From 4d2cc3bf2845ce08e68b0f3206bcb0edf0659985 Mon Sep 17 00:00:00 2001 From: Philip Chmielowiec <67855069+philipc2@users.noreply.github.com> Date: Thu, 12 Dec 2024 04:33:30 -0600 Subject: [PATCH 1/3] Fix bug in `_map_dims_to_ugrid`, use Polars to improve SCRIP reader performance (#1109) * remove check for n_edge which was constructing connectivity * use polars for unique calls in SCRIP reader --- ci/asv.yml | 1 + ci/docs.yml | 1 + ci/environment.yml | 1 + pyproject.toml | 1 + uxarray/core/utils.py | 13 ++++++++---- uxarray/io/_scrip.py | 46 +++++++++++++++++++++++-------------------- 6 files changed, 38 insertions(+), 25 deletions(-) diff --git a/ci/asv.yml b/ci/asv.yml index cbe442b33..2c4089646 100644 --- a/ci/asv.yml +++ b/ci/asv.yml @@ -17,6 +17,7 @@ dependencies: - pandas - pathlib - pre_commit + - polars - pyarrow - pytest - pytest-cov diff --git a/ci/docs.yml b/ci/docs.yml index a7411af73..6fcac9726 100644 --- a/ci/docs.yml +++ b/ci/docs.yml @@ -34,6 +34,7 @@ dependencies: - pandas - geocat-datafiles - spatialpandas + - polars - geopandas - pip: - antimeridian diff --git a/ci/environment.yml b/ci/environment.yml index a696e397a..32cc0c8e9 100644 --- a/ci/environment.yml +++ b/ci/environment.yml @@ -21,6 +21,7 @@ dependencies: - pandas - pathlib - pre_commit + - polars - pyarrow - pytest - pip diff --git a/pyproject.toml b/pyproject.toml index 169689fcd..6a0ed0b37 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -41,6 +41,7 @@ dependencies = [ "geopandas", "xarray", "hvplot", + "polars", ] # minimal dependencies end diff --git a/uxarray/core/utils.py b/uxarray/core/utils.py index 7b2292308..fdd38c5fa 100644 --- a/uxarray/core/utils.py +++ b/uxarray/core/utils.py @@ -39,16 +39,21 @@ def _map_dims_to_ugrid( # drop dimensions not present in the original dataset _source_dims_dict.pop(key) + # only check edge dimension if it is present (to avoid overhead of computing connectivity) + if "n_edge" in grid._ds.dims: + n_edge = grid._ds.sizes["n_edge"] + else: + n_edge = None + for dim in set(ds.dims) ^ _source_dims_dict.keys(): # obtain dimensions that were not parsed source_dims_dict and attempt to match to a grid element if ds.sizes[dim] == grid.n_face: _source_dims_dict[dim] = "n_face" elif ds.sizes[dim] == grid.n_node: _source_dims_dict[dim] = "n_node" - elif ds.sizes[dim] == grid.n_edge: - _source_dims_dict[dim] = "n_edge" - - # Possible Issue: https://github.com/UXARRAY/uxarray/issues/610 + elif n_edge is not None: + if ds.sizes[dim] == n_edge: + _source_dims_dict[dim] = "n_edge" # rename dimensions to follow the UGRID conventions ds = ds.swap_dims(_source_dims_dict) diff --git a/uxarray/io/_scrip.py b/uxarray/io/_scrip.py index c07824147..f6b874e93 100644 --- a/uxarray/io/_scrip.py +++ b/uxarray/io/_scrip.py @@ -1,6 +1,8 @@ import xarray as xr import numpy as np +import polars as pl + from uxarray.grid.connectivity import _replace_fill_values from uxarray.constants import INT_DTYPE, INT_FILL_VALUE @@ -11,43 +13,45 @@ def _to_ugrid(in_ds, out_ds): """If input dataset (``in_ds``) file is an unstructured SCRIP file, function will reassign SCRIP variables to UGRID conventions in output file (``out_ds``). - - Parameters - ---------- - in_ds : xarray.Dataset - Original scrip dataset of interest being used - - out_ds : xarray.Variable - file to be returned by ``_populate_scrip_data``, used as an empty placeholder file - to store reassigned SCRIP variables in UGRID conventions """ source_dims_dict = {} if in_ds["grid_area"].all(): # Create node_lon & node_lat variables from grid_corner_lat/lon - # Turn latitude scrip array into 1D instead of 2D + # Turn latitude and longitude scrip arrays into 1D corner_lat = in_ds["grid_corner_lat"].values.ravel() - - # Repeat above steps with longitude data instead corner_lon = in_ds["grid_corner_lon"].values.ravel() - # Combine flat lat and lon arrays - corner_lon_lat = np.vstack((corner_lon, corner_lat)).T + # Use Polars to find unique coordinate pairs + df = pl.DataFrame({"lon": corner_lon, "lat": corner_lat}).with_row_count( + "original_index" + ) + + # Get unique rows (first occurrence). This preserves the order in which they appear. + unique_df = df.unique(subset=["lon", "lat"], keep="first") + + # unq_ind: The indices of the unique rows in the original array + unq_ind = unique_df["original_index"].to_numpy().astype(INT_DTYPE) + + # To get the inverse index (unq_inv): map each original row back to its unique row index. + # Add a unique_id to the unique_df which will serve as the "inverse" mapping. + unique_df = unique_df.with_row_count("unique_id") - # Run numpy unique to determine which rows/values are actually unique - _, unq_ind, unq_inv = np.unique( - corner_lon_lat, return_index=True, return_inverse=True, axis=0 + # Join original df with unique_df to find out which unique_id corresponds to each row + df_joined = df.join( + unique_df.drop("original_index"), on=["lon", "lat"], how="left" ) + unq_inv = df_joined["unique_id"].to_numpy().astype(INT_DTYPE) - # Now, calculate unique lon and lat values to account for 'node_lon' and 'node_lat' - unq_lon = corner_lon_lat[unq_ind, :][:, 0] - unq_lat = corner_lon_lat[unq_ind, :][:, 1] + # Extract unique lon and lat values using unq_ind + unq_lon = corner_lon[unq_ind] + unq_lat = corner_lat[unq_ind] # Reshape face nodes array into original shape for use in 'face_node_connectivity' unq_inv = np.reshape(unq_inv, (len(in_ds.grid_size), len(in_ds.grid_corners))) - # Create node_lon & node_lat from unsorted, unique grid_corner_lat/lon + # Create node_lon & node_lat out_ds[ugrid.NODE_COORDINATES[0]] = xr.DataArray( unq_lon, dims=[ugrid.NODE_DIM], attrs=ugrid.NODE_LON_ATTRS ) From e1d48936ac74b6a2c3114b061ecb97ce69fee045 Mon Sep 17 00:00:00 2001 From: "pre-commit-ci[bot]" <66853113+pre-commit-ci[bot]@users.noreply.github.com> Date: Mon, 16 Dec 2024 19:11:50 -0600 Subject: [PATCH 2/3] [pre-commit.ci] pre-commit autoupdate (#1113) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit updates: - [github.com/astral-sh/ruff-pre-commit: v0.8.2 → v0.8.3](https://github.com/astral-sh/ruff-pre-commit/compare/v0.8.2...v0.8.3) Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> --- .pre-commit-config.yaml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml index 026408959..c8c1c5f00 100644 --- a/.pre-commit-config.yaml +++ b/.pre-commit-config.yaml @@ -14,7 +14,7 @@ repos: - repo: https://github.com/astral-sh/ruff-pre-commit # Ruff version. - rev: v0.8.2 + rev: v0.8.3 hooks: # Run the linter. - id: ruff From 79275c5e32dd42ba4d7d40beb81ab1fc27b4df1e Mon Sep 17 00:00:00 2001 From: Philip Chmielowiec <67855069+philipc2@users.noreply.github.com> Date: Mon, 16 Dec 2024 22:11:32 -0600 Subject: [PATCH 3/3] Robust implementation of `_point_within_gca_cartesian` using only Cartesian coordinates (#1112) * initial commit * initial implementation * initial testcase setup * required fix for ` _angle_of_2_vectors` * update ` _angle_of_2_vectors` to return degree in 0~360 * update `_pt_on_gca` * `test_populate_bounds_normal` failed when using njit * update _populate_face_latlon_bound * fix tests and add test case for case at pole * add test case exactly at pole * add condition to check if point is almost exactly equal to one of the end points * add general north and south pole tests * add tests for north and south pole * add extra test case for north and south pole * fix assert * add edge case test * Add error tolerance for values 0.0 * run pre-commit * remove