-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict.py
59 lines (49 loc) · 2.18 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import argparse
import tensorflow as tf
import tensorflow_hub as hub
from tensorflow import keras
from PIL import Image
import numpy as np
import json
def process_image(image):
"""Process the image to be suitable for the model."""
image = tf.convert_to_tensor(image, dtype=tf.float32)
image = tf.image.resize(image, (224, 224))
image /= 255.0
return image.numpy()
def predict(image_path, model, top_k=5):
"""Predict the class of an image using a trained model."""
im = Image.open(image_path)
image = np.asarray(im)
processed_image = process_image(image)
image_batch = np.expand_dims(processed_image, axis=0)
predictions = model.predict(image_batch)
top_k_indices = predictions[0].argsort()[-top_k:][::-1]
top_k_probs = predictions[0][top_k_indices]
top_k_classes = [str(index) for index in top_k_indices]
return top_k_probs, top_k_classes
def load_class_names(json_file):
with open(json_file, 'r') as f:
class_names = json.load(f)
return class_names
def main():
parser = argparse.ArgumentParser(description='Predict flower name from an image along with the probability of that name.')
parser.add_argument('image_path', type=str, help='Path to the image')
parser.add_argument('model_path', type=str, help='Path to the trained model')
parser.add_argument('--top_k', type=int, default=5, help='Return the top K most likely classes')
parser.add_argument('--category_names', type=str, default=None, help='Path to a JSON file mapping labels to flower names')
args = parser.parse_args()
# Load the model
model = keras.models.load_model(args.model_path, custom_objects={'KerasLayer': hub.KerasLayer})
# Make predictions
probs, classes = predict(args.image_path, model, args.top_k)
# Map classes to names if category_names is provided
if args.category_names:
class_names = load_class_names(args.category_names)
classes = [class_names.get(c, "Unknown") for c in classes]
# Print out the results
print("Top K Predictions:")
for prob, class_name in zip(probs, classes):
print(f"Class: {class_name}, Probability: {prob}")
if __name__ == '__main__':
main()