-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlstm.py
155 lines (145 loc) · 6.86 KB
/
lstm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
def GetLSTM():
import sys
sys.path.append('iclr2016/main')
sys.path.append('iclr2016/sentiment')
import cPickle
import ppdb_utils
import evaluate
from lstm_model_sentiment import lstm_model_sentiment
import params
import time
import numpy as np
import numpy.random
import random
import argparse
import lasagne
import utils
def str2bool(v):
if v is None:
return False
if v.lower() in ("yes", "true", "t", "1"):
return True
if v.lower() in ("no", "false", "f", "0"):
return False
raise ValueError('A type that was supposed to be boolean is not boolean.')
def learner2bool(v):
if v is None:
return lasagne.updates.adam
if v.lower() == "adagrad":
return lasagne.updates.adagrad
if v.lower() == "adam":
return lasagne.updates.adam
raise ValueError('A type that was supposed to be a learner is not.')
random.seed(1)
np.random.seed(1)
params = params.params()
parser = argparse.ArgumentParser()
parser.add_argument("-LW", help="Lambda for word embeddings (normal training).", type=float)
parser.add_argument("-LC", help="Lambda for composition parameters (normal training).", type=float)
parser.add_argument("-outfile", help="Output file name.")
parser.add_argument("-batchsize", help="Size of batch.", type=int)
parser.add_argument("-dim", help="Size of input.", type=int)
parser.add_argument("-memsize", help="Size of classification layer.",
type=int)
parser.add_argument("-wordfile", help="Word embedding file.")
parser.add_argument("-layersize", help="Size of output layers in models.", type=int)
parser.add_argument("-updatewords", help="Whether to update the word embeddings")
parser.add_argument("-wordstem", help="Nickname of word embeddings used.")
parser.add_argument("-save", help="Whether to pickle the model.")
parser.add_argument("-traindata", help="Training data file.")
parser.add_argument("-devdata", help="Training data file.")
parser.add_argument("-testdata", help="Testing data file.")
parser.add_argument("-peephole", help="Whether to use peephole connections in LSTM.")
parser.add_argument("-outgate", help="Whether to use output gate in LSTM.")
parser.add_argument("-nonlinearity", help="Type of nonlinearity in projection and DAN model.",
type=int)
parser.add_argument("-nntype", help="Type of neural network.")
parser.add_argument("-evaluate", help="Whether to evaluate the model during training.")
parser.add_argument("-epochs", help="Number of epochs in training.", type=int)
parser.add_argument("-regfile", help="Path to model file that we want to regularize towards.")
parser.add_argument("-minval", help="Min rating possible in scoring.", type=int)
parser.add_argument("-maxval", help="Max rating possible in scoring.", type=int)
parser.add_argument("-LRW", help="Lambda for word embeddings (regularization training).", type=float)
parser.add_argument("-LRC", help="Lambda for composition parameters (regularization training).", type=float)
parser.add_argument("-traintype", help="Either normal, reg, or rep.")
parser.add_argument("-clip", help="Threshold for gradient clipping.",type=int)
parser.add_argument("-eta", help="Learning rate.", type=float)
parser.add_argument("-learner", help="Either AdaGrad or Adam.")
parser.add_argument("-task", help="Either sim, ent, or sentiment.")
parser.add_argument("-numlayers", help="Number of layers in DAN Model.", type=int)
parser.add_argument("-input", help="Fine with list of sentences to classify.")
args = parser.parse_args(['-wordstem', 'simlex', '-wordfile', 'iclr2016/data/paragram_sl999_small.txt', '-outfile', 'gpu-lstm-model', '-dim', '300', '-layersize', '300', '-save', 'False', '-nntype', 'lstm_sentiment', '-evaluate', 'True', '-epochs', '10', '-peephole', 'True', '-traintype', 'rep', '-task', 'sentiment', '-updatewords', 'True', '-outgate', 'True', '-batchsize', '25', '-LW', '1e-06', '-LC', '1e-06', '-memsize', '300', '-learner', 'adam', '-eta', '0.001', '-regfile', 'iclr2016/sentiment_2.pickle', '-input', 'iclr2016/input.txt'])
params.LW = args.LW
params.LC = args.LC
params.outfile = args.outfile
params.batchsize = args.batchsize
params.hiddensize = args.dim
params.memsize = args.memsize
params.wordfile = args.wordfile
params.nntype = args.nntype
params.layersize = args.layersize
params.updatewords = str2bool(args.updatewords)
params.wordstem = args.wordstem
params.save = str2bool(args.save)
params.traindata = args.traindata
params.devdata = args.devdata
params.testdata = args.testdata
params.usepeep = str2bool(args.peephole)
params.useoutgate = str2bool(args.outgate)
params.nntype = args.nntype
params.epochs = args.epochs
params.traintype = args.traintype
params.evaluate = str2bool(args.evaluate)
params.LRW = args.LRW
params.LRC = args.LRC
params.learner = learner2bool(args.learner)
params.task = args.task
params.numlayers = args.numlayers
params.input = args.input
if args.eta:
params.eta = args.eta
params.clip = args.clip
if args.clip:
if params.clip == 0:
params.clip = None
params.regfile = args.regfile
params.minval = args.minval
params.maxval = args.maxval
if args.nonlinearity:
if args.nonlinearity == 1:
params.nonlinearity = lasagne.nonlinearities.linear
if args.nonlinearity == 2:
params.nonlinearity = lasagne.nonlinearities.tanh
if args.nonlinearity == 3:
params.nonlinearity = lasagne.nonlinearities.rectify
if args.nonlinearity == 4:
params.nonlinearity = lasagne.nonlinearities.sigmoid
(words, We) = ppdb_utils.getWordmap(params.wordfile)
model = lstm_model_sentiment(We, params)
import re
def PredictProbaFn(X):
preds = []
seq1 = []
ct = 0
for i in X:
p1 = i.strip()
p1 = ' '.join(re.split('(\W+)', p1))
X1 = evaluate.getSeq(p1,words)
seq1.append(X1)
ct += 1
if ct % 100 == 0:
x1,m1 = utils.prepare_data(seq1)
scores = model.predict_proba(x1,m1)
if scores.shape[0] > 1:
scores = np.squeeze(scores)
preds.extend(scores.tolist())
seq1 = []
if len(seq1) > 0:
x1,m1 = utils.prepare_data(seq1)
scores = model.predict_proba(x1,m1)
if scores.shape[0] > 1:
scores = np.squeeze(scores)
preds.extend(scores.tolist())
preds = np.array(preds).reshape(-1, 1)
return np.hstack((1 - preds, preds))
return PredictProbaFn