debugging code and use njit --------- Co-authored-by: Hongyu Chen --- test/test_arcs.py | 87 +++--------- test/test_helpers.py | 25 ++++ test/test_integrate.py | 49 +++---- test/test_intersections.py | 182 ++++++++++++++++++++++-- uxarray/grid/arcs.py | 257 +++++----------------------------- uxarray/grid/coordinates.py | 12 +- uxarray/grid/geometry.py | 19 +-- uxarray/grid/integrate.py | 22 +-- uxarray/grid/intersections.py | 79 ++++------- uxarray/grid/utils.py | 61 +++++++- 10 files changed, 367 insertions(+), 426 deletions(-) diff --git a/test/test_arcs.py b/test/test_arcs.py index c139e3907..4e9262982 100644 --- a/test/test_arcs.py +++ b/test/test_arcs.py @@ -10,7 +10,7 @@ import uxarray as ux from uxarray.grid.coordinates import _lonlat_rad_to_xyz -from uxarray.grid.arcs import point_within_gca, _point_within_gca_cartesian +from uxarray.grid.arcs import point_within_gca try: import constants @@ -31,48 +31,31 @@ class TestIntersectionPoint(TestCase): def test_pt_within_gcr(self): # The GCR that's eexactly 180 degrees will have Value Error raised - gcr_180degree_cart = [ + gcr_180degree_cart = np.asarray([ _lonlat_rad_to_xyz(0.0, np.pi / 2.0), _lonlat_rad_to_xyz(0.0, -np.pi / 2.0) - ] + ]) + pt_same_lon_in = np.asarray(_lonlat_rad_to_xyz(0.0, 0.0)) - pt_same_lon_in = _lonlat_rad_to_xyz(0.0, 0.0) with self.assertRaises(ValueError): - _point_within_gca_cartesian(pt_same_lon_in, gcr_180degree_cart) - + point_within_gca(pt_same_lon_in, gcr_180degree_cart[0],gcr_180degree_cart[1] ) + # # Test when the point and the GCA all have the same longitude - gcr_same_lon_cart = [ + gcr_same_lon_cart = np.asarray([ _lonlat_rad_to_xyz(0.0, 1.5), _lonlat_rad_to_xyz(0.0, -1.5) - ] - pt_same_lon_in = _lonlat_rad_to_xyz(0.0, 0.0) - self.assertTrue(_point_within_gca_cartesian(pt_same_lon_in, gcr_same_lon_cart)) + ]) + pt_same_lon_in = np.asarray(_lonlat_rad_to_xyz(0.0, 0.0)) + self.assertTrue(point_within_gca(pt_same_lon_in, gcr_same_lon_cart[0], gcr_same_lon_cart[1])) - pt_same_lon_out = _lonlat_rad_to_xyz(0.0, 1.500000000000001) - res = _point_within_gca_cartesian(pt_same_lon_out, gcr_same_lon_cart) + pt_same_lon_out = np.asarray(_lonlat_rad_to_xyz(0.0, 1.5000001)) + res = point_within_gca(pt_same_lon_out, gcr_same_lon_cart[0], gcr_same_lon_cart[1]) self.assertFalse(res) - pt_same_lon_out_2 = _lonlat_rad_to_xyz(0.1, 1.0) - res = _point_within_gca_cartesian(pt_same_lon_out_2, gcr_same_lon_cart) + pt_same_lon_out_2 = np.asarray(_lonlat_rad_to_xyz(0.1, 1.0)) + res = point_within_gca(pt_same_lon_out_2, gcr_same_lon_cart[0], gcr_same_lon_cart[1]) self.assertFalse(res) - # And if we increase the digital place by one, it should be true again - pt_same_lon_out_add_one_place = _lonlat_rad_to_xyz(0.0, 1.5000000000000001) - res = _point_within_gca_cartesian(pt_same_lon_out_add_one_place, gcr_same_lon_cart) - self.assertTrue(res) - - # Normal case - # GCR vertex0 in radian : [1.3003315590159483, -0.007004587172323237], - # GCR vertex1 in radian : [3.5997458123873827, -1.4893379576608758] - # Point in radian : [1.3005410084914981, -0.010444274637648326] - gcr_cart_2 = np.array([[0.267, 0.963, -0.007], [-0.073, -0.036, - -0.997]]) - pt_cart_within = np.array( - [0.25616109352676675, 0.9246590335292105, -0.010021496695000144]) - self.assertTrue(_point_within_gca_cartesian(pt_cart_within, gcr_cart_2, True)) - - # Test other more complicate cases : The anti-meridian case - def test_pt_within_gcr_antimeridian(self): # GCR vertex0 in radian : [5.163808182822441, 0.6351384888657234], # GCR vertex1 in radian : [0.8280410325693055, 0.42237025187091526] @@ -80,16 +63,14 @@ def test_pt_within_gcr_antimeridian(self): gcr_cart = np.array([[0.351, -0.724, 0.593], [0.617, 0.672, 0.410]]) pt_cart = np.array( [0.9438777657502077, 0.1193199333436068, 0.922714737029319]) - self.assertTrue(_point_within_gca_cartesian(pt_cart, gcr_cart, is_directed=True)) - # If we swap the gcr, it should throw a value error since it's larger than 180 degree + self.assertTrue( + point_within_gca(pt_cart, gcr_cart[0], gcr_cart[1])) + gcr_cart_flip = np.array([[0.617, 0.672, 0.410], [0.351, -0.724, 0.593]]) - with self.assertRaises(ValueError): - _point_within_gca_cartesian(pt_cart, gcr_cart_flip, is_directed=True) - # If we flip the gcr in the undirected mode, it should still work self.assertTrue( - _point_within_gca_cartesian(pt_cart, gcr_cart_flip, is_directed=False)) + point_within_gca(pt_cart, gcr_cart_flip[0], gcr_cart_flip[1])) # 2nd anti-meridian case # GCR vertex0 in radian : [4.104711496596806, 0.5352983676533828], @@ -100,22 +81,9 @@ def test_pt_within_gcr_antimeridian(self): pt_cart_within = np.array( [0.6136726305712109, 0.28442243941920053, -0.365605190899831]) self.assertFalse( - _point_within_gca_cartesian(pt_cart_within, gcr_cart_1, is_directed=True)) - self.assertFalse( - _point_within_gca_cartesian(pt_cart_within, gcr_cart_1, is_directed=False)) - - # The first case should not work and the second should work - v1_rad = [0.1, 0.0] - v2_rad = [2 * np.pi - 0.1, 0.0] - v1_cart = _lonlat_rad_to_xyz(v1_rad[0], v1_rad[1]) - v2_cart = _lonlat_rad_to_xyz(v2_rad[0], v1_rad[1]) - gcr_cart = np.array([v1_cart, v2_cart]) - pt_cart = _lonlat_rad_to_xyz(0.01, 0.0) - with self.assertRaises(ValueError): - _point_within_gca_cartesian(pt_cart, gcr_cart, is_directed=True) - gcr_car_flipped = np.array([v2_cart, v1_cart]) - self.assertTrue( - _point_within_gca_cartesian(pt_cart, gcr_car_flipped, is_directed=True)) + point_within_gca(pt_cart_within, gcr_cart_1[0], gcr_cart_1[1])) + + def test_pt_within_gcr_cross_pole(self): gcr_cart = np.array([[0.351, 0.0, 0.3], [-0.351, 0.0, 0.3]]) @@ -125,15 +93,4 @@ def test_pt_within_gcr_cross_pole(self): # Normalize the point abd the GCA pt_cart = pt_cart / np.linalg.norm(pt_cart) gcr_cart = np.array([x / np.linalg.norm(x) for x in gcr_cart]) - self.assertTrue(_point_within_gca_cartesian(pt_cart, gcr_cart, is_directed=False)) - - gcr_cart = np.array([[0.351, 0.0, 0.3], [-0.351, 0.0, -0.6]]) - pt_cart = np.array( - [0.10, 0.0, 0.8]) - - # When the point is not within the GCA - pt_cart = pt_cart / np.linalg.norm(pt_cart) - gcr_cart = np.array([x / np.linalg.norm(x) for x in gcr_cart]) - self.assertFalse(_point_within_gca_cartesian(pt_cart, gcr_cart, is_directed=False)) - with self.assertRaises(ValueError): - _point_within_gca_cartesian(pt_cart, gcr_cart, is_directed=True) + self.assertTrue(point_within_gca(pt_cart, gcr_cart[0], gcr_cart[1])) diff --git a/test/test_helpers.py b/test/test_helpers.py index da9b8c3eb..491351e14 100644 --- a/test/test_helpers.py +++ b/test/test_helpers.py @@ -238,6 +238,31 @@ def test_angle_of_2_vectors(self): v2 = np.array([1.0, 0.0, 0.0]) self.assertAlmostEqual(_angle_of_2_vectors(v1, v2), 0.0) + def test_angle_of_2_vectors_180_degree(self): + GCR1_cart = np.array([ + _lonlat_rad_to_xyz(np.deg2rad(0.0), + np.deg2rad(0.0)), + _lonlat_rad_to_xyz(np.deg2rad(181.0), + np.deg2rad(0.0)) + ]) + + res = _angle_of_2_vectors( GCR1_cart[0], GCR1_cart[1]) + + # The angle between the two vectors should be 181 degree + self.assertAlmostEqual(res, np.deg2rad(181.0), places=8) + + GCR1_cart = np.array([ + _lonlat_rad_to_xyz(np.deg2rad(170.0), + np.deg2rad(89.0)), + _lonlat_rad_to_xyz(np.deg2rad(170.0), + np.deg2rad(-10.0)) + ]) + + res = _angle_of_2_vectors( GCR1_cart[0], GCR1_cart[1]) + + # The angle between the two vectors should be 181 degree + self.assertAlmostEqual(res, np.deg2rad(89.0+10.0), places=8) + class TestFaceEdgeConnectivityHelper(TestCase): diff --git a/test/test_integrate.py b/test/test_integrate.py index 8fa5b2eb8..db327959e 100644 --- a/test/test_integrate.py +++ b/test/test_integrate.py @@ -81,10 +81,9 @@ def test_get_faces_constLat_intersection_info_one_intersection(self): ]) latitude_cart = -0.8660254037844386 - is_directed=False is_latlonface=False is_GCA_list=None - unique_intersections, pt_lon_min, pt_lon_max = _get_faces_constLat_intersection_info(face_edges_cart, latitude_cart, is_GCA_list, is_latlonface, is_directed) + unique_intersections, pt_lon_min, pt_lon_max = _get_faces_constLat_intersection_info(face_edges_cart, latitude_cart, is_GCA_list, is_latlonface) # The expected unique_intersections length is 1 self.assertEqual(len(unique_intersections), 1) @@ -111,10 +110,10 @@ def test_get_faces_constLat_intersection_info_encompass_pole(self): latitude_rad = np.arcsin(latitude_cart) latitude_deg = np.rad2deg(latitude_rad) print(latitude_deg) - is_directed=False + is_latlonface=False is_GCA_list=None - unique_intersections, pt_lon_min, pt_lon_max = _get_faces_constLat_intersection_info(face_edges_cart, latitude_cart, is_GCA_list, is_latlonface, is_directed) + unique_intersections, pt_lon_min, pt_lon_max = _get_faces_constLat_intersection_info(face_edges_cart, latitude_cart, is_GCA_list, is_latlonface) # The expected unique_intersections length should be no greater than 2* n_edges self.assertLessEqual(len(unique_intersections), 2*len(face_edges_cart)) @@ -133,10 +132,9 @@ def test_get_faces_constLat_intersection_info_on_pole(self): [-5.2264427688714095e-02, -5.2264427688714102e-02, -9.9726468863423734e-01]] ]) latitude_cart = -0.9998476951563913 - is_directed=False is_latlonface=False is_GCA_list=None - unique_intersections, pt_lon_min, pt_lon_max = _get_faces_constLat_intersection_info(face_edges_cart, latitude_cart, is_GCA_list, is_latlonface, is_directed) + unique_intersections, pt_lon_min, pt_lon_max = _get_faces_constLat_intersection_info(face_edges_cart, latitude_cart, is_GCA_list, is_latlonface) # The expected unique_intersections length is 2 self.assertEqual(len(unique_intersections), 2) @@ -156,10 +154,9 @@ def test_get_faces_constLat_intersection_info_near_pole(self): latitude_cart = -0.9876883405951378 latitude_rad = np.arcsin(latitude_cart) latitude_deg = np.rad2deg(latitude_rad) - is_directed=False is_latlonface=False is_GCA_list=None - unique_intersections, pt_lon_min, pt_lon_max = _get_faces_constLat_intersection_info(face_edges_cart, latitude_cart, is_GCA_list, is_latlonface, is_directed) + unique_intersections, pt_lon_min, pt_lon_max = _get_faces_constLat_intersection_info(face_edges_cart, latitude_cart, is_GCA_list, is_latlonface) # The expected unique_intersections length is 2 self.assertEqual(len(unique_intersections), 1) @@ -182,10 +179,9 @@ def test_get_faces_constLat_intersection_info_2(self): [0.6546536707079771, -0.37796447300922714, -0.6546536707079772]]]) latitude_cart = -0.6560590289905073 - is_directed=False is_latlonface=False is_GCA_list=None - unique_intersections, pt_lon_min, pt_lon_max = _get_faces_constLat_intersection_info(face_edges_cart, latitude_cart, is_GCA_list, is_latlonface, is_directed) + unique_intersections, pt_lon_min, pt_lon_max = _get_faces_constLat_intersection_info(face_edges_cart, latitude_cart, is_GCA_list, is_latlonface) # The expected unique_intersections length is 2 self.assertEqual(len(unique_intersections), 2) @@ -208,10 +204,9 @@ def test_get_faces_constLat_intersection_info_2(self): [0.6546536707079771, -0.37796447300922714, -0.6546536707079772]]]) latitude_cart = -0.6560590289905073 - is_directed=False is_latlonface=False is_GCA_list=None - unique_intersections, pt_lon_min, pt_lon_max = _get_faces_constLat_intersection_info(face_edges_cart, latitude_cart, is_GCA_list, is_latlonface, is_directed) + unique_intersections, pt_lon_min, pt_lon_max = _get_faces_constLat_intersection_info(face_edges_cart, latitude_cart, is_GCA_list, is_latlonface) # The expected unique_intersections length is 2 self.assertEqual(len(unique_intersections), 2) @@ -240,8 +235,7 @@ def test_get_zonal_face_interval(self): # The latlon bounds for the latitude is not necessarily correct below since we don't use the latitudes bound anyway interval_df = _get_zonal_face_interval(face_edge_nodes, constZ, np.array([[-0.25 * np.pi, 0.25 * np.pi], [1.6 * np.pi, - 0.4 * np.pi]]), - is_directed=False) + 0.4 * np.pi]])) expected_interval_df = pd.DataFrame({ 'start': [1.6 * np.pi, 0.0], 'end': [2.0 * np.pi, 00.4 * np.pi] @@ -285,7 +279,7 @@ def test_get_zonal_face_interval_empty_interval(self): [3.14159265, 3.2321175] ]) - res = _get_zonal_face_interval(face_edges_cart, latitude_cart, face_latlon_bounds, is_directed=False) + res = _get_zonal_face_interval(face_edges_cart, latitude_cart, face_latlon_bounds) expected_res = pd.DataFrame({"start": [0.0], "end": [0.0]}) pd.testing.assert_frame_equal(res, expected_res) @@ -322,7 +316,7 @@ def test_get_zonal_face_interval_encompass_pole(self): }) # Call the function to get the result - res = _get_zonal_face_interval(face_edges_cart, latitude_cart, face_latlon_bounds, is_directed=False) + res = _get_zonal_face_interval(face_edges_cart, latitude_cart, face_latlon_bounds) # Assert the result matches the expected DataFrame pd.testing.assert_frame_equal(res, expected_df) @@ -349,8 +343,7 @@ def test_get_zonal_face_interval_FILL_VALUE(self): # The latlon bounds for the latitude is not necessarily correct below since we don't use the latitudes bound anyway interval_df = _get_zonal_face_interval(face_edge_nodes, constZ, np.array([[-0.25 * np.pi, 0.25 * np.pi], [1.6 * np.pi, - 0.4 * np.pi]]), - is_directed=False) + 0.4 * np.pi]])) expected_interval_df = pd.DataFrame({ 'start': [1.6 * np.pi, 0.0], 'end': [2.0 * np.pi, 00.4 * np.pi] @@ -383,7 +376,7 @@ def test_get_zonal_face_interval_GCA_constLat(self): interval_df = _get_zonal_face_interval(face_edge_nodes, constZ, np.array([[-0.25 * np.pi, 0.25 * np.pi], [1.6 * np.pi, 0.4 * np.pi]]), - is_directed=False, is_GCA_list=np.array([True, False, True, False])) + is_GCA_list=np.array([True, False, True, False])) expected_interval_df = pd.DataFrame({ 'start': [1.6 * np.pi, 0.0], 'end': [2.0 * np.pi, 00.4 * np.pi] @@ -415,7 +408,7 @@ def test_get_zonal_face_interval_equator(self): interval_df = _get_zonal_face_interval(face_edge_nodes, 0.0, np.array([[-0.25 * np.pi, 0.25 * np.pi], [1.6 * np.pi, 0.4 * np.pi]]), - is_directed=False, is_GCA_list=np.array([True, True, True, True])) + is_GCA_list=np.array([True, True, True, True])) expected_interval_df = pd.DataFrame({ 'start': [1.6 * np.pi, 0.0], 'end': [2.0 * np.pi, 00.4 * np.pi] @@ -434,7 +427,7 @@ def test_get_zonal_face_interval_equator(self): interval_df = _get_zonal_face_interval(face_edge_nodes, 0.0, np.array([[-0.25 * np.pi, 0.25 * np.pi], [1.6 * np.pi, 0.4 * np.pi]]), - is_directed=False, is_GCA_list=np.array([True, False, True, False])) + is_GCA_list=np.array([True, False, True, False])) expected_interval_df = pd.DataFrame({ 'start': [1.6 * np.pi, 0.0], 'end': [2.0 * np.pi, 00.4 * np.pi] @@ -605,7 +598,7 @@ def test_get_zonal_faces_weight_at_constLat_equator(self): weight_df = _get_zonal_faces_weight_at_constLat(np.array([ face_0_edge_nodes, face_1_edge_nodes, face_2_edge_nodes, face_3_edge_nodes - ]), 0.0, latlon_bounds, is_directed=False) + ]), 0.0, latlon_bounds) nt.assert_array_almost_equal(weight_df, expected_weight_df, decimal=3) @@ -666,7 +659,7 @@ def