif len(pred_depth.shape) == 2:
pred_depth = pred_depth.unsqueeze(1) # BHW
pred_disp = pred_disp.unsqueeze(1) # BHW
# resizing prediction
batch_size, h, w = gt_disp.size()
if pred_disp.nelement() != gt_disp.nelement():
# 1. upsample depth for comparison with monocular
pred_depth = torch.nn.functional.interpolate(pred_depth.unsqueeze(1), size=[h, w],
mode='bilinear', align_corners=False).squeeze(1)
# 2. downsample gt disp for comparison with thermal stereo
gt_disp = torch.nn.functional.interpolate(gt_disp.unsqueeze(1),
size=[tgt_left_in.size(-2), tgt_left_in.size(-1)],
mode='nearest').squeeze(1) * (pred_disp.size(-1)/gt_disp.size(-1))
errs_depth = compute_depth_errors(gt_depth.cuda(), pred_depth, align=False)
errs_disp = compute_disp_errors(gt_disp.cuda(), pred_disp)
all_errs_depth.append(np.array(errs_depth))
all_errs_disp.append(np.array(errs_disp))
if args.save_dir != ' ':
if i%10 == 0 :
c_, h, w = tgt_left_in[0].size()
if tgt_left_in.nelement() != gt_depth.nelement():
pred_disp = torch.nn.functional.interpolate(pred_disp.unsqueeze(1), [h, w], mode='bilinear').squeeze(1)
gt_disp = torch.nn.functional.interpolate(gt_disp.unsqueeze(1), [h, w], mode='nearest').squeeze(1)
img_vis = visualize_image(tgt_left_in[0], flag_np=True).transpose(1,2,0)
pred_disp = visualize_disp_as_numpy(pred_disp.squeeze(), 'jet')
gt_disp = visualize_disp_as_numpy(gt_disp.squeeze(), 'jet')
png_path = osp.join(save_dir_all, "{:05}.png".format(i))
stack = cv2.cvtColor(np.concatenate((img_vis, gt_disp, pred_disp), axis=0), cv2.COLOR_RGB2BGR)
cv2.imwrite(png_path, stack)
all_errs_depth = np.stack(all_errs_depth)
mean_errs = np.mean(all_errs_depth, axis=0)
print('test set: {}, len: {}'.format(args.test_env, len(test_loader)))
print("\n " + ("{:>8} | " * 9).format("abs_diff", "abs_rel",
"sq_rel", "log10", "rmse", "rmse_log", "a1", "a2", "a3"))
print(("&{: 8.7f} " * 9).format(*mean_errs.tolist()) + "\\\\")
all_errs_disp = np.stack(all_errs_disp)
mean_errs = np.mean(all_errs_disp, axis=0)
print("\n " + ("{:>8} | " * 5).format("epe", "d1", "th1", "th2", "th3"))
print(("&{: 8.7f} " * 5).format(*mean_errs.tolist()) + "\\\\")
if __name__ == '__main__':
main()