From d37da96092f776c8cdc5bdacba932d47ceb7221f Mon Sep 17 00:00:00 2001 From: Michael Dumelle Date: Fri, 20 Jan 2023 15:02:28 -0800 Subject: [PATCH 01/12] Fix issue #31 --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index 540b095..13d7350 100644 --- a/README.md +++ b/README.md @@ -1,7 +1,7 @@ [![R-CMD-check](https://github.com/USEPA/spsurvey/actions/workflows/R-CMD-check.yaml/badge.svg)](https://github.com/USEPA/spsurvey/actions/workflows/R-CMD-check.yaml) [![CRAN](http://www.r-pkg.org/badges/version/spsurvey)](https://cran.r-project.org/package=spsurvey) -[![cran checks](https://cranchecks.info/badges/worst/spsurvey)](https://cran.r-project.org/web/checks/check_results_spsurvey.html) +[![cran checks](https://badges.cranchecks.info/worst/spsurvey.svg)](https://cran.r-project.org/web/checks/check_results_spsurvey.html) [![Downloads](https://cranlogs.r-pkg.org/badges/grand-total/spsurvey)](https://cran.r-project.org/package=spsurvey) From eb27746d9ff6a125dc1ef743cc56ef2318859c8c Mon Sep 17 00:00:00 2001 From: Michael Dumelle Date: Fri, 20 Jan 2023 15:33:45 -0800 Subject: [PATCH 02/12] Fix issue #32 --- R/grts.R | 30 +++++++++++++++--------------- R/irs.R | 30 +++++++++++++++--------------- 2 files changed, 30 insertions(+), 30 deletions(-) diff --git a/R/grts.R b/R/grts.R index 3c3d715..cea09d6 100644 --- a/R/grts.R +++ b/R/grts.R @@ -798,11 +798,11 @@ grts <- function(sframe, n_base, stratum_var = NULL, seltype = NULL, caty_var = } else { legacy_sites_names_bad <- legacy_sites_names[legacy_sites_names %in% dsgn_names_extra] legacy_sites_temp <- legacy_sites[, legacy_sites_names_bad, drop = FALSE] - temp_geometry_col <- which(names(legacy_sites_temp) == attr(sites_legacy, "sf_column")) - legacy_sites_geometry_col <- which(names(legacy_sites) == attr(sites_legacy, "sf_column")) + temp_geometry_col <- which(names(legacy_sites_temp) == attr(legacy_sites_temp, "sf_column")) + legacy_sites_geometry_col <- which(names(legacy_sites) == attr(legacy_sites, "sf_column")) names(legacy_sites_temp)[-temp_geometry_col] <- paste("legacy_sites", names(legacy_sites_temp)[-temp_geometry_col], sep = "_") sites_legacy <- st_join(sites_legacy, legacy_sites_temp, join = st_nearest_feature) - sites_legacy <- subset(sites_legacy, select = c(add_names, legacy_sites_names_good[-legacy_sites_geometry_col], names(legacy_sites_temp))) + sites_legacy <- subset(sites_legacy, select = c(add_names, legacy_sites_names_good[-legacy_sites_geometry_col], names(legacy_sites_temp)[-temp_geometry_col])) for (i in names(sites_legacy)) { if (i %in% c("legacy_sites_xcoord", "legacy_sites_ycoord", "legacy_sites_idpts")) { names(sites_legacy)[which(names(sites_legacy) == i)] <- substring(i, first = 14) @@ -818,12 +818,12 @@ grts <- function(sframe, n_base, stratum_var = NULL, seltype = NULL, caty_var = } else { sframe_names_bad <- sframe_names[sframe_names %in% dsgn_names_extra] sframe_temp <- sframe[, sframe_names_bad, drop = FALSE] - temp_geometry_col <- which(names(sframe_temp) == attr(sites_legacy, "sf_column")) - sframe_geometry_col <- which(names(sframe) == attr(sites_legacy, "sf_column")) + temp_geometry_col <- which(names(sframe_temp) == attr(sframe_temp, "sf_column")) + sframe_geometry_col <- which(names(sframe) == attr(sframe, "sf_column")) names(sframe_temp)[-temp_geometry_col] <- paste("sframe", names(sframe_temp)[-temp_geometry_col], sep = "_") sites_legacy <- st_join(sites_legacy, sframe_temp, join = st_nearest_feature) sites_legacy <- subset(sites_legacy, - select = c(add_names, sframe_names_good[-sframe_geometry_col], names(sframe_temp)) + select = c(add_names, sframe_names_good[-sframe_geometry_col], names(sframe_temp)[-temp_geometry_col]) ) for (i in names(sites_legacy)) { if (i %in% c("sframe_xcoord", "sframe_ycoord", "sframe_idpts")) { @@ -844,11 +844,11 @@ grts <- function(sframe, n_base, stratum_var = NULL, seltype = NULL, caty_var = } else { sframe_names_bad <- sframe_names[sframe_names %in% dsgn_names_extra] sframe_temp <- sframe[, sframe_names_bad, drop = FALSE] - temp_geometry_col <- which(names(sframe_temp) == attr(sites_base, "sf_column")) - sframe_geometry_col <- which(names(sframe) == attr(sites_base, "sf_column")) + temp_geometry_col <- which(names(sframe_temp) == attr(sframe_temp, "sf_column")) + sframe_geometry_col <- which(names(sframe) == attr(sframe, "sf_column")) names(sframe_temp)[-temp_geometry_col] <- paste("sframe", names(sframe_temp)[-temp_geometry_col], sep = "_") sites_base <- st_join(sites_base, sframe_temp, join = st_nearest_feature) - sites_base <- subset(sites_base, select = c(add_names, sframe_names_good[-sframe_geometry_col], names(sframe_temp))) + sites_base <- subset(sites_base, select = c(add_names, sframe_names_good[-sframe_geometry_col], names(sframe_temp)[-temp_geometry_col])) for (i in names(sites_base)) { if (i %in% c("sframe_xcoord", "sframe_ycoord", "sframe_idpts")) { names(sites_base)[which(names(sites_base) == i)] <- substring(i, first = 8) @@ -866,11 +866,11 @@ grts <- function(sframe, n_base, stratum_var = NULL, seltype = NULL, caty_var = } else { sframe_names_bad <- sframe_names[sframe_names %in% dsgn_names_extra] sframe_temp <- sframe[, sframe_names_bad, drop = FALSE] - temp_geometry_col <- which(names(sframe_temp) == attr(sites_over, "sf_column")) - sframe_geometry_col <- which(names(sframe) == attr(sites_over, "sf_column")) + temp_geometry_col <- which(names(sframe_temp) == attr(sframe_temp, "sf_column")) + sframe_geometry_col <- which(names(sframe) == attr(sframe, "sf_column")) names(sframe_temp)[-temp_geometry_col] <- paste("sframe", names(sframe_temp)[-temp_geometry_col], sep = "_") sites_over <- st_join(sites_over, sframe_temp, join = st_nearest_feature) - sites_over <- subset(sites_over, select = c(add_names, sframe_names_good[-sframe_geometry_col], names(sframe_temp))) + sites_over <- subset(sites_over, select = c(add_names, sframe_names_good[-sframe_geometry_col], names(sframe_temp)[-temp_geometry_col])) for (i in names(sites_over)) { if (i %in% c("sframe_xcoord", "sframe_ycoord", "sframe_idpts")) { names(sites_over)[which(names(sites_over) == i)] <- substring(i, first = 8) @@ -888,11 +888,11 @@ grts <- function(sframe, n_base, stratum_var = NULL, seltype = NULL, caty_var = } else { sframe_names_bad <- sframe_names[sframe_names %in% dsgn_names_extra] sframe_temp <- sframe[, sframe_names_bad, drop = FALSE] - temp_geometry_col <- which(names(sframe_temp) == attr(sites_near, "sf_column")) - sframe_geometry_col <- which(names(sframe) == attr(sites_near, "sf_column")) + temp_geometry_col <- which(names(sframe_temp) == attr(sframe_temp, "sf_column")) + sframe_geometry_col <- which(names(sframe) == attr(sframe, "sf_column")) names(sframe_temp)[-temp_geometry_col] <- paste("sframe", names(sframe_temp)[-temp_geometry_col], sep = "_") sites_near <- st_join(sites_near, sframe_temp, join = st_nearest_feature) - sites_near <- subset(sites_near, select = c(add_names, sframe_names_good[-sframe_geometry_col], names(sframe_temp))) + sites_near <- subset(sites_near, select = c(add_names, sframe_names_good[-sframe_geometry_col], names(sframe_temp)[-temp_geometry_col])) for (i in names(sites_near)) { if (i %in% c("sframe_xcoord", "sframe_ycoord", "sframe_idpts")) { names(sites_near)[which(names(sites_near) == i)] <- substring(i, first = 8) diff --git a/R/irs.R b/R/irs.R index 6904443..8bf442d 100644 --- a/R/irs.R +++ b/R/irs.R @@ -498,11 +498,11 @@ irs <- function(sframe, n_base, stratum_var = NULL, seltype = NULL, caty_var = N } else { legacy_sites_names_bad <- legacy_sites_names[legacy_sites_names %in% dsgn_names_extra] legacy_sites_temp <- legacy_sites[, legacy_sites_names_bad, drop = FALSE] - temp_geometry_col <- which(names(legacy_sites_temp) == attr(sites_legacy, "sf_column")) - legacy_sites_geometry_col <- which(names(legacy_sites) == attr(sites_legacy, "sf_column")) + temp_geometry_col <- which(names(legacy_sites_temp) == attr(legacy_sites_temp, "sf_column")) + legacy_sites_geometry_col <- which(names(legacy_sites) == attr(legacy_sites, "sf_column")) names(legacy_sites_temp)[-temp_geometry_col] <- paste("legacy_sites", names(legacy_sites_temp)[-temp_geometry_col], sep = "_") sites_legacy <- st_join(sites_legacy, legacy_sites_temp, join = st_nearest_feature) - sites_legacy <- subset(sites_legacy, select = c(add_names, legacy_sites_names_good[-legacy_sites_geometry_col], names(legacy_sites_temp))) + sites_legacy <- subset(sites_legacy, select = c(add_names, legacy_sites_names_good[-legacy_sites_geometry_col], names(legacy_sites_temp)[-temp_geometry_col])) for (i in names(sites_legacy)) { if (i %in% c("legacy_sites_xcoord", "legacy_sites_ycoord", "legacy_sites_idpts")) { names(sites_legacy)[which(names(sites_legacy) == i)] <- substring(i, first = 14) @@ -518,12 +518,12 @@ irs <- function(sframe, n_base, stratum_var = NULL, seltype = NULL, caty_var = N } else { sframe_names_bad <- sframe_names[sframe_names %in% dsgn_names_extra] sframe_temp <- sframe[, sframe_names_bad, drop = FALSE] - temp_geometry_col <- which(names(sframe_temp) == attr(sites_legacy, "sf_column")) - sframe_geometry_col <- which(names(sframe) == attr(sites_legacy, "sf_column")) + temp_geometry_col <- which(names(sframe_temp) == attr(sframe_temp, "sf_column")) + sframe_geometry_col <- which(names(sframe) == attr(sframe, "sf_column")) names(sframe_temp)[-temp_geometry_col] <- paste("sframe", names(sframe_temp)[-temp_geometry_col], sep = "_") sites_legacy <- st_join(sites_legacy, sframe_temp, join = st_nearest_feature) sites_legacy <- subset(sites_legacy, - select = c(add_names, sframe_names_good[-sframe_geometry_col], names(sframe_temp)) + select = c(add_names, sframe_names_good[-sframe_geometry_col], names(sframe_temp)[-temp_geometry_col]) ) for (i in names(sites_legacy)) { if (i %in% c("sframe_xcoord", "sframe_ycoord", "sframe_idpts")) { @@ -544,11 +544,11 @@ irs <- function(sframe, n_base, stratum_var = NULL, seltype = NULL, caty_var = N } else { sframe_names_bad <- sframe_names[sframe_names %in% dsgn_names_extra] sframe_temp <- sframe[, sframe_names_bad, drop = FALSE] - temp_geometry_col <- which(names(sframe_temp) == attr(sites_base, "sf_column")) - sframe_geometry_col <- which(names(sframe) == attr(sites_base, "sf_column")) + temp_geometry_col <- which(names(sframe_temp) == attr(sframe_temp, "sf_column")) + sframe_geometry_col <- which(names(sframe) == attr(sframe, "sf_column")) names(sframe_temp)[-temp_geometry_col] <- paste("sframe", names(sframe_temp)[-temp_geometry_col], sep = "_") sites_base <- st_join(sites_base, sframe_temp, join = st_nearest_feature) - sites_base <- subset(sites_base, select = c(add_names, sframe_names_good[-sframe_geometry_col], names(sframe_temp))) + sites_base <- subset(sites_base, select = c(add_names, sframe_names_good[-sframe_geometry_col], names(sframe_temp)[-temp_geometry_col])) for (i in names(sites_base)) { if (i %in% c("sframe_xcoord", "sframe_ycoord", "sframe_idpts")) { names(sites_base)[which(names(sites_base) == i)] <- substring(i, first = 8) @@ -566,11 +566,11 @@ irs <- function(sframe, n_base, stratum_var = NULL, seltype = NULL, caty_var = N } else { sframe_names_bad <- sframe_names[sframe_names %in% dsgn_names_extra] sframe_temp <- sframe[, sframe_names_bad, drop = FALSE] - temp_geometry_col <- which(names(sframe_temp) == attr(sites_over, "sf_column")) - sframe_geometry_col <- which(names(sframe) == attr(sites_over, "sf_column")) + temp_geometry_col <- which(names(sframe_temp) == attr(sframe_temp, "sf_column")) + sframe_geometry_col <- which(names(sframe) == attr(sframe, "sf_column")) names(sframe_temp)[-temp_geometry_col] <- paste("sframe", names(sframe_temp)[-temp_geometry_col], sep = "_") sites_over <- st_join(sites_over, sframe_temp, join = st_nearest_feature) - sites_over <- subset(sites_over, select = c(add_names, sframe_names_good[-sframe_geometry_col], names(sframe_temp))) + sites_over <- subset(sites_over, select = c(add_names, sframe_names_good[-sframe_geometry_col], names(sframe_temp)[-temp_geometry_col])) for (i in names(sites_over)) { if (i %in% c("sframe_xcoord", "sframe_ycoord", "sframe_idpts")) { names(sites_over)[which(names(sites_over) == i)] <- substring(i, first = 8) @@ -588,11 +588,11 @@ irs <- function(sframe, n_base, stratum_var = NULL, seltype = NULL, caty_var = N } else { sframe_names_bad <- sframe_names[sframe_names %in% dsgn_names_extra] sframe_temp <- sframe[, sframe_names_bad, drop = FALSE] - temp_geometry_col <- which(names(sframe_temp) == attr(sites_near, "sf_column")) - sframe_geometry_col <- which(names(sframe) == attr(sites_near, "sf_column")) + temp_geometry_col <- which(names(sframe_temp) == attr(sframe_temp, "sf_column")) + sframe_geometry_col <- which(names(sframe) == attr(sframe, "sf_column")) names(sframe_temp)[-temp_geometry_col] <- paste("sframe", names(sframe_temp)[-temp_geometry_col], sep = "_") sites_near <- st_join(sites_near, sframe_temp, join = st_nearest_feature) - sites_near <- subset(sites_near, select = c(add_names, sframe_names_good[-sframe_geometry_col], names(sframe_temp))) + sites_near <- subset(sites_near, select = c(add_names, sframe_names_good[-sframe_geometry_col], names(sframe_temp)[-temp_geometry_col])) for (i in names(sites_near)) { if (i %in% c("sframe_xcoord", "sframe_ycoord", "sframe_idpts")) { names(sites_near)[which(names(sites_near) == i)] <- substring(i, first = 8) From bb1eca27c751aceeb5c499815d06692ca966e2e4 Mon Sep 17 00:00:00 2001 From: Michael Dumelle Date: Fri, 20 Jan 2023 16:08:03 -0800 Subject: [PATCH 03/12] Fix issue #33 --- R/attrisk_analysis.R | 14 ++++++++++-- R/diffrisk_analysis.R | 6 +++++ R/relrisk_analysis.R | 6 +++++ man/attrisk_analysis.Rd | 8 +++++-- man/diffrisk_analysis.Rd | 8 +++++-- man/relrisk_analysis.Rd | 8 +++++-- tests/testthat/test-attrisk_analysis.R | 30 +++++++++++++++++++++++++ tests/testthat/test-diffrisk_analysis.R | 30 +++++++++++++++++++++++++ tests/testthat/test-relrisk_analysis.R | 30 +++++++++++++++++++++++++ 9 files changed, 132 insertions(+), 8 deletions(-) diff --git a/R/attrisk_analysis.R b/R/attrisk_analysis.R index 648f8c6..45a4689 100644 --- a/R/attrisk_analysis.R +++ b/R/attrisk_analysis.R @@ -62,7 +62,9 @@ #' contains the values \code{"Poor"} and \code{"Good"} for the first and #' second levels, respectively, of each element in the \code{vars_response} #' argument and that uses values in the \code{vars_response} argument as names -#' for the list. The default value is NULL. +#' for the list. If \code{response_levels} is provided without names, +#' then the names of \code{response_levels} are set to \code{vars_response}. +#' The default value is NULL. #' #' @param stressor_levels List providing the category values (levels) for each #' element in the \code{vars_stressor} argument. Each element in the list @@ -74,7 +76,9 @@ #' contains the values \code{"Poor"} and \code{"Good"} for the first and #' second levels, respectively, of each element in the \code{vars_stressor} #' argument and that uses values in the \code{vars_stressor} argument as names -#' for the list. The default value is NULL. +#' for the list. If \code{stressor_levels} is provided without names, +#' then the names of \code{stressor_levels} are set to \code{vars_stressor}. +#' The default value is NULL. #' #' @param subpops Vector composed of character values that identify the #' names of subpopulation (domain) variables in \code{dframe}. @@ -572,6 +576,9 @@ attrisk_analysis <- function(dframe, vars_response, vars_stressor, response_leve msg <- "Argument response_levels must be the same length as argument vars_response.\n" error_vec <- c(error_vec, msg) } + if (is.null(names(response_levels))) { # set default names if none provided + names(response_levels) <- vars_response + } if (any(sapply(response_levels, function(x) length(x) != 2))) { error_ind <- TRUE msg <- "Each element of argument response_levels must contain only two values.\n" @@ -622,6 +629,9 @@ attrisk_analysis <- function(dframe, vars_response, vars_stressor, response_leve msg <- "Argument stressor_levels must be the same length as argument vars_stressor.\n" error_vec <- c(error_vec, msg) } + if (is.null(names(stressor_levels))) { # set default names if none provided + names(stressor_levels) <- vars_stressor + } if (any(sapply(stressor_levels, function(x) length(x) != 2))) { error_ind <- TRUE msg <- "Each element of argument stressor_levels must contain only two values.\n" diff --git a/R/diffrisk_analysis.R b/R/diffrisk_analysis.R index c23ef6f..a058261 100644 --- a/R/diffrisk_analysis.R +++ b/R/diffrisk_analysis.R @@ -308,6 +308,9 @@ diffrisk_analysis <- function(dframe, vars_response, vars_stressor, response_lev msg <- "Argument response_levels must be the same length as argument vars_response.\n" error_vec <- c(error_vec, msg) } + if (is.null(names(response_levels))) { # set default names if none provided + names(response_levels) <- vars_response + } if (any(sapply(response_levels, function(x) length(x) != 2))) { error_ind <- TRUE msg <- "Each element of argument response_levels must contain only two values.\n" @@ -358,6 +361,9 @@ diffrisk_analysis <- function(dframe, vars_response, vars_stressor, response_lev msg <- "Argument stressor_levels must be the same length as argument vars_stressor.\n" error_vec <- c(error_vec, msg) } + if (is.null(names(stressor_levels))) { # set default names if none provided + names(stressor_levels) <- vars_stressor + } if (any(sapply(stressor_levels, function(x) length(x) != 2))) { error_ind <- TRUE msg <- "Each element of argument stressor_levels must contain only two values.\n" diff --git a/R/relrisk_analysis.R b/R/relrisk_analysis.R index adf18c3..b365c7a 100644 --- a/R/relrisk_analysis.R +++ b/R/relrisk_analysis.R @@ -326,6 +326,9 @@ relrisk_analysis <- function(dframe, vars_response, vars_stressor, response_leve msg <- "Argument response_levels must be the same length as argument vars_response.\n" error_vec <- c(error_vec, msg) } + if (is.null(names(response_levels))) { # set default names if none provided + names(response_levels) <- vars_response + } if (any(sapply(response_levels, function(x) length(x) != 2))) { error_ind <- TRUE msg <- "Each element of argument response_levels must contain only two values.\n" @@ -376,6 +379,9 @@ relrisk_analysis <- function(dframe, vars_response, vars_stressor, response_leve msg <- "Argument stressor_levels must be the same length as argument vars_stressor.\n" error_vec <- c(error_vec, msg) } + if (is.null(names(stressor_levels))) { # set default names if none provided + names(stressor_levels) <- vars_stressor + } if (any(sapply(stressor_levels, function(x) length(x) != 2))) { error_ind <- TRUE msg <- "Each element of argument stressor_levels must contain only two values.\n" diff --git a/man/attrisk_analysis.Rd b/man/attrisk_analysis.Rd index 7cd6bf1..a1055a1 100644 --- a/man/attrisk_analysis.Rd +++ b/man/attrisk_analysis.Rd @@ -58,7 +58,9 @@ argument. If this argument equals NULL, then a named list is created that contains the values \code{"Poor"} and \code{"Good"} for the first and second levels, respectively, of each element in the \code{vars_response} argument and that uses values in the \code{vars_response} argument as names -for the list. The default value is NULL.} +for the list. If \code{response_levels} is provided without names, +then the names of \code{response_levels} are set to \code{vars_response}. +The default value is NULL.} \item{stressor_levels}{List providing the category values (levels) for each element in the \code{vars_stressor} argument. Each element in the list @@ -70,7 +72,9 @@ argument. If this argument equals NULL, then a named list is created that contains the values \code{"Poor"} and \code{"Good"} for the first and second levels, respectively, of each element in the \code{vars_stressor} argument and that uses values in the \code{vars_stressor} argument as names -for the list. The default value is NULL.} +for the list. If \code{stressor_levels} is provided without names, +then the names of \code{stressor_levels} are set to \code{vars_stressor}. +The default value is NULL.} \item{subpops}{Vector composed of character values that identify the names of subpopulation (domain) variables in \code{dframe}. diff --git a/man/diffrisk_analysis.Rd b/man/diffrisk_analysis.Rd index 0bb0219..a48d5b9 100644 --- a/man/diffrisk_analysis.Rd +++ b/man/diffrisk_analysis.Rd @@ -58,7 +58,9 @@ argument. If this argument equals NULL, then a named list is created that contains the values \code{"Poor"} and \code{"Good"} for the first and second levels, respectively, of each element in the \code{vars_response} argument and that uses values in the \code{vars_response} argument as names -for the list. The default value is NULL.} +for the list. If \code{response_levels} is provided without names, +then the names of \code{response_levels} are set to \code{vars_response}. +The default value is NULL.} \item{stressor_levels}{List providing the category values (levels) for each element in the \code{vars_stressor} argument. Each element in the list @@ -70,7 +72,9 @@ argument. If this argument equals NULL, then a named list is created that contains the values \code{"Poor"} and \code{"Good"} for the first and second levels, respectively, of each element in the \code{vars_stressor} argument and that uses values in the \code{vars_stressor} argument as names -for the list. The default value is NULL.} +for the list. If \code{stressor_levels} is provided without names, +then the names of \code{stressor_levels} are set to \code{vars_stressor}. +The default value is NULL.} \item{subpops}{Vector composed of character values that identify the names of subpopulation (domain) variables in \code{dframe}. diff --git a/man/relrisk_analysis.Rd b/man/relrisk_analysis.Rd index ae04f82..c841917 100644 --- a/man/relrisk_analysis.Rd +++ b/man/relrisk_analysis.Rd @@ -58,7 +58,9 @@ argument. If this argument equals NULL, then a named list is created that contains the values \code{"Poor"} and \code{"Good"} for the first and second levels, respectively, of each element in the \code{vars_response} argument and that uses values in the \code{vars_response} argument as names -for the list. The default value is NULL.} +for the list. If \code{response_levels} is provided without names, +then the names of \code{response_levels} are set to \code{vars_response}. +The default value is NULL.} \item{stressor_levels}{List providing the category values (levels) for each element in the \code{vars_stressor} argument. Each element in the list @@ -70,7 +72,9 @@ argument. If this argument equals NULL, then a named list is created that contains the values \code{"Poor"} and \code{"Good"} for the first and second levels, respectively, of each element in the \code{vars_stressor} argument and that uses values in the \code{vars_stressor} argument as names -for the list. The default value is NULL.} +for the list. If \code{stressor_levels} is provided without names, +then the names of \code{stressor_levels} are set to \code{vars_stressor}. +The default value is NULL.} \item{subpops}{Vector composed of character values that identify the names of subpopulation (domain) variables in \code{dframe}. diff --git a/tests/testthat/test-attrisk_analysis.R b/tests/testthat/test-attrisk_analysis.R index 0876c0a..a94335d 100644 --- a/tests/testthat/test-attrisk_analysis.R +++ b/tests/testthat/test-attrisk_analysis.R @@ -89,6 +89,36 @@ test_that("Attributable Risk: Unstratified single-stage analysis", { expect_equal(nrow(AttRisk_Estimates), 6) }) +AttRisk_Estimates <- attrisk_analysis( + dframe = NLA_IN, + vars_response = vars_response, vars_stressor = vars_stressor, + subpops = subpops, siteID = "SITE_ID", weight = "WGT_TP", xcoord = "XCOORD", + ycoord = "YCOORD", + response_levels = list("BENT_MMI_COND_2017" = c("Poor", "Good")), + stressor_levels = list("PTL_COND" = c("Poor", "Good"), "NTL_COND" = c("Poor", "Good")) +) + +test_that("Attributable Risk: Unstratified single-stage analysis (specify response/stressor levels)", { + expect_true(exists("AttRisk_Estimates")) + expect_equal(attributes(AttRisk_Estimates)$class, "data.frame") + expect_equal(nrow(AttRisk_Estimates), 6) +}) + +AttRisk_Estimates <- attrisk_analysis( + dframe = NLA_IN, + vars_response = vars_response, vars_stressor = vars_stressor, + subpops = subpops, siteID = "SITE_ID", weight = "WGT_TP", xcoord = "XCOORD", + ycoord = "YCOORD", + response_levels = list(c("Poor", "Good")), + stressor_levels = list(c("Poor", "Good"), c("Poor", "Good")) +) + +test_that("Attributable Risk: Unstratified single-stage analysis (unnamed response/stressor levels)", { + expect_true(exists("AttRisk_Estimates")) + expect_equal(attributes(AttRisk_Estimates)$class, "data.frame") + expect_equal(nrow(AttRisk_Estimates), 6) +}) + AttRisk_Estimates <- attrisk_analysis( dframe = NLA_IN, vars_response = vars_response, vars_stressor = vars_stressor, diff --git a/tests/testthat/test-diffrisk_analysis.R b/tests/testthat/test-diffrisk_analysis.R index a29d9d2..44a1c0f 100644 --- a/tests/testthat/test-diffrisk_analysis.R +++ b/tests/testthat/test-diffrisk_analysis.R @@ -89,6 +89,36 @@ test_that("Risk Difference: Unstratified single-stage analysis", { expect_equal(nrow(DiffRisk_Estimates), 6) }) +DiffRisk_Estimates <- diffrisk_analysis( + dframe = NLA_IN, + vars_response = vars_response, vars_stressor = vars_stressor, + subpops = subpops, siteID = "SITE_ID", weight = "WGT_TP", xcoord = "XCOORD", + ycoord = "YCOORD", + response_levels = list("BENT_MMI_COND_2017" = c("Poor", "Good")), + stressor_levels = list("PTL_COND" = c("Poor", "Good"), "NTL_COND" = c("Poor", "Good")) +) + +test_that("Risk Difference: Unstratified single-stage analysis (specify response/stressor levels)", { + expect_true(exists("DiffRisk_Estimates")) + expect_equal(attributes(DiffRisk_Estimates)$class, "data.frame") + expect_equal(nrow(DiffRisk_Estimates), 6) +}) + +DiffRisk_Estimates <- diffrisk_analysis( + dframe = NLA_IN, + vars_response = vars_response, vars_stressor = vars_stressor, + subpops = subpops, siteID = "SITE_ID", weight = "WGT_TP", xcoord = "XCOORD", + ycoord = "YCOORD", + response_levels = list(c("Poor", "Good")), + stressor_levels = list(c("Poor", "Good"), c("Poor", "Good")) +) + +test_that("Risk Difference: Unstratified single-stage analysis (unnamed response/stressor levels)", { + expect_true(exists("DiffRisk_Estimates")) + expect_equal(attributes(DiffRisk_Estimates)$class, "data.frame") + expect_equal(nrow(DiffRisk_Estimates), 6) +}) + DiffRisk_Estimates <- diffrisk_analysis( dframe = NLA_IN, vars_response = vars_response, vars_stressor = vars_stressor, diff --git a/tests/testthat/test-relrisk_analysis.R b/tests/testthat/test-relrisk_analysis.R index 696dccc..b0afc70 100644 --- a/tests/testthat/test-relrisk_analysis.R +++ b/tests/testthat/test-relrisk_analysis.R @@ -89,6 +89,36 @@ test_that("Relative Risk: Unstratified single-stage analysis", { expect_equal(nrow(RelRisk_Estimates), 6) }) +RelRisk_Estimates <- relrisk_analysis( + dframe = NLA_IN, + vars_response = vars_response, vars_stressor = vars_stressor, + subpops = subpops, siteID = "SITE_ID", weight = "WGT_TP", xcoord = "XCOORD", + ycoord = "YCOORD", + response_levels = list("BENT_MMI_COND_2017" = c("Poor", "Good")), + stressor_levels = list("PTL_COND" = c("Poor", "Good"), "NTL_COND" = c("Poor", "Good")) +) + +test_that("Relative Risk: Unstratified single-stage analysis (specify response/stressor levels)", { + expect_true(exists("RelRisk_Estimates")) + expect_equal(attributes(RelRisk_Estimates)$class, "data.frame") + expect_equal(nrow(RelRisk_Estimates), 6) +}) + +RelRisk_Estimates <- relrisk_analysis( + dframe = NLA_IN, + vars_response = vars_response, vars_stressor = vars_stressor, + subpops = subpops, siteID = "SITE_ID", weight = "WGT_TP", xcoord = "XCOORD", + ycoord = "YCOORD", + response_levels = list(c("Poor", "Good")), + stressor_levels = list(c("Poor", "Good"), c("Poor", "Good")) +) + +test_that("Relative Risk: Unstratified single-stage analysis (unnamed response/stressor levels)", { + expect_true(exists("RelRisk_Estimates")) + expect_equal(attributes(RelRisk_Estimates)$class, "data.frame") + expect_equal(nrow(RelRisk_Estimates), 6) +}) + RelRisk_Estimates <- relrisk_analysis( dframe = NLA_IN, vars_response = vars_response, vars_stressor = vars_stressor, From 94eebccf5ee558b9c71baa838f159beda2cb2ee3 Mon Sep 17 00:00:00 2001 From: Michael Dumelle Date: Fri, 20 Jan 2023 16:08:32 -0800 Subject: [PATCH 04/12] update version number in DESCRIPTION and NEWS --- DESCRIPTION | 2 +- NEWS.md | 19 +++++++++++++++++++ 2 files changed, 20 insertions(+), 1 deletion(-) diff --git a/DESCRIPTION b/DESCRIPTION index 9ee25ba..461c195 100644 --- a/DESCRIPTION +++ b/DESCRIPTION @@ -1,6 +1,6 @@ Package: spsurvey Title: Spatial Sampling Design and Analysis -Version: 5.4.1 +Version: 5.4.2 Authors@R: c( person("Michael", "Dumelle", role=c("aut","cre"), email = "Dumelle.Michael@epa.gov", comment = c(ORCID = "0000-0002-3393-5529")), diff --git a/NEWS.md b/NEWS.md index 65a614b..dd9c4e9 100644 --- a/NEWS.md +++ b/NEWS.md @@ -1,3 +1,22 @@ +# spsurvey 5.4.2 + +## Minor Updates + +* Changed default behavior in `attrisk_analysis()`, `diffrisk_analysis()`, and + `relrisk_analysis()` regarding the handling of `response_levels` and `stressor_levels`. + Previously, if `response_levels` and `stressor_levels` were specified, + their elements required names. + Now, if `response_levels` is specified and its names are `NULL`, then its names are set to `vars_response`, + and if `stressor_levels` is specified and its names are `NULL`, then its names are set to `vars_stressor` (#33). + +## Bug Fixes + +* Fixed a bug that caused an erorr in `grts()` and `irs()` occurred when at least + one variable name in `sframe` was named `"siteID"`, `"siteuse"`, `"replsite"`, + `"lon_WGS84"`, `"lat_WGS84"`, `"stratum"`, `"wgt"`, `"ip"`, `"caty"`, `"aux"`, + `xcoord`, `ycoord`, or `idpts` and the name of the geometry column in `sframe` + was not named `"geometry"` (#32). + # spsurvey 5.4.1 ## Minor Updates From 1410a1f73c6257ba17df01b980ca06d6d2181266 Mon Sep 17 00:00:00 2001 From: Michael Dumelle Date: Tue, 7 Feb 2023 14:15:33 -0800 Subject: [PATCH 05/12] Fix issue #36 --- NEWS.md | 2 ++ R/attrisk_analysis.R | 12 ++++++------ R/cat_analysis.R | 12 ++++++------ R/change_analysis.R | 12 ++++++------ R/cont_analysis.R | 12 ++++++------ R/cont_cdftest.R | 12 ++++++------ R/diffrisk_analysis.R | 12 ++++++------ R/dsgn_check.R | 6 +++--- R/errorprnt.R | 4 ++-- R/grts.R | 4 ++-- R/grts_stratum.R | 4 ++-- R/irs.R | 4 ++-- R/irs_stratum.R | 4 ++-- R/relrisk_analysis.R | 12 ++++++------ R/stopprnt.R | 4 ++-- R/trend_analysis.R | 12 ++++++------ R/warnprnt.R | 22 +++++++++++----------- tests/testthat/test-attrisk_analysis.R | 11 +++++++++++ tests/testthat/test-cat_analysis.R | 8 ++++++++ tests/testthat/test-change_analysis.R | 11 +++++++++++ tests/testthat/test-cont_analysis.R | 9 +++++++++ tests/testthat/test-diffrisk_analysis.R | 11 +++++++++++ tests/testthat/test-grts.R | 5 +++++ tests/testthat/test-irs.R | 6 ++++++ tests/testthat/test-relrisk_analysis.R | 11 +++++++++++ tests/testthat/test-trend_analysis.R | 10 ++++++++++ 26 files changed, 158 insertions(+), 74 deletions(-) diff --git a/NEWS.md b/NEWS.md index dd9c4e9..0a82a49 100644 --- a/NEWS.md +++ b/NEWS.md @@ -9,6 +9,8 @@ Now, if `response_levels` is specified and its names are `NULL`, then its names are set to `vars_response`, and if `stressor_levels` is specified and its names are `NULL`, then its names are set to `vars_stressor` (#33). +* Warning and error messages from `grts()`, `irs()`, and `*_analysis()` functions now print using `message()` instead of `cat()`. This change makes the resulting output more consistent with standard practices and easier to suppress if desired (#36). + ## Bug Fixes * Fixed a bug that caused an erorr in `grts()` and `irs()` occurred when at least diff --git a/R/attrisk_analysis.R b/R/attrisk_analysis.R index 45a4689..a1cae70 100644 --- a/R/attrisk_analysis.R +++ b/R/attrisk_analysis.R @@ -674,17 +674,17 @@ attrisk_analysis <- function(dframe, vars_response, vars_stressor, response_leve if (error_ind) { error_vec <<- error_vec if (length(error_vec) == 1) { - cat("During execution of the program, an error message was generated. The error \nmessage is stored in a vector named 'error_vec'. Enter the following command \nto view the error message: errorprnt()\n") + message("During execution of the program, an error message was generated. The error \nmessage is stored in a vector named 'error_vec'. Enter the following command \nto view the error message: errorprnt()\n") } else { - cat(paste("During execution of the program,", length(error_vec), "error messages were generated. The error \nmessages are stored in a vector named 'error_vec'. Enter the following \ncommand to view the error messages: errorprnt()\n")) + message(paste("During execution of the program,", length(error_vec), "error messages were generated. The error \nmessages are stored in a vector named 'error_vec'. Enter the following \ncommand to view the error messages: errorprnt()\n")) } if (warn_ind) { warn_df <<- warn_df if (nrow(warn_df) == 1) { - cat("During execution of the program, a warning message was generated. The warning \nmessage is stored in a data frame named 'warn_df'. Enter the following command \nto view the warning message: warnprnt()\n") + message("During execution of the program, a warning message was generated. The warning \nmessage is stored in a data frame named 'warn_df'. Enter the following command \nto view the warning message: warnprnt()\n") } else { - cat(paste("During execution of the program,", nrow(warn_df), "warning messages were generated. The warning \nmessages are stored in a data frame named 'warn_df'. Enter the following \ncommand to view the warning messages: warnprnt() \nTo view a subset of the warning messages (say, messages number 1, 3, and 5), \nenter the following command: warnprnt(m=c(1,3,5))\n")) + message(paste("During execution of the program,", nrow(warn_df), "warning messages were generated. The warning \nmessages are stored in a data frame named 'warn_df'. Enter the following \ncommand to view the warning messages: warnprnt() \nTo view a subset of the warning messages (say, messages number 1, 3, and 5), \nenter the following command: warnprnt(m=c(1,3,5))\n")) } } stop("See the preceding message(s).") @@ -1228,9 +1228,9 @@ attrisk_analysis <- function(dframe, vars_response, vars_stressor, response_leve if (warn_ind) { warn_df <<- warn_df if (nrow(warn_df) == 1) { - cat("During execution of the program, a warning message was generated. The warning \nmessage is stored in a data frame named 'warn_df'. Enter the following command \nto view the warning message: warnprnt()\n") + message("During execution of the program, a warning message was generated. The warning \nmessage is stored in a data frame named 'warn_df'. Enter the following command \nto view the warning message: warnprnt()\n") } else { - cat(paste("During execution of the program,", nrow(warn_df), "warning messages were generated. The warning \nmessages are stored in a data frame named 'warn_df'. Enter the following \ncommand to view the warning messages: warnprnt() \nTo view a subset of the warning messages (say, messages number 1, 3, and 5), \nenter the following command: warnprnt(m=c(1,3,5))\n")) + message(paste("During execution of the program,", nrow(warn_df), "warning messages were generated. The warning \nmessages are stored in a data frame named 'warn_df'. Enter the following \ncommand to view the warning messages: warnprnt() \nTo view a subset of the warning messages (say, messages number 1, 3, and 5), \nenter the following command: warnprnt(m=c(1,3,5))\n")) } } diff --git a/R/cat_analysis.R b/R/cat_analysis.R index 60c0b6d..1360733 100644 --- a/R/cat_analysis.R +++ b/R/cat_analysis.R @@ -493,17 +493,17 @@ cat_analysis <- function(dframe, vars, subpops = NULL, siteID = NULL, weight = " if (error_ind) { error_vec <<- error_vec if (length(error_vec) == 1) { - cat("During execution of the program, an error message was generated. The error \nmessage is stored in a vector named 'error_vec'. Enter the following command \nto view the error message: errorprnt()\n") + message("During execution of the program, an error message was generated. The error \nmessage is stored in a vector named 'error_vec'. Enter the following command \nto view the error message: errorprnt()\n") } else { - cat(paste("During execution of the program,", length(error_vec), "error messages were generated. The error \nmessages are stored in a vector named 'error_vec'. Enter the following \ncommand to view the error messages: errorprnt()\n")) + message(paste("During execution of the program,", length(error_vec), "error messages were generated. The error \nmessages are stored in a vector named 'error_vec'. Enter the following \ncommand to view the error messages: errorprnt()\n")) } if (warn_ind) { warn_df <<- warn_df if (nrow(warn_df) == 1) { - cat("During execution of the program, a warning message was generated. The warning \nmessage is stored in a data frame named 'warn_df'. Enter the following command \nto view the warning message: warnprnt()\n") + message("During execution of the program, a warning message was generated. The warning \nmessage is stored in a data frame named 'warn_df'. Enter the following command \nto view the warning message: warnprnt()\n") } else { - cat(paste("During execution of the program,", nrow(warn_df), "warning messages were generated. The warning \nmessages are stored in a data frame named 'warn_df'. Enter the following \ncommand to view the warning messages: warnprnt() \nTo view a subset of the warning messages (say, messages number 1, 3, and 5), \nenter the following command: warnprnt(m=c(1,3,5))\n")) + message(paste("During execution of the program,", nrow(warn_df), "warning messages were generated. The warning \nmessages are stored in a data frame named 'warn_df'. Enter the following \ncommand to view the warning messages: warnprnt() \nTo view a subset of the warning messages (say, messages number 1, 3, and 5), \nenter the following command: warnprnt(m=c(1,3,5))\n")) } } stop("See the preceding message(s).") @@ -635,9 +635,9 @@ cat_analysis <- function(dframe, vars, subpops = NULL, siteID = NULL, weight = " if (warn_ind) { warn_df <<- warn_df if (nrow(warn_df) == 1) { - cat("During execution of the program, a warning message was generated. The warning \nmessage is stored in a data frame named 'warn_df'. Enter the following command \nto view the warning message: warnprnt()\n") + message("During execution of the program, a warning message was generated. The warning \nmessage is stored in a data frame named 'warn_df'. Enter the following command \nto view the warning message: warnprnt()\n") } else { - cat(paste("During execution of the program,", nrow(warn_df), "warning messages were generated. The warning \nmessages are stored in a data frame named 'warn_df'. Enter the following \ncommand to view the warning messages: warnprnt() \nTo view a subset of the warning messages (say, messages number 1, 3, and 5), \nenter the following command: warnprnt(m=c(1,3,5))\n")) + message(paste("During execution of the program,", nrow(warn_df), "warning messages were generated. The warning \nmessages are stored in a data frame named 'warn_df'. Enter the following \ncommand to view the warning messages: warnprnt() \nTo view a subset of the warning messages (say, messages number 1, 3, and 5), \nenter the following command: warnprnt(m=c(1,3,5))\n")) } } diff --git a/R/change_analysis.R b/R/change_analysis.R index 1ac3169..712d304 100644 --- a/R/change_analysis.R +++ b/R/change_analysis.R @@ -836,17 +836,17 @@ change_analysis <- function(dframe, vars_cat = NULL, vars_cont = NULL, test = "m if (error_ind) { error_vec <<- error_vec if (length(error_vec) == 1) { - cat("During execution of the program, an error message was generated. The error \nmessage is stored in a vector named 'error_vec'. Enter the following command \nto view the error message: errorprnt()\n") + message("During execution of the program, an error message was generated. The error \nmessage is stored in a vector named 'error_vec'. Enter the following command \nto view the error message: errorprnt()\n") } else { - cat(paste("During execution of the program,", length(error_vec), "error messages were generated. The error \nmessages are stored in a vector named 'error_vec'. Enter the following \ncommand to view the error messages: errorprnt()\n")) + message(paste("During execution of the program,", length(error_vec), "error messages were generated. The error \nmessages are stored in a vector named 'error_vec'. Enter the following \ncommand to view the error messages: errorprnt()\n")) } if (warn_ind) { warn_df <<- warn_df if (nrow(warn_df) == 1) { - cat("During execution of the program, a warning message was generated. The warning \nmessage is stored in a data frame named 'warn_df'. Enter the following command \nto view the warning message: warnprnt()\n") + message("During execution of the program, a warning message was generated. The warning \nmessage is stored in a data frame named 'warn_df'. Enter the following command \nto view the warning message: warnprnt()\n") } else { - cat(paste("During execution of the program,", nrow(warn_df), "warning messages were generated. The warning \nmessages are stored in a data frame named 'warn_df'. Enter the following \ncommand to view the warning messages: warnprnt() \nTo view a subset of the warning messages (say, messages number 1, 3, and 5), \nenter the following command: warnprnt(m=c(1,3,5))\n")) + message(paste("During execution of the program,", nrow(warn_df), "warning messages were generated. The warning \nmessages are stored in a data frame named 'warn_df'. Enter the following \ncommand to view the warning messages: warnprnt() \nTo view a subset of the warning messages (say, messages number 1, 3, and 5), \nenter the following command: warnprnt(m=c(1,3,5))\n")) } } stop("See the preceding message(s).") @@ -1061,9 +1061,9 @@ change_analysis <- function(dframe, vars_cat = NULL, vars_cont = NULL, test = "m if (warn_ind) { warn_df <<- warn_df if (nrow(warn_df) == 1) { - cat("During execution of the program, a warning message was generated. The warning \nmessage is stored in a data frame named 'warn_df'. Enter the following command \nto view the warning message: warnprnt()\n") + message("During execution of the program, a warning message was generated. The warning \nmessage is stored in a data frame named 'warn_df'. Enter the following command \nto view the warning message: warnprnt()\n") } else { - cat(paste("During execution of the program,", nrow(warn_df), "warning messages were generated. The warning \nmessages are stored in a data frame named 'warn_df'. Enter the following \ncommand to view the warning messages: warnprnt() \nTo view a subset of the warning messages (say, messages number 1, 3, and 5), \nenter the following command: warnprnt(m=c(1,3,5))\n")) + message(paste("During execution of the program,", nrow(warn_df), "warning messages were generated. The warning \nmessages are stored in a data frame named 'warn_df'. Enter the following \ncommand to view the warning messages: warnprnt() \nTo view a subset of the warning messages (say, messages number 1, 3, and 5), \nenter the following command: warnprnt(m=c(1,3,5))\n")) } } diff --git a/R/cont_analysis.R b/R/cont_analysis.R index 029bdcb..09c82ae 100644 --- a/R/cont_analysis.R +++ b/R/cont_analysis.R @@ -374,17 +374,17 @@ cont_analysis <- function(dframe, vars, subpops = NULL, siteID = NULL, if (error_ind) { error_vec <<- error_vec if (length(error_vec) == 1) { - cat("During execution of the program, an error message was generated. The error \nmessage is stored in a vector named 'error_vec'. Enter the following command \nto view the error message: errorprnt()\n") + message("During execution of the program, an error message was generated. The error \nmessage is stored in a vector named 'error_vec'. Enter the following command \nto view the error message: errorprnt()\n") } else { - cat(paste("During execution of the program,", length(error_vec), "error messages were generated. The error \nmessages are stored in a vector named 'error_vec'. Enter the following \ncommand to view the error messages: errorprnt()\n")) + message(paste("During execution of the program,", length(error_vec), "error messages were generated. The error \nmessages are stored in a vector named 'error_vec'. Enter the following \ncommand to view the error messages: errorprnt()\n")) } if (warn_ind) { warn_df <<- warn_df if (nrow(warn_df) == 1) { - cat("During execution of the program, a warning message was generated. The warning \nmessage is stored in a data frame named 'warn_df'. Enter the following command \nto view the warning message: warnprnt()\n") + message("During execution of the program, a warning message was generated. The warning \nmessage is stored in a data frame named 'warn_df'. Enter the following command \nto view the warning message: warnprnt()\n") } else { - cat(paste("During execution of the program,", nrow(warn_df), "warning messages were generated. The warning \nmessages are stored in a data frame named 'warn_df'. Enter the following \ncommand to view the warning messages: warnprnt() \nTo view a subset of the warning messages (say, messages number 1, 3, and 5), \nenter the following command: warnprnt(m=c(1,3,5))\n")) + message(paste("During execution of the program,", nrow(warn_df), "warning messages were generated. The warning \nmessages are stored in a data frame named 'warn_df'. Enter the following \ncommand to view the warning messages: warnprnt() \nTo view a subset of the warning messages (say, messages number 1, 3, and 5), \nenter the following command: warnprnt(m=c(1,3,5))\n")) } } stop("See the preceding message(s).") @@ -563,9 +563,9 @@ cont_analysis <- function(dframe, vars, subpops = NULL, siteID = NULL, if (warn_ind) { warn_df <<- warn_df if (nrow(warn_df) == 1) { - cat("During execution of the program, a warning message was generated. The warning \nmessage is stored in a data frame named 'warn_df'. Enter the following command \nto view the warning message: warnprnt()\n") + message("During execution of the program, a warning message was generated. The warning \nmessage is stored in a data frame named 'warn_df'. Enter the following command \nto view the warning message: warnprnt()\n") } else { - cat(paste("During execution of the program,", nrow(warn_df), "warning messages were generated. The warning \nmessages are stored in a data frame named 'warn_df'. Enter the following \ncommand to view the warning messages: warnprnt() \nTo view a subset of the warning messages (say, messages number 1, 3, and 5), \nenter the following command: warnprnt(m=c(1,3,5))\n")) + message(paste("During execution of the program,", nrow(warn_df), "warning messages were generated. The warning \nmessages are stored in a data frame named 'warn_df'. Enter the following \ncommand to view the warning messages: warnprnt() \nTo view a subset of the warning messages (say, messages number 1, 3, and 5), \nenter the following command: warnprnt(m=c(1,3,5))\n")) } } diff --git a/R/cont_cdftest.R b/R/cont_cdftest.R index 4282003..813fab9 100644 --- a/R/cont_cdftest.R +++ b/R/cont_cdftest.R @@ -565,17 +565,17 @@ cont_cdftest <- function(dframe, vars, subpops = NULL, surveyID = NULL, siteID = if (error_ind) { error_vec <<- error_vec if (length(error_vec) == 1) { - cat("During execution of the program, an error message was generated. The error \nmessage is stored in a vector named 'error_vec'. Enter the following command \nto view the error message: errorprnt()\n") + message("During execution of the program, an error message was generated. The error \nmessage is stored in a vector named 'error_vec'. Enter the following command \nto view the error message: errorprnt()\n") } else { - cat(paste("During execution of the program,", length(error_vec), "error messages were generated. The error \nmessages are stored in a vector named 'error_vec'. Enter the following \ncommand to view the error messages: errorprnt()\n")) + message(paste("During execution of the program,", length(error_vec), "error messages were generated. The error \nmessages are stored in a vector named 'error_vec'. Enter the following \ncommand to view the error messages: errorprnt()\n")) } if (warn_ind) { warn_df <<- warn_df if (nrow(warn_df) == 1) { - cat("During execution of the program, a warning message was generated. The warning \nmessage is stored in a data frame named 'warn_df'. Enter the following command \nto view the warning message: warnprnt()\n") + message("During execution of the program, a warning message was generated. The warning \nmessage is stored in a data frame named 'warn_df'. Enter the following command \nto view the warning message: warnprnt()\n") } else { - cat(paste("During execution of the program,", nrow(warn_df), "warning messages were generated. The warning \nmessages are stored in a data frame named 'warn_df'. Enter the following \ncommand to view the warning messages: warnprnt() \nTo view a subset of the warning messages (say, messages number 1, 3, and 5), \nenter the following command: warnprnt(m=c(1,3,5))\n")) + message(paste("During execution of the program,", nrow(warn_df), "warning messages were generated. The warning \nmessages are stored in a data frame named 'warn_df'. Enter the following \ncommand to view the warning messages: warnprnt() \nTo view a subset of the warning messages (say, messages number 1, 3, and 5), \nenter the following command: warnprnt(m=c(1,3,5))\n")) } } stop("See the preceding message(s).") @@ -865,9 +865,9 @@ cont_cdftest <- function(dframe, vars, subpops = NULL, surveyID = NULL, siteID = if (warn_ind) { warn_df <<- warn_df if (nrow(warn_df) == 1) { - cat("During execution of the program, a warning message was generated. The warning \nmessage is stored in a data frame named 'warn_df'. Enter the following command \nto view the warning message: warnprnt()\n") + message("During execution of the program, a warning message was generated. The warning \nmessage is stored in a data frame named 'warn_df'. Enter the following command \nto view the warning message: warnprnt()\n") } else { - cat(paste("During execution of the program,", nrow(warn_df), "warning messages were generated. The warning \nmessages are stored in a data frame named 'warn_df'. Enter the following \ncommand to view the warning messages: warnprnt() \nTo view a subset of the warning messages (say, messages number 1, 3, and 5), \nenter the following command: warnprnt(m=c(1,3,5))\n")) + message(paste("During execution of the program,", nrow(warn_df), "warning messages were generated. The warning \nmessages are stored in a data frame named 'warn_df'. Enter the following \ncommand to view the warning messages: warnprnt() \nTo view a