test_get_zonal_faces_weight_at_constLat_regular(self): weight_df = _get_zonal_faces_weight_at_constLat(np.array([ face_0_edge_nodes, face_1_edge_nodes, face_2_edge_nodes, face_3_edge_nodes - ]), np.sin(0.1 * np.pi), latlon_bounds, is_directed=False) + ]), np.sin(0.1 * np.pi), latlon_bounds) nt.assert_array_almost_equal(weight_df, expected_weight_df, decimal=3) @@ -693,7 +686,7 @@ def test_get_zonal_faces_weight_at_constLat_on_pole_one_face(self): ]) constLat_cart = -1 - weight_df = _get_zonal_faces_weight_at_constLat(face_edges_cart, constLat_cart, face_bounds, is_directed=False) + weight_df = _get_zonal_faces_weight_at_constLat(face_edges_cart, constLat_cart, face_bounds) # Define the expected DataFrame expected_weight_df = pd.DataFrame({"face_index": [0], "weight": [1.0]}) @@ -740,7 +733,7 @@ def test_get_zonal_faces_weight_at_constLat_on_pole_faces(self): constLat_cart = 1.0 - weight_df = _get_zonal_faces_weight_at_constLat(face_edges_cart, constLat_cart, face_bounds, is_directed=False) + weight_df = _get_zonal_faces_weight_at_constLat(face_edges_cart, constLat_cart, face_bounds) # Define the expected DataFrame expected_weight_df = pd.DataFrame({ 'face_index': [0, 1, 2, 3], @@ -774,7 +767,7 @@ def test_get_zonal_face_interval_pole(self): ]) constLat_cart = -0.9986295347545738 - weight_df = _get_zonal_face_interval(face_edges_cart, constLat_cart, face_bounds, is_directed=False) + weight_df = _get_zonal_face_interval(face_edges_cart, constLat_cart, face_bounds) # No Nan values should be present in the weight_df self.assertFalse(weight_df.isnull().values.any()) @@ -827,7 +820,7 @@ def test_get_zonal_faces_weight_at_constLat_latlonface(self): # Assert the results is the same to the 3 decimal places weight_df = _get_zonal_faces_weight_at_constLat(np.array([ face_0_edge_nodes, face_1_edge_nodes, face_2_edge_nodes - ]), np.sin(np.deg2rad(20)), latlon_bounds, is_directed=False, is_latlonface=True) + ]), np.sin(np.deg2rad(20)), latlon_bounds, is_latlonface=True) nt.assert_array_almost_equal(weight_df, expected_weight_df, decimal=3) @@ -839,4 +832,4 @@ def test_get_zonal_faces_weight_at_constLat_latlonface(self): with self.assertRaises(ValueError): _get_zonal_faces_weight_at_constLat(np.array([ face_0_edge_nodes, face_1_edge_nodes, face_2_edge_nodes - ]), np.deg2rad(20), latlon_bounds, is_directed=False) + ]), np.deg2rad(20), latlon_bounds) diff --git a/test/test_intersections.py b/test/test_intersections.py index c28c5e0bc..a9051d466 100644 --- a/test/test_intersections.py +++ b/test/test_intersections.py @@ -6,7 +6,7 @@ # from uxarray.grid.coordinates import node_lonlat_rad_to_xyz, node_xyz_to_lonlat_rad from uxarray.grid.arcs import _extreme_gca_latitude_cartesian -from uxarray.grid.coordinates import _lonlat_rad_to_xyz, _xyz_to_lonlat_rad +from uxarray.grid.coordinates import _lonlat_rad_to_xyz, _xyz_to_lonlat_rad,_xyz_to_lonlat_rad_scalar from uxarray.grid.intersections import gca_gca_intersection, gca_const_lat_intersection, _gca_gca_intersection_cartesian @@ -14,7 +14,6 @@ class TestGCAGCAIntersection(TestCase): def test_get_GCA_GCA_intersections_antimeridian(self): # Test the case where the two GCAs are on the antimeridian - GCA1 = _lonlat_rad_to_xyz(np.deg2rad(170.0), np.deg2rad(89.99)) GCR1_cart = np.array([ _lonlat_rad_to_xyz(np.deg2rad(170.0), np.deg2rad(89.99)), @@ -36,6 +35,8 @@ def test_get_GCA_GCA_intersections_antimeridian(self): _lonlat_rad_to_xyz(np.deg2rad(170.0), np.deg2rad(-10.0)) ]) + + GCR2_cart = np.array([ _lonlat_rad_to_xyz(np.deg2rad(70.0), 0.0), _lonlat_rad_to_xyz(np.deg2rad(175.0), 0.0) @@ -82,21 +83,172 @@ def test_get_GCA_GCA_intersections_perpendicular(self): np.deg2rad(10.0)) ]) GCR2_cart = np.array([ - _lonlat_rad_to_xyz(*[0.5 * np.pi, 0.0]), - _lonlat_rad_to_xyz(*[-0.5 * np.pi - 0.01, 0.0]) + _lonlat_rad_to_xyz(*[0.5 * np.pi - 0.01, 0.0]), + _lonlat_rad_to_xyz(*[-0.5 * np.pi + 0.01, 0.0]) ]) res_cart = _gca_gca_intersection_cartesian(GCR1_cart, GCR2_cart) - res_cart = res_cart[0] - # Test if the result is normalized - self.assertTrue( - np.allclose(np.linalg.norm(res_cart, axis=0), - 1.0, - atol=ERROR_TOLERANCE)) - res_lonlat_rad = _xyz_to_lonlat_rad(*res_cart) - self.assertTrue( - np.allclose(res_lonlat_rad, - np.array([np.deg2rad(170.0), - np.deg2rad(0.0)]))) + + # rest_cart should be empty since these two GCAs are not intersecting + self.assertTrue(len(res_cart) == 0) + + + # def test_GCA_GCA_single_edge_to_pole(self): + # # GCA_a - Face Center connected to South Pole + # # Point A - South Pole + # ref_point_lonlat = np.deg2rad(np.array([0.0, -90.0])) + # ref_point_xyz = np.array(_lonlat_rad_to_xyz(*ref_point_lonlat)) + # # Point B - Face Center + # face_lonlat = np.deg2rad(np.array([-175, 26.5])) + # face_xyz = np.array(_lonlat_rad_to_xyz(*face_lonlat)) + # gca_a_xyz = np.array([face_xyz, ref_point_xyz]) + # + # # GCA_b - Single Face Edge + # # Point A - First Edge Point + # edge_a_lonlat = np.deg2rad(np.array((-175, -24.5))) + # edge_b_lonlat = np.deg2rad(np.array((-173, 28.7))) + # + # # Point B - Second Edge Point + # edge_a_xyz = np.array(_lonlat_rad_to_xyz(*edge_a_lonlat)) + # edge_b_xyz = np.array(_lonlat_rad_to_xyz(*edge_b_lonlat)) + # gca_b_xyz = np.array([edge_a_xyz, edge_b_xyz]) + # + # # The edge should intersect + # self.assertTrue(len(gca_gca_intersection(gca_a_xyz, gca_b_xyz))) + + def test_GCA_GCA_south_pole(self): + + # GCA_a - Face Center connected to South Pole + # Point A - South Pole + ref_point_lonlat = np.deg2rad(np.array([0.0, -90.0])) + ref_point_xyz = np.array(_lonlat_rad_to_xyz(*ref_point_lonlat)) + # Point B - Face Center + face_lonlat = np.deg2rad(np.array([0.0, 0.0])) + face_xyz = np.array(_lonlat_rad_to_xyz(*face_lonlat)) + gca_a_xyz = np.array([face_xyz, ref_point_xyz]) + + # GCA_b - Single Face Edge + # Point A - First Edge Point + edge_a_lonlat = np.deg2rad(np.array((-45, -1.0))) + edge_b_lonlat = np.deg2rad(np.array((45, -1.0))) + + # Point B - Second Edge Point + edge_a_xyz = np.array(_lonlat_rad_to_xyz(*edge_a_lonlat)) + edge_b_xyz = np.array(_lonlat_rad_to_xyz(*edge_b_lonlat)) + gca_b_xyz = np.array([edge_a_xyz, edge_b_xyz]) + + # The edge should intersect + self.assertTrue(len(gca_gca_intersection(gca_a_xyz, gca_b_xyz))) + + def test_GCA_GCA_north_pole(self): + # GCA_a - Face Center connected to South Pole + ref_point_lonlat = np.deg2rad(np.array([0.0, 90.0])) + ref_point_xyz = np.array(_lonlat_rad_to_xyz(*ref_point_lonlat)) + face_lonlat = np.deg2rad(np.array([0.0, 0.0])) + face_xyz = np.array(_lonlat_rad_to_xyz(*face_lonlat)) + gca_a_xyz = np.array([face_xyz, ref_point_xyz]) + + # GCA_b - Single Face Edge + edge_a_lonlat = np.deg2rad(np.array((-45, 1.0))) + edge_b_lonlat = np.deg2rad(np.array((45, 1.0))) + + edge_a_xyz = np.array(_lonlat_rad_to_xyz(*edge_a_lonlat)) + edge_b_xyz = np.array(_lonlat_rad_to_xyz(*edge_b_lonlat)) + gca_b_xyz = np.array([edge_a_xyz, edge_b_xyz]) + + # The edge should intersect + self.assertTrue(len(gca_gca_intersection(gca_a_xyz, gca_b_xyz))) + + def test_GCA_GCA_north_pole_angled(self): + # GCA_a + ref_point_lonlat = np.deg2rad(np.array([0.0, 90.0])) + ref_point_xyz = np.array(_lonlat_rad_to_xyz(*ref_point_lonlat)) + face_lonlat = np.deg2rad(np.array([-45.0, 45.0])) + face_xyz = np.array(_lonlat_rad_to_xyz(*face_lonlat)) + gca_a_xyz = np.array([face_xyz, ref_point_xyz]) + + # GCA_b + edge_a_lonlat = np.deg2rad(np.array((-45.0, 50.0))) + edge_b_lonlat = np.deg2rad(np.array((-40.0, 45.0))) + + # Point B - Second Edge Point + edge_a_xyz = np.array(_lonlat_rad_to_xyz(*edge_a_lonlat)) + edge_b_xyz = np.array(_lonlat_rad_to_xyz(*edge_b_lonlat)) + gca_b_xyz = np.array([edge_a_xyz, edge_b_xyz]) + + # The edge should intersect + self.assertTrue(len(gca_gca_intersection(gca_a_xyz, gca_b_xyz))) + + + def test_GCA_edge_intersection_count(self): + + from uxarray.grid.utils import _get_cartesian_face_edge_nodes + + # Generate a normal face that is not crossing the antimeridian or the poles + vertices_lonlat = [[29.5, 11.0], [29.5, 10.0], [30.5, 10.0], [30.5, 11.0]] + vertices_lonlat = np.array(vertices_lonlat) + + grid = ux.Grid.from_face_vertices(vertices_lonlat, latlon=True) + face_edge_nodes_cartesian = _get_cartesian_face_edge_nodes( + grid.face_node_connectivity.values, + grid.n_face, + grid.n_max_face_edges, + grid.node_x.values, + grid.node_y.values, + grid.node_z.values) + + face_center_xyz = np.array([grid.face_x.values[0], grid.face_y.values[0], grid.face_z.values[0]], dtype=np.float64) + north_pole_xyz = np.array([0.0, 0.0, 1.0], dtype=np.float64) + south_pole_xyz = np.array([0.0, 0.0, -1.0], dtype=np.float64) + + gca_face_center_north_pole = np.array([face_center_xyz, north_pole_xyz], dtype=np.float64) + gca_face_center_south_pole = np.array([face_center_xyz, south_pole_xyz], dtype=np.float64) + + intersect_north_pole_count = 0 + intersect_south_pole_count = 0 + + for edge in face_edge_nodes_cartesian[0]: + res1 = gca_gca_intersection(edge, gca_face_center_north_pole) + res2 = gca_gca_intersection(edge, gca_face_center_south_pole) + + if len(res1): + intersect_north_pole_count += 1 + if len(res2): + intersect_south_pole_count += 1 + + print(intersect_north_pole_count, intersect_south_pole_count) + self.assertTrue(intersect_north_pole_count == 1) + self.assertTrue(intersect_south_pole_count == 1) + + def test_GCA_GCA_single_edge_to_pole(self): + # GCA_a - Face Center connected to South Pole + # Point A - South Pole + ref_point_lonlat_exact = np.deg2rad(np.array([0.0, -90.0])) + ref_point_lonlat_close = np.deg2rad(np.array([0.0, -89.99999])) + ref_point_xyz_exact = np.array(_lonlat_rad_to_xyz(*ref_point_lonlat_exact)) + ref_point_xyz_close = np.array(_lonlat_rad_to_xyz(*ref_point_lonlat_close)) + + # Point B - Face Center + face_lonlat = np.deg2rad(np.array([-175.0, 26.5])) + face_xyz = np.array(_lonlat_rad_to_xyz(*face_lonlat)) + gca_a_xyz_close = np.array([face_xyz, ref_point_xyz_close]) + gca_a_xyz_exact = np.array([face_xyz, ref_point_xyz_exact]) + + # GCA_b - Single Face Edge + # Point A - First Edge Point + edge_a_lonlat = np.deg2rad(np.array((-175.0, -24.5))) + edge_b_lonlat = np.deg2rad(np.array((-173.0, 28.7))) + + # Point B - Second Edge Point + edge_a_xyz = np.array(_lonlat_rad_to_xyz(*edge_a_lonlat)) + edge_b_xyz = np.array(_lonlat_rad_to_xyz(*edge_b_lonlat)) + gca_b_xyz = np.array([edge_a_xyz, edge_b_xyz]) + + # The edge should intersect + self.assertTrue(len(gca_gca_intersection(gca_a_xyz_close, gca_b_xyz))) + self.assertTrue(len(gca_gca_intersection(gca_a_xyz_exact, gca_b_xyz))) + + + class TestGCAconstLatIntersection(TestCase): diff --git a/uxarray/grid/arcs.py b/uxarray/grid/arcs.py index 3ccb4501b..f01418986 100644 --- a/uxarray/grid/arcs.py +++ b/uxarray/grid/arcs.py @@ -28,251 +28,68 @@ def _to_list(obj): return obj -def _point_within_gca_cartesian(pt_xyz, gca_xyz, is_directed=False): - pt_xyz = np.asarray(pt_xyz) - gca_xyz = np.asarray(gca_xyz) - - pt_lonlat = np.array( - _xyz_to_lonlat_rad_scalar(pt_xyz[0], pt_xyz[1], pt_xyz[2], normalize=False) - ) - gca_a_xyz = gca_xyz[0] - - gca_a_lonlat = np.array( - _xyz_to_lonlat_rad_scalar( - gca_xyz[0][0], gca_xyz[0][1], gca_xyz[0][2], normalize=False - ) - ) - gca_b_xyz = gca_xyz[1] - - gca_b_lonlat = np.array( - _xyz_to_lonlat_rad_scalar( - gca_xyz[1][0], gca_xyz[1][1], gca_xyz[1][2], normalize=False - ) - ) - - return point_within_gca( - pt_xyz, - pt_lonlat, - gca_a_xyz, - gca_a_lonlat, - gca_b_xyz, - gca_b_lonlat, - is_directed=is_directed, - ) - - @njit(cache=True) -def point_within_gca( - pt_xyz, - pt_lonlat, - gca_a_xyz, - gca_a_lonlat, - gca_b_xyz, - gca_b_lonlat, - is_directed=False, -): - """Check if a point lies on a given Great Circle Arc (GCA). The anti- - meridian case is also considered. +def point_within_gca(pt_xyz, gca_a_xyz, gca_b_xyz): + """ + Check if a point lies on a given Great Circle Arc (GCA) interval, considering the smaller arc of the circle. + Handles the anti-meridian case as well. Parameters ---------- - pt : numpy.ndarray (float) + pt_xyz : numpy.ndarray Cartesian coordinates of the point. - gca_cart : numpy.ndarray of shape (2, 3), (np.float or gmpy2.mpfr) - Cartesian coordinates of the Great Circle Arc (GCR). - is_directed : bool, optional, default = False - If True, the GCA is considered to be directed, which means it can only from v0-->v1. If False, the GCA is undirected, - and we will always assume the small circle (The one less than 180 degree) side is the GCA. The default is False. - For the case of the anti-podal case, the direction is v_0--> the pole point that on the same hemisphere as v_0-->v_1 + gca_a_xyz : numpy.ndarray + Cartesian coordinates of the first endpoint of the Great Circle Arc. + gca_b_xyz : numpy.ndarray + Cartesian coordinates of the second endpoint of the Great Circle Arc. Returns ------- bool - True if the point lies between the two endpoints of the GCR, False otherwise. + True if the point lies within the specified GCA interval, False otherwise. Raises ------ ValueError - If the input GCR spans exactly 180 degrees (π radians), as this GCR can have multiple planes. - In such cases, consider breaking the GCR into two separate GCRs. - - ValueError - If the input GCR spans more than 180 degrees (π radians). - In such cases, consider breaking the GCR into two separate GCRs. + If the input GCA spans exactly 180 degrees (π radians), as this GCA can have multiple planes. + In such cases, consider breaking the GCA into two separate arcs. Notes ----- - The function checks if the given point is on the Great Circle Arc by considering its cartesian coordinates and - accounting for the anti-meridian case. - - The anti-meridian case occurs when the GCR crosses the anti-meridian (0 longitude). - In this case, the function handles scenarios where the GCA spans across more than 180 degrees, requiring specific operation. - - The function relies on the `_angle_of_2_vectors` and `is_between` functions to perform the necessary calculations. - - Please ensure that the input coordinates are in radians and adhere to the ERROR_TOLERANCE value for floating-point comparisons. + - The function ensures that the point lies on the same plane as the GCA before performing interval checks. + - It assumes the input represents the smaller arc of the Great Circle. + - The `_angle_of_2_vectors` and `_xyz_to_lonlat_rad_scalar` functions are used for calculations. """ - - # ================================================================================================================== - # 1. If the input GCR is exactly 180 degree, we throw an exception, since this GCR can have multiple planes - angle = _angle_of_2_vectors(gca_a_xyz, gca_b_xyz) - - if np.allclose(angle, np.pi, rtol=0.0, atol=MACHINE_EPSILON): + # 1. Check if the input GCA spans exactly 180 degrees + angle_ab = _angle_of_2_vectors(gca_a_xyz, gca_b_xyz) + if np.allclose(angle_ab, np.pi, rtol=0.0, atol=MACHINE_EPSILON): raise ValueError( - "The input Great Circle Arc is exactly 180 degree, this Great Circle Arc can have multiple planes. " - "Consider breaking the Great Circle Arc" - "into two Great Circle Arcs" + "The input Great Circle Arc spans exactly 180 degrees, which can correspond to multiple planes. " + "Consider breaking the Great Circle Arc into two smaller arcs." ) - # ================================================================================================================== - # See if the point is on the plane of the GCA, because we are dealing with floating point numbers with np.dot now - # just using the rtol=MACHINE_EPSILON, atol=MACHINE_EPSILON, but consider using the more proper error tolerance - # in the future + # 2. Verify if the point lies on the plane of the GCA cross_product = np.cross(gca_a_xyz, gca_b_xyz) - if not np.allclose( - np.dot(cross_product, pt_xyz), - 0, - rtol=MACHINE_EPSILON, - atol=MACHINE_EPSILON, + np.dot(cross_product, pt_xyz), 0, rtol=MACHINE_EPSILON, atol=MACHINE_EPSILON ): return False - # ================================================================================================================== - if np.isclose( - gca_a_lonlat[0], gca_b_lonlat[0], rtol=MACHINE_EPSILON, atol=MACHINE_EPSILON - ): - # If the pt and the GCA are on the same longitude (the y coordinates are the same) - if np.isclose( - gca_a_lonlat[0], pt_lonlat[0], rtol=MACHINE_EPSILON, atol=MACHINE_EPSILON - ): - # Now use the latitude to determine if the pt falls between the interval - return in_between(gca_a_lonlat[1], pt_lonlat[1], gca_b_lonlat[1]) - else: - # If the pt and the GCA are not on the same longitude when the GCA is a longitude arc, then the pt is not on the GCA - return False - # ================================================================================================================== - # If the longitude span is exactly 180 degree, then the GCA goes through the pole point - # Or if one of the endpoints is on the pole point, then the GCA goes through the pole point - if ( - np.isclose( - np.abs(gca_b_lonlat[0] - gca_a_lonlat[0]), - np.pi, - rtol=0.0, - atol=MACHINE_EPSILON, - ) - or np.isclose( - np.abs(gca_a_lonlat[1]), - np.pi / 2, - rtol=ERROR_TOLERANCE, - atol=ERROR_TOLERANCE, - ) - or np.isclose( - np.abs(gca_b_lonlat[1]), - np.pi / 2, - rtol=ERROR_TOLERANCE, - atol=ERROR_TOLERANCE, - ) - ): - # ============================================================================================================== - # Special case, if the pt is on the pole point, then set its longitude to the GCRv0_lonlat[0] - # Since the point is our calculated properly, we use the atol=ERROR_TOLERANCE and rtol=ERROR_TOLERANCE - if np.isclose( - np.abs(pt_lonlat[1]), np.pi / 2, rtol=ERROR_TOLERANCE, atol=ERROR_TOLERANCE - ): - pt_lonlat[0] = gca_a_lonlat[0] - - # ============================================================================================================== - # Special case, if one of the GCA endpoints is on the pole point, and another endpoint is not - # then we need to check if the pt is on the GCA - if np.isclose( - abs(gca_a_lonlat[1]), np.pi / 2, rtol=ERROR_TOLERANCE, atol=0.0 - ) or np.isclose( - abs(gca_b_lonlat[1]), np.pi / 2, rtol=ERROR_TOLERANCE, atol=0.0 - ): - # Identify the non-pole endpoint - non_pole_endpoint = None - if not np.isclose( - abs(gca_a_lonlat[1]), np.pi / 2, rtol=ERROR_TOLERANCE, atol=0.0 - ): - non_pole_endpoint = gca_a_lonlat - elif not np.isclose( - abs(gca_b_lonlat[1]), np.pi / 2, rtol=ERROR_TOLERANCE, atol=0.0 - ): - non_pole_endpoint = gca_b_lonlat - - if non_pole_endpoint is not None and not np.isclose( - non_pole_endpoint[0], pt_lonlat[0], rtol=ERROR_TOLERANCE, atol=0.0 - ): - return False - # ============================================================================================================== - if not np.isclose( - gca_a_lonlat[0], pt_lonlat[0], rtol=ERROR_TOLERANCE, atol=0.0 - ) and not np.isclose( - gca_b_lonlat[0], pt_lonlat[0], rtol=ERROR_TOLERANCE, atol=0.0 - ): - return False - else: - # Determine the pole latitude and latitude extension - if (gca_a_lonlat[1] > 0.0 and gca_b_lonlat[1] > 0.0) or ( - gca_a_lonlat[1] < 0.0 and gca_b_lonlat[1] < 0.0 - ): - pole_lat = np.pi / 2 if gca_a_lonlat[1] > 0.0 else -np.pi / 2 - lat_extend = ( - abs(np.pi / 2 - abs(gca_a_lonlat[1])) - + np.pi / 2 - + abs(gca_b_lonlat[1]) - ) - else: - pole_lat = _decide_pole_latitude(gca_a_lonlat[1], gca_b_lonlat[1]) - lat_extend = ( - abs(np.pi / 2 - abs(gca_a_lonlat[1])) - + np.pi / 2 - + abs(gca_b_lonlat[1]) - ) - - if is_directed and lat_extend >= np.pi: - raise ValueError( - "The input GCA spans more than 180 degrees. Please divide it into two." - ) - - return in_between(gca_a_lonlat[1], pt_lonlat[1], pole_lat) or in_between( - pole_lat, pt_lonlat[1], gca_b_lonlat[1] - ) - # endIf - # ============================================================================================================== - if is_directed: - # The anti-meridian case Sufficient condition: absolute difference between the longitudes of the two - # vertices is greater than 180 degrees (π radians): abs(GCRv1_lon - GCRv0_lon) > π - if abs(gca_b_lonlat[0] - gca_a_lonlat[0]) > np.pi: - # The necessary condition: the pt longitude is on the opposite side of the anti-meridian - # Case 1: where 0 --> x0--> 180 -->x1 -->0 case is lager than the 180degrees (pi radians) - if gca_a_lonlat[0] <= np.pi <= gca_b_lonlat[0]: - raise ValueError( - "The input Great Circle Arc span is larger than 180 degree, please break it into two." - ) - - # The necessary condition: the pt longitude is on the opposite side of the anti-meridian - # Case 2: The anti-meridian case where 180 -->x0 --> 0 lon --> x1 --> 180 lon - elif 2 * np.pi > gca_a_lonlat[0] > np.pi > gca_b_lonlat[0] > 0.0: - return in_between( - gca_a_lonlat[0], pt_lonlat[0], 2 * np.pi - ) or in_between(0, pt_lonlat[0], gca_b_lonlat[0]) - - # The non-anti-meridian case. - else: - return in_between(gca_a_lonlat[0], pt_lonlat[0], gca_b_lonlat[0]) - else: - # The undirected case - # sort the longitude - GCRv0_lonlat_min, GCRv1_lonlat_max = sorted([gca_a_lonlat[0], gca_b_lonlat[0]]) - if np.pi > GCRv1_lonlat_max - GCRv0_lonlat_min >= 0.0: - return in_between(gca_a_lonlat[0], pt_lonlat[0], gca_b_lonlat[0]) - else: - return in_between(GCRv1_lonlat_max, pt_lonlat[0], 2 * np.pi) or in_between( - 0.0, pt_lonlat[0], GCRv0_lonlat_min - ) - return None + # 3. Check if the point lies within the Great Circle Arc interval + pt_a = gca_a_xyz - pt_xyz + pt_b = gca_b_xyz - pt_xyz + + # Use the dot product to determine the sign of the angle between pt_a and pt_b + cos_theta = np.dot(pt_a, pt_b) + + # Return True if the point lies within the interval (smaller arc) + if cos_theta < 0: + return True + elif isclose(cos_theta, 0.0, atol=MACHINE_EPSILON): + # set error tolerance to 0.0 + return True + else: + return False @njit(cache=True) diff --git a/uxarray/grid/coordinates.py b/uxarray/grid/coordinates.py index 25e1d0101..5c11c8281 100644 --- a/uxarray/grid/coordinates.py +++ b/uxarray/grid/coordinates.py @@ -9,7 +9,7 @@ from uxarray.constants import ERROR_TOLERANCE from typing import Union -from uxarray.grid.utils import _angle_of_2_vectors +from uxarray.grid.utils import _small_angle_of_2_vectors @njit(cache=True) @@ -431,7 +431,7 @@ def _circle_from_two_points(p1, p2): v1 = np.array(_lonlat_rad_to_xyz(np.radians(p1[0]), np.radians(p1[1]))) v2 = np.array(_lonlat_rad_to_xyz(np.radians(p2[0]), np.radians(p2[1]))) - distance = _angle_of_2_vectors(v1, v2) + distance = _small_angle_of_2_vectors(v1, v2) radius = distance / 2 return center, radius @@ -467,9 +467,9 @@ def _circle_from_three_points(p1, p2, p3): radius = ( max( - _angle_of_2_vectors(v1, v2), - _angle_of_2_vectors(v1, v3), - _angle_of_2_vectors(v2, v3), + _small_angle_of_2_vectors(v1, v2), + _small_angle_of_2_vectors(v1, v3), + _small_angle_of_2_vectors(v2, v3), ) / 2 ) @@ -496,7 +496,7 @@ def _is_inside_circle(circle, point): center, radius = circle v1 = np.array(_lonlat_rad_to_xyz(np.radians(center[0]), np.radians(center[1]))) v2 = np.array(_lonlat_rad_to_xyz(np.radians(point[0]), np.radians(point[1]))) - distance = _angle_of_2_vectors(v1, v2) + distance = _small_angle_of_2_vectors(v1, v2) return distance <= radius diff --git a/uxarray/grid/geometry.py b/uxarray/grid/geometry.py index 92a018011..f39120fed 100644 --- a/uxarray/grid/geometry.py +++ b/uxarray/grid/geometry.py @@ -740,9 +740,7 @@ def pole_point_inside_polygon(pole, face_edges_xyz, face_edges_lonlat): ref_edge_lonlat[0, 1] = pole_point_lonlat[1] ref_edge_lonlat[1, :] = REFERENCE_POINT_EQUATOR_LONLAT - intersection_count = _check_intersection( - ref_edge_xyz, ref_edge_lonlat, face_edges_xyz, face_edges_lonlat - ) + intersection_count = _check_intersection(ref_edge_xyz, face_edges_xyz) return (intersection_count % 2) != 0 elif location == 0: # Equator @@ -811,17 +809,13 @@ def pole_point_inside_polygon(pole, face_edges_xyz, face_edges_lonlat): # Count south intersections north_intersections = _check_intersection( ref_edge_north_xyz, - ref_edge_north_lonlat, north_edges_xyz, - north_edges_lonlat, ) # Count south intersections south_intersections = _check_intersection( ref_edge_south_xyz, - ref_edge_south_lonlat, south_edges_xyz, - south_edges_lonlat, ) return ((north_intersections + south_intersections) % 2) != 0 @@ -843,7 +837,7 @@ def _classify_polygon_location(face_edge_cart): @njit(cache=True) -def _check_intersection(ref_edge_xyz, ref_edge_lonlat, edges_xyz, edges_lonlat): +def _check_intersection(ref_edge_xyz, edges_xyz): """Check the number of intersections of the reference edge with the given edges. Parameters @@ -872,12 +866,9 @@ def _check_intersection(ref_edge_xyz, ref_edge_lonlat, edges_xyz, edges_lonlat): for i in range(n_edges): edge_xyz = edges_xyz[i] - edge_lonlat = edges_lonlat[i] # compute intersection - intersection_point = gca_gca_intersection( - ref_edge_xyz, ref_edge_lonlat, edge_xyz, edge_lonlat - ) + intersection_point = gca_gca_intersection(ref_edge_xyz, edge_xyz) if intersection_point.size != 0: if intersection_point.ndim == 1: @@ -1197,12 +1188,8 @@ def _populate_face_latlon_bound( max_abs_diff = np.max(np.abs(n1_cart - pole_point_xyz)) if max_abs_diff <= ERROR_TOLERANCE or point_within_gca( pole_point_xyz, - pole_point_lonlat, n1_cart, - n1_lonlat, n2_cart, - n2_lonlat, - is_directed=False, ): is_center_pole = False face_latlon_array = insert_pt_in_latlonbox( diff --git a/uxarray/grid/integrate.py b/uxarray/grid/integrate.py index 657026760..cb2d9d1d2 100644 --- a/uxarray/grid/integrate.py +++ b/uxarray/grid/integrate.py @@ -13,7 +13,6 @@ def _get_zonal_faces_weight_at_constLat( faces_edges_cart_candidate, latitude_cart, face_latlon_bound_candidate, - is_directed=False, is_latlonface=False, is_face_GCA_list=None, ): @@ -37,10 +36,6 @@ def _get_zonal_faces_weight_at_constLat( Shape: (n_faces(candidate),,2, 2), [...,[lat_min, lat_max], [lon_min, lon_max],...] - is_directed : bool, optional (default=False) - If True, the GCA is considered to be directed, which means it can only from v0-->v1. If False, the GCA is undirected, - and we will always assume the small circle (The one less than 180 degree) side is the GCA. - is_latlonface : bool, optional, default=False A global flag to indicate if faces are latlon face. If True, then treat all faces as latlon faces. Latlon face means That all edge is either a longitude or constant latitude line. If False, then all edges are GCA. @@ -104,7 +99,6 @@ def _get_zonal_faces_weight_at_constLat( face_edges, latitude_cart, face_latlon_bound_candidate[face_index], - is_directed=is_directed, is_latlonface=is_latlonface, is_GCA_list=is_GCA_list, ) @@ -188,7 +182,7 @@ def _is_edge_gca(is_GCA_list, is_latlonface, edges_z): def _get_faces_constLat_intersection_info( - face_edges_cart, latitude_cart, is_GCA_list, is_latlonface, is_directed + face_edges_cart, latitude_cart, is_GCA_list, is_latlonface ): """Processes each edge of a face polygon in a vectorized manner to determine overlaps and calculate the intersections for a given latitude and @@ -206,9 +200,7 @@ def _get_faces_constLat_intersection_info( is_latlonface : bool Flag indicating if all faces are considered as lat-lon faces, meaning all edges are either constant latitude or longitude lines. This parameter overwrites the `is_GCA_list` if set to True. - is_directed : bool - Flag indicating if the GCA should be considered as directed (from v0 to v1). If False, - the smaller circle (less than 180 degrees) side of the GCA is used. + Returns: ------- @@ -244,9 +236,7 @@ def _get_faces_constLat_intersection_info( # Calculate intersections (assuming a batch-capable intersection function) for idx, edge in enumerate(valid_edges): if is_GCA[idx]: - intersections = gca_const_lat_intersection( - edge, latitude_cart, is_directed=is_directed - ) + intersections = gca_const_lat_intersection(edge, latitude_cart) if intersections.size == 0: continue @@ -299,7 +289,6 @@ def _get_zonal_face_interval( face_edges_cart, latitude_cart, face_latlon_bound, - is_directed=False, is_latlonface=False, is_GCA_list=None, ): @@ -323,9 +312,6 @@ def _get_zonal_face_interval( The latitude in cartesian, the normalized Z coordinates. face_latlon_bound : np.ndarray The latitude and longitude bounds of the face. Shape: (2, 2), [[lat_min, lat_max], [lon_min, lon_max]] - is_directed : bool, optional - If True, the GCA is considered to be directed (from v0 to v1). If False, the GCA is undirected, - and the smaller circle (less than 180 degrees) side of the GCA is used. Default is False. is_latlonface : bool, optional, default=False A global flag to indicate if faces are latlon face. If True, then treat all faces as latlon faces. Latlon face means That all edge is either a longitude or constant latitude line. If False, then all edges are GCA. @@ -347,7 +333,7 @@ def _get_zonal_face_interval( # Call the vectorized function to process all edges unique_intersections, pt_lon_min, pt_lon_max = ( _get_faces_constLat_intersection_info( - face_edges_cart, latitude_cart, is_GCA_list, is_latlonface, is_directed + face_edges_cart, latitude_cart, is_GCA_list, is_latlonface ) ) diff --git a/uxarray/grid/intersections.py b/uxarray/grid/intersections.py index 528304d35..4550598bb 100644 --- a/uxarray/grid/intersections.py +++ b/uxarray/grid/intersections.py @@ -1,13 +1,14 @@ import numpy as np from uxarray.constants import MACHINE_EPSILON, ERROR_TOLERANCE, INT_DTYPE -from uxarray.grid.utils import _newton_raphson_solver_for_gca_constLat +from uxarray.grid.utils import ( + _newton_raphson_solver_for_gca_constLat, + _angle_of_2_vectors, +) from uxarray.grid.arcs import ( - point_within_gca, in_between, _extreme_gca_latitude_cartesian, - _point_within_gca_cartesian, + point_within_gca, ) -from uxarray.grid.coordinates import _xyz_to_lonlat_rad_scalar import platform import warnings from uxarray.utils.computing import cross_fma, allclose, cross, norm @@ -128,7 +129,7 @@ def constant_lon_intersections_no_extreme(lon, edge_node_x, edge_node_y, n_edge) return np.unique(intersecting_edges) -@njit(cache=True) +# @njit(cache=True) def constant_lat_intersections_face_bounds(lat, face_bounds_lat): """Identifies the candidate faces on a grid that intersect with a given constant latitude. @@ -204,31 +205,11 @@ def _gca_gca_intersection_cartesian(gca_a_xyz, gca_b_xyz): gca_a_xyz = np.asarray(gca_a_xyz) gca_b_xyz = np.asarray(gca_b_xyz) - gca_a_lonlat = np.array( - [ - _xyz_to_lonlat_rad_scalar( - gca_a_xyz[0, 0], gca_a_xyz[0, 1], gca_a_xyz[0, 2] - ), - _xyz_to_lonlat_rad_scalar( - gca_a_xyz[1, 0], gca_a_xyz[1, 1], gca_a_xyz[1, 2] - ), - ] - ) - gca_b_lonlat = np.array( - [ - _xyz_to_lonlat_rad_scalar( - gca_b_xyz[0, 0], gca_b_xyz[0, 1], gca_b_xyz[0, 2] - ), - _xyz_to_lonlat_rad_scalar( - gca_b_xyz[1, 0], gca_b_xyz[1, 1], gca_b_xyz[1, 2] - ), - ] - ) - return gca_gca_intersection(gca_a_xyz, gca_a_lonlat, gca_b_xyz, gca_b_lonlat) + return gca_gca_intersection(gca_a_xyz, gca_b_xyz) @njit(cache=True) -def gca_gca_intersection(gca_a_xyz, gca_a_lonlat, gca_b_xyz, gca_b_lonlat): +def gca_gca_intersection(gca_a_xyz, gca_b_xyz): if gca_a_xyz.shape[1] != 3 or gca_b_xyz.shape[1] != 3: raise ValueError("The two GCAs must be in the cartesian [x, y, z] format") @@ -238,12 +219,15 @@ def gca_gca_intersection(gca_a_xyz, gca_a_lonlat, gca_b_xyz, gca_b_lonlat): v0_xyz = gca_b_xyz[0] v1_xyz = gca_b_xyz[1] - w0_lonlat = gca_a_lonlat[0] - w1_lonlat = gca_a_lonlat[1] - v0_lonlat = gca_b_lonlat[0] - v1_lonlat = gca_b_lonlat[1] + angle_w0w1 = _angle_of_2_vectors(w0_xyz, w1_xyz) + angle_v0v1 = _angle_of_2_vectors(v0_xyz, v1_xyz) + + if angle_w0w1 > np.pi: + w0_xyz, w1_xyz = w1_xyz, w0_xyz + + if angle_v0v1 > np.pi: + v0_xyz, v1_xyz = v1_xyz, v0_xyz - # Compute normals and orthogonal bases w0w1_norm = cross(w0_xyz, w1_xyz) v0v1_norm = cross(v0_xyz, v1_xyz) cross_norms = cross(w0w1_norm, v0v1_norm) @@ -254,11 +238,11 @@ def gca_gca_intersection(gca_a_xyz, gca_a_lonlat, gca_b_xyz, gca_b_lonlat): # Check if the two GCAs are parallel if allclose(cross_norms, 0.0, atol=MACHINE_EPSILON): - if point_within_gca(v0_xyz, v0_lonlat, w0_xyz, w0_lonlat, w1_xyz, w1_lonlat): + if point_within_gca(v0_xyz, w0_xyz, w1_xyz): res[count, :] = v0_xyz count += 1 - if point_within_gca(v1_xyz, v1_lonlat, w0_xyz, w0_lonlat, w1_xyz, w1_lonlat): + if point_within_gca(v1_xyz, w0_xyz, w1_xyz): res[count, :] = v1_xyz count += 1 @@ -269,29 +253,23 @@ def gca_gca_intersection(gca_a_xyz, gca_a_lonlat, gca_b_xyz, gca_b_lonlat): x1_xyz = cross_norms x2_xyz = -x1_xyz - # Get lon/lat arrays - x1_lonlat = _xyz_to_lonlat_rad_scalar(x1_xyz[0], x1_xyz[1], x1_xyz[2]) - x2_lonlat = _xyz_to_lonlat_rad_scalar(x2_xyz[0], x2_xyz[1], x2_xyz[2]) - # Check intersection points - if point_within_gca( - x1_xyz, x1_lonlat, w0_xyz, w0_lonlat, w1_xyz, w1_lonlat - ) and point_within_gca(x1_xyz, x1_lonlat, v0_xyz, v0_lonlat, v1_xyz, v1_lonlat): + if point_within_gca(x1_xyz, w0_xyz, w1_xyz) and point_within_gca( + x1_xyz, v0_xyz, v1_xyz + ): res[count, :] = x1_xyz count += 1 - if point_within_gca( - x2_xyz, x2_lonlat, w0_xyz, w0_lonlat, w1_xyz, w1_lonlat - ) and point_within_gca(x2_xyz, x2_lonlat, v0_xyz, v0_lonlat, v1_xyz, v1_lonlat): + if point_within_gca(x2_xyz, w0_xyz, w1_xyz) and point_within_gca( + x2_xyz, v0_xyz, v1_xyz + ): res[count, :] = x2_xyz count += 1 return res[:count, :] -def gca_const_lat_intersection( - gca_cart, constZ, fma_disabled=True, verbose=False, is_directed=False -): +def gca_const_lat_intersection(gca_cart, constZ, fma_disabled=True, verbose=False): """Calculate the intersection point(s) of a Great Circle Arc (GCA) and a constant latitude line in a Cartesian coordinate system. @@ -308,9 +286,6 @@ def gca_const_lat_intersection( If True, the FMA operation is disabled. And a naive `np.cross` is used instead. verbose : bool, optional (default=False) If True, the function prints out the intermediate results. - is_directed : bool, optional (default=False) - If True, the GCA is considered to be directed, which means it can only from v0-->v1. If False, the GCA is undirected, - and we will always assume the small circle (The one less than 180 degree) side is the GCA. Returns ------- @@ -385,7 +360,7 @@ def gca_const_lat_intersection( res = None # Now test which intersection point is within the GCA range - if _point_within_gca_cartesian(p1, gca_cart, is_directed=is_directed): + if point_within_gca(p1, gca_cart[0], gca_cart[1]): try: converged_pt = _newton_raphson_solver_for_gca_constLat( p1, gca_cart, verbose=verbose @@ -407,7 +382,7 @@ def gca_const_lat_intersection( except RuntimeError: raise RuntimeError(f"Error encountered with initial guess: {p1}") - if _point_within_gca_cartesian(p2, gca_cart, is_directed=is_directed): + if point_within_gca(p2, gca_cart[0], gca_cart[1]): try: converged_pt = _newton_raphson_solver_for_gca_constLat( p2, gca_cart, verbose=verbose diff --git a/uxarray/grid/utils.py b/uxarray/grid/utils.py index c88a9e51c..228fd96fb 100644 --- a/uxarray/grid/utils.py +++ b/uxarray/grid/utils.py @@ -7,21 +7,21 @@ @njit(cache=True) -def _angle_of_2_vectors(u, v): - """Calculate the angle between two 3D vectors u and v in radians. Can be - used to calcualte the span of a GCR. +def _small_angle_of_2_vectors(u, v): + """ + Compute the smallest angle between two vectors using the new _angle_of_2_vectors. Parameters ---------- - u : numpy.ndarray (float) + u : numpy.ndarray The first 3D vector. - v : numpy.ndarray (float) + v : numpy.ndarray The second 3D vector. Returns ------- float - The angle between u and v in radians. + The smallest angle between `u` and `v` in radians. """ v_norm_times_u = np.linalg.norm(v) * u u_norm_times_v = np.linalg.norm(u) * v @@ -31,6 +31,55 @@ def _angle_of_2_vectors(u, v): return angle_u_v_rad +@njit(cache=True) +def _angle_of_2_vectors(u, v): + """ + Calculate the angle between two 3D vectors `u` and `v` on the unit sphere in radians. + + This function computes the angle between two vectors originating from the center of a unit sphere. + The result is returned in the range [0, 2π]. It can be used to calculate the span of a great circle arc (GCA). + + Parameters + ---------- + u : numpy.ndarray + The first 3D vector (float), originating from the center of the unit sphere. + v : numpy.ndarray + The second 3D vector (float), originating from the center of the unit sphere. + + Returns + ------- + float + The angle between `u` and `v` in radians, in the range [0, 2π]. + + Notes + ----- + - The direction of the angle (clockwise or counter-clockwise) is determined using the cross product of `u` and `v`. + - Special cases such as vectors aligned along the same longitude are handled explicitly. + """ + # Compute the cross product to determine the direction of the normal + normal = np.cross(u, v) + + # Calculate the angle using arctangent of cross and dot products + angle_u_v_rad = np.arctan2(np.linalg.norm(normal), np.dot(u, v)) + + # Determine the direction of the angle + normal_z = np.dot(normal, np.array([0.0, 0.0, 1.0])) + if normal_z > 0: + # Counterclockwise direction + return angle_u_v_rad + elif normal_z == 0: + # Handle collinear vectors (same longitude) + if u[2] > v[2]: + return angle_u_v_rad + elif u[2] < v[2]: + return 2 * np.pi - angle_u_v_rad + else: + return 0.0 # u == v + else: + # Clockwise direction + return 2 * np.pi - angle_u_v_rad + + def _inv_jacobian(x0, x1, y0, y1, z0, z1, x_i_old, y_i_old): """Calculate the inverse Jacobian matrix for a given set of parameters.