subset of the warning messages (say, messages number 1, 3, and 5), \nenter the following command: warnprnt(m=c(1,3,5))\n")) } } diff --git a/R/diffrisk_analysis.R b/R/diffrisk_analysis.R index a058261..365c77e 100644 --- a/R/diffrisk_analysis.R +++ b/R/diffrisk_analysis.R @@ -406,17 +406,17 @@ diffrisk_analysis <- function(dframe, vars_response, vars_stressor, response_lev if (error_ind) { error_vec <<- error_vec if (length(error_vec) == 1) { - cat("During execution of the program, an error message was generated. The error \nmessage is stored in a vector named 'error_vec'. Enter the following command \nto view the error message: errorprnt()\n") + message("During execution of the program, an error message was generated. The error \nmessage is stored in a vector named 'error_vec'. Enter the following command \nto view the error message: errorprnt()\n") } else { - cat(paste("During execution of the program,", length(error_vec), "error messages were generated. The error \nmessages are stored in a vector named 'error_vec'. Enter the following \ncommand to view the error messages: errorprnt()\n")) + message(paste("During execution of the program,", length(error_vec), "error messages were generated. The error \nmessages are stored in a vector named 'error_vec'. Enter the following \ncommand to view the error messages: errorprnt()\n")) } if (warn_ind) { warn_df <<- warn_df if (nrow(warn_df) == 1) { - cat("During execution of the program, a warning message was generated. The warning \nmessage is stored in a data frame named 'warn_df'. Enter the following command \nto view the warning message: warnprnt()\n") + message("During execution of the program, a warning message was generated. The warning \nmessage is stored in a data frame named 'warn_df'. Enter the following command \nto view the warning message: warnprnt()\n") } else { - cat(paste("During execution of the program,", nrow(warn_df), "warning messages were generated. The warning \nmessages are stored in a data frame named 'warn_df'. Enter the following \ncommand to view the warning messages: warnprnt() \nTo view a subset of the warning messages (say, messages number 1, 3, and 5), \nenter the following command: warnprnt(m=c(1,3,5))\n")) + message(paste("During execution of the program,", nrow(warn_df), "warning messages were generated. The warning \nmessages are stored in a data frame named 'warn_df'. Enter the following \ncommand to view the warning messages: warnprnt() \nTo view a subset of the warning messages (say, messages number 1, 3, and 5), \nenter the following command: warnprnt(m=c(1,3,5))\n")) } } stop("See the preceding message(s).") @@ -684,9 +684,9 @@ diffrisk_analysis <- function(dframe, vars_response, vars_stressor, response_lev if (warn_ind) { warn_df <<- warn_df if (nrow(warn_df) == 1) { - cat("During execution of the program, a warning message was generated. The warning \nmessage is stored in a data frame named 'warn_df'. Enter the following command \nto view the warning message: warnprnt()\n") + message("During execution of the program, a warning message was generated. The warning \nmessage is stored in a data frame named 'warn_df'. Enter the following command \nto view the warning message: warnprnt()\n") } else { - cat(paste("During execution of the program,", nrow(warn_df), "warning messages were generated. The warning \nmessages are stored in a data frame named 'warn_df'. Enter the following \ncommand to view the warning messages: warnprnt() \nTo view a subset of the warning messages (say, messages number 1, 3, and 5), \nenter the following command: warnprnt(m=c(1,3,5))\n")) + message(paste("During execution of the program,", nrow(warn_df), "warning messages were generated. The warning \nmessages are stored in a data frame named 'warn_df'. Enter the following \ncommand to view the warning messages: warnprnt() \nTo view a subset of the warning messages (say, messages number 1, 3, and 5), \nenter the following command: warnprnt(m=c(1,3,5))\n")) } } diff --git a/R/dsgn_check.R b/R/dsgn_check.R index c09561a..813da71 100644 --- a/R/dsgn_check.R +++ b/R/dsgn_check.R @@ -424,9 +424,9 @@ dsgn_check <- function(sframe, sf_type, legacy_sites, legacy_option, stratum, se if (stop_ind) { names(stop_df) <- c("Design Input", "Error Message") stop_df <<- stop_df - cat("During the check of the input to grtspts, one or more errors were identified.\n") - cat("Enter the following command to view all input error messages: stopprnt()\n") - cat("To view a subset of the errors (e.g., errors 1 and 5) enter stopprnt(m=c(1,5))\n\n") + message("During the check of the input to grtspts, one or more errors were identified.\n") + message("Enter the following command to view all input error messages: stopprnt()\n") + message("To view a subset of the errors (e.g., errors 1 and 5) enter stopprnt(m=c(1,5))\n\n") opt <- options(show.error.messages = FALSE) on.exit(options(opt)) stop() diff --git a/R/errorprnt.R b/R/errorprnt.R index 6ea3d91..af8aacd 100644 --- a/R/errorprnt.R +++ b/R/errorprnt.R @@ -21,8 +21,8 @@ errorprnt <- function(error_vec = get("error_vec", envir = .GlobalEnv)) { m <- 1:length(error_vec) for (i in m) { - cat(paste0("Error Message ", i, ":\n")) - cat(paste(error_vec[i], "\n")) + message(paste0("Error Message ", i, ":\n")) + message(paste(error_vec[i], "\n")) } invisible(NULL) diff --git a/R/grts.R b/R/grts.R index cea09d6..2ab7ff4 100644 --- a/R/grts.R +++ b/R/grts.R @@ -930,9 +930,9 @@ grts <- function(sframe, n_base, stratum_var = NULL, seltype = NULL, caty_var = if (warn_ind) { warn_df <<- warn_df if (nrow(warn_df) == 1) { - cat("During execution of the program, a warning message was generated. The warning \nmessage is stored in a data frame named 'warn_df'. Enter the following command \nto view the warning message: warnprnt()\n") + message("During execution of the program, a warning message was generated. The warning \nmessage is stored in a data frame named 'warn_df'. Enter the following command \nto view the warning message: warnprnt()\n") } else { - cat(paste("During execution of the program,", nrow(warn_df), "warning messages were generated. The warning \nmessages are stored in a data frame named 'warn_df'. Enter the following \ncommand to view the warning messages: warnprnt() \nTo view a subset of the warning messages (say, messages number 1, 3, and 5), \nenter the following command: warnprnt(m=c(1,3,5))\n")) + message(paste("During execution of the program,", nrow(warn_df), "warning messages were generated. The warning \nmessages are stored in a data frame named 'warn_df'. Enter the following \ncommand to view the warning messages: warnprnt() \nTo view a subset of the warning messages (say, messages number 1, 3, and 5), \nenter the following command: warnprnt(m=c(1,3,5))\n")) } } diff --git a/R/grts_stratum.R b/R/grts_stratum.R index 27e97cf..c873346 100644 --- a/R/grts_stratum.R +++ b/R/grts_stratum.R @@ -185,8 +185,8 @@ grts_stratum <- function(stratum, dsgn, sframe, sf_type, wgt_units = NULL, pt_de # check that number of legacy sites is less than or equal number of base sites # stop if not if (n_legacy > n_base) { - cat("Number of legacy sites is greater than number of base sites in at least one\n") - cat("stratum. Please check that all strata have fewer legacy sites than base sites.\n") + message("Number of legacy sites is greater than number of base sites in at least one\n") + message("stratum. Please check that all strata have fewer legacy sites than base sites.\n") opt <- options(show.error.messages = FALSE) on.exit(options(opt)) stop() diff --git a/R/irs.R b/R/irs.R index 8bf442d..e4d7474 100644 --- a/R/irs.R +++ b/R/irs.R @@ -630,9 +630,9 @@ irs <- function(sframe, n_base, stratum_var = NULL, seltype = NULL, caty_var = N if (warn_ind) { warn_df <<- warn_df if (nrow(warn_df) == 1) { - cat("During execution of the program, a warning message was generated. The warning \nmessage is stored in a data frame named 'warn_df'. Enter the following command \nto view the warning message: warnprnt()\n") + message("During execution of the program, a warning message was generated. The warning \nmessage is stored in a data frame named 'warn_df'. Enter the following command \nto view the warning message: warnprnt()\n") } else { - cat(paste("During execution of the program,", nrow(warn_df), "warning messages were generated. The warning \nmessages are stored in a data frame named 'warn_df'. Enter the following \ncommand to view the warning messages: warnprnt() \nTo view a subset of the warning messages (say, messages number 1, 3, and 5), \nenter the following command: warnprnt(m=c(1,3,5))\n")) + message(paste("During execution of the program,", nrow(warn_df), "warning messages were generated. The warning \nmessages are stored in a data frame named 'warn_df'. Enter the following \ncommand to view the warning messages: warnprnt() \nTo view a subset of the warning messages (say, messages number 1, 3, and 5), \nenter the following command: warnprnt(m=c(1,3,5))\n")) } } diff --git a/R/irs_stratum.R b/R/irs_stratum.R index 756c7a7..a48c920 100644 --- a/R/irs_stratum.R +++ b/R/irs_stratum.R @@ -156,8 +156,8 @@ irs_stratum <- function(stratum, dsgn, sframe, sf_type, wgt_units = NULL, pt_den # check that number of legacy sites is less than or equal number of base sites # stop if not if (n_legacy > n_base) { - cat("Number of legacy sites is greater than number of base sites in at least one\n") - cat("stratum. Please check that all strata have fewer legacy sites than base sites.\n") + message("Number of legacy sites is greater than number of base sites in at least one\n") + message("stratum. Please check that all strata have fewer legacy sites than base sites.\n") opt <- options(show.error.messages = FALSE) on.exit(options(opt)) stop() diff --git a/R/relrisk_analysis.R b/R/relrisk_analysis.R index b365c7a..1c21b1a 100644 --- a/R/relrisk_analysis.R +++ b/R/relrisk_analysis.R @@ -424,17 +424,17 @@ relrisk_analysis <- function(dframe, vars_response, vars_stressor, response_leve if (error_ind) { error_vec <<- error_vec if (length(error_vec) == 1) { - cat("During execution of the program, an error message was generated. The error \nmessage is stored in a vector named 'error_vec'. Enter the following command \nto view the error message: errorprnt()\n") + message("During execution of the program, an error message was generated. The error \nmessage is stored in a vector named 'error_vec'. Enter the following command \nto view the error message: errorprnt()\n") } else { - cat(paste("During execution of the program,", length(error_vec), "error messages were generated. The error \nmessages are stored in a vector named 'error_vec'. Enter the following \ncommand to view the error messages: errorprnt()\n")) + message(paste("During execution of the program,", length(error_vec), "error messages were generated. The error \nmessages are stored in a vector named 'error_vec'. Enter the following \ncommand to view the error messages: errorprnt()\n")) } if (warn_ind) { warn_df <<- warn_df if (nrow(warn_df) == 1) { - cat("During execution of the program, a warning message was generated. The warning \nmessage is stored in a data frame named 'warn_df'. Enter the following command \nto view the warning message: warnprnt()\n") + message("During execution of the program, a warning message was generated. The warning \nmessage is stored in a data frame named 'warn_df'. Enter the following command \nto view the warning message: warnprnt()\n") } else { - cat(paste("During execution of the program,", nrow(warn_df), "warning messages were generated. The warning \nmessages are stored in a data frame named 'warn_df'. Enter the following \ncommand to view the warning messages: warnprnt() \nTo view a subset of the warning messages (say, messages number 1, 3, and 5), \nenter the following command: warnprnt(m=c(1,3,5))\n")) + message(paste("During execution of the program,", nrow(warn_df), "warning messages were generated. The warning \nmessages are stored in a data frame named 'warn_df'. Enter the following \ncommand to view the warning messages: warnprnt() \nTo view a subset of the warning messages (say, messages number 1, 3, and 5), \nenter the following command: warnprnt(m=c(1,3,5))\n")) } } stop("See the preceding message(s).") @@ -980,9 +980,9 @@ relrisk_analysis <- function(dframe, vars_response, vars_stressor, response_leve if (warn_ind) { warn_df <<- warn_df if (nrow(warn_df) == 1) { - cat("During execution of the program, a warning message was generated. The warning \nmessage is stored in a data frame named 'warn_df'. Enter the following command \nto view the warning message: warnprnt()\n") + message("During execution of the program, a warning message was generated. The warning \nmessage is stored in a data frame named 'warn_df'. Enter the following command \nto view the warning message: warnprnt()\n") } else { - cat(paste("During execution of the program,", nrow(warn_df), "warning messages were generated. The warning \nmessages are stored in a data frame named 'warn_df'. Enter the following \ncommand to view the warning messages: warnprnt() \nTo view a subset of the warning messages (say, messages number 1, 3, and 5), \nenter the following command: warnprnt(m=c(1,3,5))\n")) + message(paste("During execution of the program,", nrow(warn_df), "warning messages were generated. The warning \nmessages are stored in a data frame named 'warn_df'. Enter the following \ncommand to view the warning messages: warnprnt() \nTo view a subset of the warning messages (say, messages number 1, 3, and 5), \nenter the following command: warnprnt(m=c(1,3,5))\n")) } } diff --git a/R/stopprnt.R b/R/stopprnt.R index 8ce04f9..d28a072 100644 --- a/R/stopprnt.R +++ b/R/stopprnt.R @@ -25,10 +25,10 @@ stopprnt <- function(stop_df = get("stop_df", envir = .GlobalEnv), m = 1:nrow(stop_df)) { - cat(paste("Input ", "Error Message\n")) + message(paste("Input ", "Error Message\n")) for (i in m) { - cat(paste(stop_df[i, 1], ": ", stop_df[i, 2], "\n")) + message(paste(stop_df[i, 1], ": ", stop_df[i, 2], "\n")) } invisible(NULL) diff --git a/R/trend_analysis.R b/R/trend_analysis.R index 4c9c981..09d0475 100644 --- a/R/trend_analysis.R +++ b/R/trend_analysis.R @@ -711,17 +711,17 @@ trend_analysis <- function(dframe, vars_cat = NULL, vars_cont = NULL, subpops = if (error_ind) { error_vec <<- error_vec if (length(error_vec) == 1) { - cat("During execution of the program, an error message was generated. The error \nmessage is stored in a vector named 'error_vec'. Enter the following command \nto view the error message: errorprnt()\n") + message("During execution of the program, an error message was generated. The error \nmessage is stored in a vector named 'error_vec'. Enter the following command \nto view the error message: errorprnt()\n") } else { - cat(paste("During execution of the program,", length(error_vec), "error messages were generated. The error \nmessages are stored in a vector named 'error_vec'. Enter the following \ncommand to view the error messages: errorprnt()\n")) + message(paste("During execution of the program,", length(error_vec), "error messages were generated. The error \nmessages are stored in a vector named 'error_vec'. Enter the following \ncommand to view the error messages: errorprnt()\n")) } if (warn_ind) { warn_df <<- warn_df if (nrow(warn_df) == 1) { - cat("During execution of the program, a warning message was generated. The warning \nmessage is stored in a data frame named 'warn_df'. Enter the following command \nto view the warning message: warnprnt()\n") + message("During execution of the program, a warning message was generated. The warning \nmessage is stored in a data frame named 'warn_df'. Enter the following command \nto view the warning message: warnprnt()\n") } else { - cat(paste("During execution of the program,", nrow(warn_df), "warning messages were generated. The warning \nmessages are stored in a data frame named 'warn_df'. Enter the following \ncommand to view the warning messages: warnprnt() \nTo view a subset of the warning messages (say, messages number 1, 3, and 5), \nenter the following command: warnprnt(m=c(1,3,5))\n")) + message(paste("During execution of the program,", nrow(warn_df), "warning messages were generated. The warning \nmessages are stored in a data frame named 'warn_df'. Enter the following \ncommand to view the warning messages: warnprnt() \nTo view a subset of the warning messages (say, messages number 1, 3, and 5), \nenter the following command: warnprnt(m=c(1,3,5))\n")) } } stop("See the preceding message(s).") @@ -1727,9 +1727,9 @@ trend_analysis <- function(dframe, vars_cat = NULL, vars_cont = NULL, subpops = if (warn_ind) { warn_df <<- warn_df if (nrow(warn_df) == 1) { - cat("During execution of the program, a warning message was generated. The warning \nmessage is stored in a data frame named 'warn_df'. Enter the following command \nto view the warning message: warnprnt()\n") + message("During execution of the program, a warning message was generated. The warning \nmessage is stored in a data frame named 'warn_df'. Enter the following command \nto view the warning message: warnprnt()\n") } else { - cat(paste("During execution of the program,", nrow(warn_df), "warning messages were generated. The warning \nmessages are stored in a data frame named 'warn_df'. Enter the following \ncommand to view the warning messages: warnprnt() \nTo view a subset of the warning messages (say, messages number 1, 3, and 5), \nenter the following command: warnprnt(m=c(1,3,5))\n")) + message(paste("During execution of the program,", nrow(warn_df), "warning messages were generated. The warning \nmessages are stored in a data frame named 'warn_df'. Enter the following \ncommand to view the warning messages: warnprnt() \nTo view a subset of the warning messages (say, messages number 1, 3, and 5), \nenter the following command: warnprnt(m=c(1,3,5))\n")) } } diff --git a/R/warnprnt.R b/R/warnprnt.R index e8d01a2..574cdb6 100644 --- a/R/warnprnt.R +++ b/R/warnprnt.R @@ -37,27 +37,27 @@ warnprnt <- function(warn_df = get("warn_df", envir = .GlobalEnv), for (i in m) { if ("Warning" %in% names(warn_df)) { - cat(paste0("Warning Message ", i, ":\n")) - cat(paste("Stratum:", warn_df$stratum[i], "\n")) - cat(paste("Warning:", warn_df$Warning[i], "\n")) + message(paste0("Warning Message ", i, ":\n")) + message(paste("Stratum:", warn_df$stratum[i], "\n")) + message(paste("Warning:", warn_df$Warning[i], "\n")) } else { - cat(paste0("Warning Message ", i, ":\n")) - # cat(paste("Function:", warn_df$func[i], "\n")) # removed function name output + message(paste0("Warning Message ", i, ":\n")) + # message(paste("Function:", warn_df$func[i], "\n")) # removed function name output if (sum(!is.null(warn_df$subpoptype[i]), is.na(warn_df$subpoptype[i]))) { - cat(paste("Population Type:", warn_df$subpoptype[i], "\n")) + message(paste("Population Type:", warn_df$subpoptype[i], "\n")) } if (sum(!is.null(warn_df$subpop[i]), is.na(warn_df$subpop[i]))) { - cat(paste("Subpopulation:", warn_df$subpop[i], "\n")) + message(paste("Subpopulation:", warn_df$subpop[i], "\n")) } if (sum(!is.null(warn_df$indicator[i]), is.na(warn_df$indicator[i]))) { - cat(paste("Indicator:", warn_df$indicator[i], "\n")) + message(paste("Indicator:", warn_df$indicator[i], "\n")) } if (sum(!is.null(warn_df$stratum[i]), is.na(warn_df$stratum[i]))) { - cat(paste("Stratum:", warn_df$stratum[i], "\n")) + message(paste("Stratum:", warn_df$stratum[i], "\n")) } - cat(paste("Warning:", warn_df$warning[i])) + message(paste("Warning:", warn_df$warning[i])) if (sum(!is.null(warn_df$action[i]), is.na(warn_df$action[i]))) { - cat(paste("Action:", warn_df$action[i], "\n")) + message(paste("Action:", warn_df$action[i], "\n")) } } } diff --git a/tests/testthat/test-attrisk_analysis.R b/tests/testthat/test-attrisk_analysis.R index a94335d..718256c 100644 --- a/tests/testthat/test-attrisk_analysis.R +++ b/tests/testthat/test-attrisk_analysis.R @@ -270,3 +270,14 @@ test_that("Attributable Risk: with finite population correction factor", { expect_equal(attributes(AttRisk_Estimates)$class, "data.frame") expect_equal(nrow(AttRisk_Estimates), 6) }) + +test_that("A warning (in message form) is produced", { + expect_message(expect_error(attrisk_analysis( + dframe = NLA_IN, + vars_response = vars_response, vars_stressor = vars_stressor, + subpops = subpops, siteID = "SITE_ID", weight = "XYZ", xcoord = "XCOORD", + ycoord = "YCOORD", stratumID = "URBN_NLA17", clusterID = "clusterID", + weight1 = "weight1", xcoord1 = "xcoord1", ycoord1 = "ycoord1", + fpc = fpc4a, vartype = "SRS" + ))) +}) diff --git a/tests/testthat/test-cat_analysis.R b/tests/testthat/test-cat_analysis.R index 8893509..e2242f4 100644 --- a/tests/testthat/test-cat_analysis.R +++ b/tests/testthat/test-cat_analysis.R @@ -324,3 +324,11 @@ test_that("Categorical: Unstratified single-stage analysis, YG-HR variance", { expect_equal(attributes(Condition_Estimates)$class, "data.frame") expect_equal(nrow(Condition_Estimates), 9) }) + +test_that("A warning (in message form) is produced", { + expect_message(expect_error(cat_analysis( + dframe = NLA_IN, vars = vars, + subpops = subpops, siteID = "SITE_ID", weight = "XYZ", vartype = "YG", + jointprob = "hr" + ))) +}) diff --git a/tests/testthat/test-change_analysis.R b/tests/testthat/test-change_analysis.R index 5d4a4e9..e2d86ee 100644 --- a/tests/testthat/test-change_analysis.R +++ b/tests/testthat/test-change_analysis.R @@ -302,6 +302,17 @@ test_that("Change: with finite population correction factor", { expect_equal(nrow(Change_Estimates$contsum_median), 2) }) +test_that("A warning (in message form) is produced", { + expect_message(expect_error(change_analysis( + dframe = dframe, vars_cat = vars_cat, + vars_cont = vars_cont, test = c("mean", "total", "median"), subpops = subpops, + surveyID = "YEAR", siteID = "UNIQUE_ID", weight = "XYZ", xcoord = "XCOORD", + ycoord = "YCOORD", stratumID = "LAKE_ORGN", clusterID = "clusterID", + weight1 = "weight1", xcoord1 = "xcoord1", ycoord1 = "ycoord1", + fpc = fpc4b, vartype = "SRS" + ))) +}) + test_that("Change for totals matches cont_analysis()", { set.seed(1) dframe <- data.frame( diff --git a/tests/testthat/test-cont_analysis.R b/tests/testthat/test-cont_analysis.R index a2976d0..10e375f 100644 --- a/tests/testthat/test-cont_analysis.R +++ b/tests/testthat/test-cont_analysis.R @@ -298,3 +298,12 @@ test_that("Continuous: with finite population correction factor", { expect_equal(nrow(CDF_Estimates$Mean), 3) expect_equal(nrow(CDF_Estimates$Total), 3) }) + +test_that("A warning (in message form) is produced", { + expect_message(expect_error(cont_analysis( + dframe = dframe, vars = vars, subpops = subpops, + siteID = "SITE_ID", weight = "XYZ", xcoord = "XCOORD", ycoord = "YCOORD", + stratumID = "URBN_NLA17", clusterID = "clusterID", weight1 = "weight1", + xcoord1 = "xcoord1", ycoord1 = "ycoord1", fpc = fpc4a, vartype = "SRS" + ))) +}) diff --git a/tests/testthat/test-diffrisk_analysis.R b/tests/testthat/test-diffrisk_analysis.R index 44a1c0f..98a50f8 100644 --- a/tests/testthat/test-diffrisk_analysis.R +++ b/tests/testthat/test-diffrisk_analysis.R @@ -270,3 +270,14 @@ test_that("Risk Difference: with finite population correction factor", { expect_equal(attributes(DiffRisk_Estimates)$class, "data.frame") expect_equal(nrow(DiffRisk_Estimates), 6) }) + +test_that("A warning (in message form) is produced", { + expect_message(expect_error(diffrisk_analysis( + dframe = NLA_IN, + vars_response = vars_response, vars_stressor = vars_stressor, + subpops = subpops, siteID = "SITE_ID", weight = "XYZ", xcoord = "XCOORD", + ycoord = "YCOORD", stratumID = "URBN_NLA17", clusterID = "clusterID", + weight1 = "weight1", xcoord1 = "xcoord1", ycoord1 = "ycoord1", + fpc = fpc4a, vartype = "SRS" + ))) +}) \ No newline at end of file diff --git a/tests/testthat/test-grts.R b/tests/testthat/test-grts.R index 2c56984..97d5ae4 100644 --- a/tests/testthat/test-grts.R +++ b/tests/testthat/test-grts.R @@ -238,6 +238,11 @@ if (on_solaris) { expect_equal(NCOL(grts_output$sites_near), 1) }) + test_that("A warning (in message form) is produced", { + n_base <- c(low = 20, high = 30) + expect_message(grts(NE_Lakes, n_base = n_base, stratum_var = "XYZ")) + + }) #-------------------------------------- #-------- Legacy #-------------------------------------- diff --git a/tests/testthat/test-irs.R b/tests/testthat/test-irs.R index 31a2c04..1df551c 100644 --- a/tests/testthat/test-irs.R +++ b/tests/testthat/test-irs.R @@ -238,6 +238,12 @@ if (on_solaris) { expect_equal(NCOL(irs_output$sites_near), 1) }) + test_that("A warning (in message form) is produced", { + n_base <- c(low = 20, high = 30) + expect_message(irs(NE_Lakes, n_base = n_base, stratum_var = "XYZ")) + + }) + #-------------------------------------- #-------- Legacy #-------------------------------------- diff --git a/tests/testthat/test-relrisk_analysis.R b/tests/testthat/test-relrisk_analysis.R index b0afc70..b75f361 100644 --- a/tests/testthat/test-relrisk_analysis.R +++ b/tests/testthat/test-relrisk_analysis.R @@ -270,3 +270,14 @@ test_that("Relative Risk: with finite population correction factor", { expect_equal(attributes(RelRisk_Estimates)$class, "data.frame") expect_equal(nrow(RelRisk_Estimates), 6) }) + +test_that("A warning (in message form) is produced", { + expect_message(expect_error(relrisk_analysis( + dframe = NLA_IN, + vars_response = vars_response, vars_stressor = vars_stressor, + subpops = subpops, siteID = "SITE_ID", weight = "XYZ", xcoord = "XCOORD", + ycoord = "YCOORD", stratumID = "URBN_NLA17", clusterID = "clusterID", + weight1 = "weight1", xcoord1 = "xcoord1", ycoord1 = "ycoord1", + fpc = fpc4a, vartype = "SRS" + ))) +}) \ No newline at end of file diff --git a/tests/testthat/test-trend_analysis.R b/tests/testthat/test-trend_analysis.R index e73820b..5a53261 100644 --- a/tests/testthat/test-trend_analysis.R +++ b/tests/testthat/test-trend_analysis.R @@ -247,3 +247,13 @@ test_that("Trend: with finite population correction factor", { expect_equal(nrow(Trend_Estimates$catsum), 6) expect_equal(nrow(Trend_Estimates$contsum), 3) }) + +test_that("A warning (in message form) is produced", { + expect_message(expect_error(trend_analysis( + dframe = NLA_IN, vars_cat = vars_cat, + vars_cont = vars_cont, model_cont = "SLR", subpops = subpops, + siteID = "UNIQUE_ID", weight = "XYZ", xcoord = "XCOORD", ycoord = "YCOORD", + stratumID = "LAKE_ORGN", clusterID = "clusterID", weight1 = "weight1", + xcoord1 = "xcoord1", ycoord1 = "ycoord1", fpc = fpc4b, vartype = "SRS" + ))) +}) From ccde031def36f981ba82fbe26b99cd85c0441d12 Mon Sep 17 00:00:00 2001 From: Michael Dumelle Date: Thu, 9 Feb 2023 13:10:14 -0800 Subject: [PATCH 06/12] Fixed error in optional tests for new message printing (instead of cat printing) for grts and irs functions --- tests/testthat/test-grts.R | 4 ++-- tests/testthat/test-irs.R | 2 +- 2 files changed, 3 insertions(+), 3 deletions(-) diff --git a/tests/testthat/test-grts.R b/tests/testthat/test-grts.R index 97d5ae4..c5c5927 100644 --- a/tests/testthat/test-grts.R +++ b/tests/testthat/test-grts.R @@ -240,9 +240,9 @@ if (on_solaris) { test_that("A warning (in message form) is produced", { n_base <- c(low = 20, high = 30) - expect_message(grts(NE_Lakes, n_base = n_base, stratum_var = "XYZ")) - + expect_message(expect_error(grts(NE_Lakes, n_base = n_base, stratum_var = "XYZ"))) }) + #-------------------------------------- #-------- Legacy #-------------------------------------- diff --git a/tests/testthat/test-irs.R b/tests/testthat/test-irs.R index 1df551c..742c576 100644 --- a/tests/testthat/test-irs.R +++ b/tests/testthat/test-irs.R @@ -240,7 +240,7 @@ if (on_solaris) { test_that("A warning (in message form) is produced", { n_base <- c(low = 20, high = 30) - expect_message(irs(NE_Lakes, n_base = n_base, stratum_var = "XYZ")) + expect_message(expect_error(irs(NE_Lakes, n_base = n_base, stratum_var = "XYZ"))) }) From 010aa5123af0a02baeffa83f4da9ac9b753b55f3 Mon Sep 17 00:00:00 2001 From: Michael Dumelle Date: Thu, 9 Feb 2023 13:10:56 -0800 Subject: [PATCH 07/12] Updated version number to 5.5.0 --- DESCRIPTION | 2 +- NAMESPACE | 1 + 2 files changed, 2 insertions(+), 1 deletion(-) diff --git a/DESCRIPTION b/DESCRIPTION index 461c195..1637952 100644 --- a/DESCRIPTION +++ b/DESCRIPTION @@ -1,6 +1,6 @@ Package: spsurvey Title: Spatial Sampling Design and Analysis -Version: 5.4.2 +Version: 5.5.0 Authors@R: c( person("Michael", "Dumelle", role=c("aut","cre"), email = "Dumelle.Michael@epa.gov", comment = c(ORCID = "0000-0002-3393-5529")), diff --git a/NAMESPACE b/NAMESPACE index 14b1985..c67f89d 100644 --- a/NAMESPACE +++ b/NAMESPACE @@ -15,6 +15,7 @@ S3method(sp_summary,sp_design) S3method(summary,sp_design) S3method(summary,sp_frame) export(adjwgt) +export(adjwgtNR) export(ash1_wgt) export(attrisk_analysis) export(cat_analysis) From 96da44cd8eced4c2f669c0aa4e91022b4dcd71a4 Mon Sep 17 00:00:00 2001 From: Michael Dumelle Date: Thu, 9 Feb 2023 13:11:22 -0800 Subject: [PATCH 08/12] added adjwgtNR function for non-response weight adjustments --- NEWS.md | 3 +- R/adjwgtNR.R | 75 ++++++++++++++++++++++++++++++++++ man/adjwgtNR.Rd | 61 +++++++++++++++++++++++++++ tests/testthat/test-adjwgtNR.R | 41 +++++++++++++++++++ 4 files changed, 179 insertions(+), 1 deletion(-) create mode 100644 R/adjwgtNR.R create mode 100644 man/adjwgtNR.Rd create mode 100644 tests/testthat/test-adjwgtNR.R diff --git a/NEWS.md b/NEWS.md index 0a82a49..794b551 100644 --- a/NEWS.md +++ b/NEWS.md @@ -1,7 +1,8 @@ -# spsurvey 5.4.2 +# spsurvey 5.5.0 ## Minor Updates +* Added an `adjwgtNR()` function to perform non-response weight adjustments. * Changed default behavior in `attrisk_analysis()`, `diffrisk_analysis()`, and `relrisk_analysis()` regarding the handling of `response_levels` and `stressor_levels`. Previously, if `response_levels` and `stressor_levels` were specified, diff --git a/R/adjwgtNR.R b/R/adjwgtNR.R new file mode 100644 index 0000000..bb82673 --- /dev/null +++ b/R/adjwgtNR.R @@ -0,0 +1,75 @@ +############################################################################ +# Function: adjwgtNR (exported) +# Programmer: Tony Olsen +# Date: April 5, 2022 +# +#' Adjust survey design weights for non-response by categories +#' +#' @description Adjust weights for target sample units that do not respond +#' and are missing at random within categories. The missing at random +#' assumption implies that their sample weight may be assigned to +#' specific categories of units that have responded (i.e., have been +#' sampled). This is a class-based method for non-response adjustment. +#' +#' @param wgt vector of weights for each sample unit that will be adjusted +#' for non-response. Weights must be weights for the design as implemented. +#' All weights must be greater than zero. +#' +#' @param MARClass vector that identifies for each sample unit the category +#' that will be used in non-response weight adjustment for sample units +#' that are known to be target. Within each missing at random (MAR) +#' category, the missing sample units that are not sampled are assumed to +#' be missing at random. +#' +#' @param EvalStatus vector of the evaluation status for each sample unit. +#' Values must include the values given in TNRclass and TRClass. May +#' include other values not required for the non-response adjustment. +#' +#' @param TNRClass subset of values in EvalStatus that identify sample units +#' whose target status is known and that do not respond (i.e., are not +#' sampled). +#' +#' @param TRClass Subset of values in EvalStatus that identify sample units +#' whose target status is known and that respond (i.e., are target and +#' sampled). +#' +#' @return Vector of sample unit weights that are adjusted for non-response +#' and that is the same length of input weights. Weights for sample +#' units that did not response but were known to be eligible are set +#' to zero. Weights for all other sample units are also set to zero. +#' +#' @export +#' +#' @author Tony Olsen \email{olsen.tony@epa.gov} +#' +#' @keywords survey non-response weight adjustment +#' +#' @examples +#' set.seed(5) +#' wgt <- runif(40) +#' MARClass <- rep(c("A", "B"), rep(20, 2)) +#' EvalStatus <- sample(c("Not_Target", "Target_Sampled", "Target_Not_Sampled"), 40, replace = TRUE) +#' TNRClass <- "Target_Not_Sampled" +#' TRClass <- "Target_Sampled" +#' adjwgtNR(wgt, MARClass, EvalStatus, TNRClass, TRClass) +#' # function that has an error check +adjwgtNR <- function(wgt, MARClass, EvalStatus, TNRClass, TRClass){ + tstTNRClass <- EvalStatus %in% c(TNRClass) + tstTRClass <- EvalStatus %in% c(TRClass) + num <- tapply(wgt[tstTNRClass | tstTRClass], + MARClass[tstTNRClass | tstTRClass], sum) + den <- tapply(wgt[tstTRClass], MARClass[tstTRClass], sum) + # error check + # could use any(! unique(MARClass[tstTNRClass]) %in% unique(MARClass[tstTRClass])) + if (length(num) > length(den)) { + stop("At least one level of MARClass does not have any EvalStatus values in + TRClass, so no non-response weight adjustment can be performed. + Consider aggregating categories so that all levels of MARClass are + instead in TRClass.", call. = FALSE) + } + ar <- num/den[match(names(num), names(den))] + wgt[tstTRClass] <- wgt[tstTRClass] * + ar[match(MARClass, names(ar))][tstTRClass] + wgt[!tstTRClass] <- 0 + as.vector(wgt) +} \ No newline at end of file diff --git a/man/adjwgtNR.Rd b/man/adjwgtNR.Rd new file mode 100644 index 0000000..dc2be0b --- /dev/null +++ b/man/adjwgtNR.Rd @@ -0,0 +1,61 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/adjwgtNR.R +\name{adjwgtNR} +\alias{adjwgtNR} +\title{Adjust survey design weights for non-response by categories} +\usage{ +adjwgtNR(wgt, MARClass, EvalStatus, TNRClass, TRClass) +} +\arguments{ +\item{wgt}{vector of weights for each sample unit that will be adjusted +for non-response. Weights must be weights for the design as implemented. +All weights must be greater than zero.} + +\item{MARClass}{vector that identifies for each sample unit the category +that will be used in non-response weight adjustment for sample units +that are known to be target. Within each missing at random (MAR) +category, the missing sample units that are not sampled are assumed to +be missing at random.} + +\item{EvalStatus}{vector of the evaluation status for each sample unit. +Values must include the values given in TNRclass and TRClass. May +include other values not required for the non-response adjustment.} + +\item{TNRClass}{subset of values in EvalStatus that identify sample units +whose target status is known and that do not respond (i.e., are not +sampled).} + +\item{TRClass}{Subset of values in EvalStatus that identify sample units +whose target status is known and that respond (i.e., are target and +sampled).} +} +\value{ +Vector of sample unit weights that are adjusted for non-response + and that is the same length of input weights. Weights for sample + units that did not response but were known to be eligible are set + to zero. Weights for all other sample units are also set to zero. +} +\description{ +Adjust weights for target sample units that do not respond +and are missing at random within categories. The missing at random +assumption implies that their sample weight may be assigned to +specific categories of units that have responded (i.e., have been +sampled). This is a class-based method for non-response adjustment. +} +\examples{ +set.seed(5) +wgt <- runif(40) +MARClass <- rep(c("A", "B"), rep(20, 2)) +EvalStatus <- sample(c("Not_Target", "Target_Sampled", "Target_Not_Sampled"), 40, replace = TRUE) +TNRClass <- "Target_Not_Sampled" +TRClass <- "Target_Sampled" +adjwgtNR(wgt, MARClass, EvalStatus, TNRClass, TRClass) +# function that has an error check +} +\author{ +Tony Olsen \email{olsen.tony@epa.gov} +} +\keyword{adjustment} +\keyword{non-response} +\keyword{survey} +\keyword{weight} diff --git a/tests/testthat/test-adjwgtNR.R b/tests/testthat/test-adjwgtNR.R new file mode 100644 index 0000000..3274ce8 --- /dev/null +++ b/tests/testthat/test-adjwgtNR.R @@ -0,0 +1,41 @@ +context("weight adjustment non-response") + +set.seed(5) + +test_that("adjust weight non-response works no extra Eval", { + wgt <- runif(30) + MARClass <- rep(c("A", "B"), rep(15, 2)) + EvalStatus <- rep(c("Target_Sampled", "Target_Not_Sampled"), 15) + TNRClass <- "Target_Not_Sampled" + TRClass <- "Target_Sampled" + wgt_new <- adjwgtNR(wgt, MARClass, EvalStatus, TNRClass, TRClass) + wgtsums <- sum(wgt_new[EvalStatus == "Target_Sampled"]) + wgtzeros <- sum(wgt_new[EvalStatus == "Target_Not_Sampled"]) + expect_equal(sum(wgt), wgtsums) + expect_equal(0, wgtzeros) + + # error returned + EvalStatus[EvalStatus == "Target_Sampled"] <- "Target_Not_Sampled" + expect_error(adjwgtNR(wgt, MARClass, EvalStatus, TNRClass, TRClass)) +}) + +test_that("adjust weight non-response works extra Eval", { + + wgt <- runif(30) + MARClass <- rep(c("A", "B"), rep(15, 2)) + EvalStatus <- rep(c("Not_Target", "Target_Sampled", "Target_Not_Sampled"), 10) + TNRClass <- "Target_Not_Sampled" + TRClass <- "Target_Sampled" + wgt_new <- adjwgtNR(wgt, MARClass, EvalStatus, TNRClass, TRClass) + wgtsums <- sum(wgt_new[EvalStatus == "Target_Sampled"]) + wgtzeros <- sum(wgt_new[EvalStatus == "Target_Not_Sampled"]) + expect_equal(sum(wgt[EvalStatus %in% c("Target_Not_Sampled", "Target_Sampled")]), wgtsums) + expect_equal(0, wgtzeros) + wgtzeros_extra <- sum(wgt_new[!EvalStatus %in% c("Target_Not_Sampled", "Target_Sampled")]) + expect_equal(0, wgtzeros) + + # error returned + EvalStatus[EvalStatus == "Target_Sampled"] <- "Not_Target" + expect_error(adjwgtNR(wgt, MARClass, EvalStatus, TNRClass, TRClass)) +}) + From a44eda0be46dc3d4b7de73856563b9ac41721c51 Mon Sep 17 00:00:00 2001 From: Michael Dumelle Date: Tue, 14 Mar 2023 11:24:43 -0700 Subject: [PATCH 09/12] recycling length one vector in n_over for stratified design with grts() or irs() --- NEWS.md | 1 + R/dsgn_check.R | 11 ++++++++++- R/grts.R | 7 +++++-- man/grts.Rd | 4 +++- man/irs.Rd | 4 +++- 5 files changed, 22 insertions(+), 5 deletions(-) diff --git a/NEWS.md b/NEWS.md index 794b551..a0c7004 100644 --- a/NEWS.md +++ b/NEWS.md @@ -2,6 +2,7 @@ ## Minor Updates +* `n_over` is now recycled if the design is stratified and `n_over` is a length-one numeric vector * Added an `adjwgtNR()` function to perform non-response weight adjustments. * Changed default behavior in `attrisk_analysis()`, `diffrisk_analysis()`, and `relrisk_analysis()` regarding the handling of `response_levels` and `stressor_levels`. diff --git a/R/dsgn_check.R b/R/dsgn_check.R index 813da71..74445e6 100644 --- a/R/dsgn_check.R +++ b/R/dsgn_check.R @@ -362,6 +362,15 @@ dsgn_check <- function(sframe, sf_type, legacy_sites, legacy_option, stratum, se stop_mess <- paste0("n_over values must be zero or positive.") stop_df <- rbind(stop_df, data.frame(func = I("n_over"), I(stop_mess))) } + + # fixes a bug downstream in checking sizes of n_base + n_over + if (length(n_over) == 1) { + n_over <- rep(n_over, length(stratum)) + } + if (is.null(names(n_over)) || all(names(n_over) %in% stratum)) { + names(n_over) <- stratum + } + n_over <- as.list(n_over) } if (is.list(n_over)) { if (any(names(n_over) %in% stratum == FALSE)) { @@ -387,7 +396,7 @@ dsgn_check <- function(sframe, sf_type, legacy_sites, legacy_option, stratum, se stop_df <- rbind(stop_df, data.frame(func = I("n_base + n_over"), I(stop_mess))) } } else { - if (any(sapply(stratum, function(x) (n_base[[x]] + sum(n_over[[x]])) > NROW(sframe[sframe[[stratum_var]] == x, , drop = FALSE])))) { + if (any(sapply(stratum, function(x) (n_base[[x]] + sum(n_over[[x]])) > NROW(sframe[sframe[[stratum_var]] == x, , drop = FALSE])))) { stop_ind <- TRUE stop_mess <- paste0("For each stratum, the sum of the base sites and 'Over' replacement sites must be no larger than the number of rows in 'sframe' representing that stratum.") stop_df <- rbind(stop_df, data.frame(func = I("n_base + n_over"), I(stop_mess))) diff --git a/R/grts.R b/R/grts.R index 2ab7ff4..6c4eb8c 100644 --- a/R/grts.R +++ b/R/grts.R @@ -149,9 +149,12 @@ #' If replacement sites are not desired for a particular stratum, then the corresponding #' value in \code{n_over} should be \code{0} or \code{NULL} (which is equivalent to \code{0}). #' If the sampling design is stratified but the number of \code{n_over} sites is the same in each -#' stratum, \code{n_over} can be a vector which is used for each stratum. Note that if the +#' stratum, \code{n_over} can be a vector which is used for each stratum. +#' If \code{n_over} is an unnamed, length-one vector, it's value is recycled +#' and used for each stratum. Note that if the #' sampling design has unequal selection probabilities (\code{seltype = "unequal"}), then \code{n_over} sites -#' are given the same proportion of \code{caty_n} values as \code{n_base}. +#' are given the same proportion of \code{caty_n} values as \code{n_base}. +#' #' #' @param n_near The number of nearest neighbor (nn) replacement sites. #' If the sampling design is unstratified, \code{n_near} is integer from \code{1} diff --git a/man/grts.Rd b/man/grts.Rd index bcb4fd8..c4367e6 100644 --- a/man/grts.Rd +++ b/man/grts.Rd @@ -164,7 +164,9 @@ If the sampling design is stratified, If replacement sites are not desired for a particular stratum, then the corresponding value in \code{n_over} should be \code{0} or \code{NULL} (which is equivalent to \code{0}). If the sampling design is stratified but the number of \code{n_over} sites is the same in each - stratum, \code{n_over} can be a vector which is used for each stratum. Note that if the + stratum, \code{n_over} can be a vector which is used for each stratum. + If \code{n_over} is an unnamed, length-one vector, it's value is recycled + and used for each stratum. Note that if the sampling design has unequal selection probabilities (\code{seltype = "unequal"}), then \code{n_over} sites are given the same proportion of \code{caty_n} values as \code{n_base}.} diff --git a/man/irs.Rd b/man/irs.Rd index 0ebd480..86a32f3 100644 --- a/man/irs.Rd +++ b/man/irs.Rd @@ -164,7 +164,9 @@ If the sampling design is stratified, If replacement sites are not desired for a particular stratum, then the corresponding value in \code{n_over} should be \code{0} or \code{NULL} (which is equivalent to \code{0}). If the sampling design is stratified but the number of \code{n_over} sites is the same in each - stratum, \code{n_over} can be a vector which is used for each stratum. Note that if the + stratum, \code{n_over} can be a vector which is used for each stratum. + If \code{n_over} is an unnamed, length-one vector, it's value is recycled + and used for each stratum. Note that if the sampling design has unequal selection probabilities (\code{seltype = "unequal"}), then \code{n_over} sites are given the same proportion of \code{caty_n} values as \code{n_base}.} From a504476051303de46be5ef2dac94f79e27c2ded2 Mon Sep 17 00:00:00 2001 From: Michael Dumelle Date: Tue, 16 May 2023 12:14:45 -0700 Subject: [PATCH 10/12] minor pre release updates --- NEWS.md | 9 ++++----- cran-comments.md | 4 +--- 2 files changed, 5 insertions(+), 8 deletions(-) diff --git a/NEWS.md b/NEWS.md index a0c7004..106db2e 100644 --- a/NEWS.md +++ b/NEWS.md @@ -2,8 +2,9 @@ ## Minor Updates -* `n_over` is now recycled if the design is stratified and `n_over` is a length-one numeric vector +* `n_over` is now recycled if the design is stratified and `n_over` is a length-one numeric vector. * Added an `adjwgtNR()` function to perform non-response weight adjustments. +* Warning and error messages from `grts()`, `irs()`, and `*_analysis()` functions now print using `message()` instead of `cat()`. This change makes the resulting output more consistent with standard practice and easier to suppress when desired (#36). * Changed default behavior in `attrisk_analysis()`, `diffrisk_analysis()`, and `relrisk_analysis()` regarding the handling of `response_levels` and `stressor_levels`. Previously, if `response_levels` and `stressor_levels` were specified, @@ -11,8 +12,6 @@ Now, if `response_levels` is specified and its names are `NULL`, then its names are set to `vars_response`, and if `stressor_levels` is specified and its names are `NULL`, then its names are set to `vars_stressor` (#33). -* Warning and error messages from `grts()`, `irs()`, and `*_analysis()` functions now print using `message()` instead of `cat()`. This change makes the resulting output more consistent with standard practices and easier to suppress if desired (#36). - ## Bug Fixes * Fixed a bug that caused an erorr in `grts()` and `irs()` occurred when at least @@ -55,13 +54,13 @@ ## Bug fixes * Fixed a bug that prevented proper printing of the `Indicator` column when using `change_analysis()` with `test = median`. -* Fixed a bug that made `change_analysis` sensititve to the ordering of the levels of variables in `var_cat` if those variables were factors. +* Fixed a bug that made `change_analysis` sensitive to the ordering of the levels of variables in `var_cat` if those variables were factors. * Fixed a bug in `sp_summary()` that incorrectly ordered the `siteuse` variable. * Fixed a bug in `sp_summary()` that failed to summarize data frames that did not have an `sf_column` attribute. * Fixed a bug in `*_analysis()` functions when `popsize` is a list intended for use with `survey::calibrate()`. * Fixed a bug in `*analysis()` functions that returned an error while performing percentile estimation when there was no variability in at least one variable in `vars` for at least one level of one variable in `subpops`. * Fixed a bug in `grts()` that caused an error for some combinations of `n_base` and `n_over`. -* Fixed a bug in `change_analysis()` that returned an error when at least one varible in `vars_cat` has only one unique value. +* Fixed a bug in `change_analysis()` that returned an error when at least one variable in `vars_cat` has only one unique value. # spsurvey 5.3.0 diff --git a/cran-comments.md b/cran-comments.md index 9c19fa5..8366eac 100644 --- a/cran-comments.md +++ b/cran-comments.md @@ -1,6 +1,4 @@ -This is a minor update that adds citation information for a publication in -*The Journal of Statistical Software* (JSS). The DOI in the CITATION for the -new JSS publication will be registered after publication on CRAN. +This is a minor update that adds few new features and bug fixes. ------- From 3309bf1a8e3c0552bde415ee3a44fdbd8854caea Mon Sep 17 00:00:00 2001 From: Michael Dumelle Date: Tue, 16 May 2023 16:18:01 -0700 Subject: [PATCH 11/12] add cran comments to rbuildignore --- .Rbuildignore | 1 + 1 file changed, 1 insertion(+) diff --git a/.Rbuildignore b/.Rbuildignore index f9eac1f..4c74c56 100644 --- a/.Rbuildignore +++ b/.Rbuildignore @@ -9,3 +9,4 @@ ^_pkgdown\.yml$ ^docs$ ^pkgdown$ +^CRAN-SUBMISSION$ From 7e361c0deee158f34c5cd7654d223e5782d5117c Mon Sep 17 00:00:00 2001 From: Michael Dumelle Date: Tue, 16 May 2023 16:18:13 -0700 Subject: [PATCH 12/12] website updates --- docs/404.html | 2 +- docs/LICENSE.html | 40 +- docs/articles/EDA.html | 240 +++--- .../figure-html/unnamed-chunk-10-1.png | Bin 122488 -> 122490 bytes .../figure-html/unnamed-chunk-13-1.png | Bin 122488 -> 122490 bytes .../figure-html/unnamed-chunk-13-2.png | Bin 124008 -> 124010 bytes .../figure-html/unnamed-chunk-16-1.png | Bin 131689 -> 131695 bytes .../figure-html/unnamed-chunk-19-1.png | Bin 82757 -> 82755 bytes .../figure-html/unnamed-chunk-19-2.png | Bin 49924 -> 49928 bytes .../figure-html/unnamed-chunk-22-1.png | Bin 82757 -> 82755 bytes .../figure-html/unnamed-chunk-25-1.png | Bin 91897 -> 91901 bytes .../figure-html/unnamed-chunk-25-2.png | Bin 51644 -> 51644 bytes .../figure-html/unnamed-chunk-27-1.png | Bin 63665 -> 63673 bytes .../figure-html/unnamed-chunk-27-2.png | Bin 74474 -> 74479 bytes .../figure-html/unnamed-chunk-29-1.png | Bin 54956 -> 54948 bytes .../figure-html/unnamed-chunk-29-2.png | Bin 44470 -> 44487 bytes .../figure-html/unnamed-chunk-34-1.png | Bin 49009 -> 49025 bytes .../figure-html/unnamed-chunk-36-1.png | Bin 135334 -> 135336 bytes .../figure-html/unnamed-chunk-39-1.png | Bin 41444 -> 41458 bytes .../figure-html/unnamed-chunk-39-2.png | Bin 26850 -> 26850 bytes .../figure-html/unnamed-chunk-42-1.png | Bin 43339 -> 43340 bytes .../figure-html/unnamed-chunk-42-2.png | Bin 21451 -> 21455 bytes .../figure-html/unnamed-chunk-46-1.png | Bin 64928 -> 64925 bytes .../figure-html/unnamed-chunk-49-1.png | Bin 27371 -> 27367 bytes .../figure-html/unnamed-chunk-49-2.png | Bin 38796 -> 38800 bytes .../figure-html/unnamed-chunk-49-3.png | Bin 34666 -> 34667 bytes .../figure-html/unnamed-chunk-7-1.png | Bin 107675 -> 107676 bytes docs/articles/analysis.html | 740 +++++++++--------- .../figure-html/unnamed-chunk-12-1.png | Bin 40516 -> 40514 bytes docs/articles/index.html | 2 +- docs/articles/sampling.html | 404 +++++----- .../figure-html/unnamed-chunk-12-1.png | Bin 85384 -> 85395 bytes .../figure-html/unnamed-chunk-12-2.png | Bin 67385 -> 67387 bytes .../figure-html/unnamed-chunk-17-1.png | Bin 43705 -> 43707 bytes .../figure-html/unnamed-chunk-22-1.png | Bin 58396 -> 58413 bytes .../figure-html/unnamed-chunk-28-1.png | Bin 132417 -> 132419 bytes .../figure-html/unnamed-chunk-34-1.png | Bin 188967 -> 188982 bytes .../figure-html/unnamed-chunk-38-1.png | Bin 94747 -> 94747 bytes .../figure-html/unnamed-chunk-7-1.png | Bin 132692 -> 132695 bytes docs/articles/start-here.html | 124 +-- docs/authors.html | 2 +- docs/index.html | 76 +- docs/news/index.html | 22 +- docs/pkgdown.yml | 4 +- docs/reference/Illinois_River.html | 4 +- docs/reference/Illinois_River_Legacy.html | 4 +- docs/reference/Lake_Ontario.html | 4 +- docs/reference/NE_Lakes.html | 4 +- docs/reference/NE_Lakes_Legacy.html | 4 +- docs/reference/NE_Lakes_df.html | 4 +- docs/reference/NLA_PNW.html | 4 +- docs/reference/NRSA_EPA7.html | 4 +- docs/reference/adjwgt.html | 32 +- docs/reference/adjwgtNR.html | 175 +++++ docs/reference/ash1_wgt-1.png | Bin 36691 -> 36024 bytes docs/reference/ash1_wgt.html | 26 +- docs/reference/attrisk_analysis.html | 162 ++-- docs/reference/cat_analysis.html | 162 ++-- docs/reference/cdf_plot.html | 112 +-- docs/reference/change_analysis.html | 212 ++--- docs/reference/cont_analysis.html | 108 +-- docs/reference/cont_cdfplot.html | 88 +-- docs/reference/cont_cdftest.html | 118 +-- docs/reference/cov_panel_dsgn.html | 22 +- docs/reference/diffrisk_analysis.html | 162 ++-- docs/reference/errorprnt.html | 4 +- docs/reference/grts.html | 72 +- docs/reference/index.html | 6 +- docs/reference/irs.html | 72 +- docs/reference/localmean_cov.html | 4 +- docs/reference/localmean_var.html | 4 +- docs/reference/localmean_weight.html | 4 +- docs/reference/pd_summary.html | 26 +- docs/reference/plot.html | 78 +- docs/reference/plot.sp_CDF.html | 114 +-- docs/reference/power_dsgn.html | 60 +- docs/reference/ppd_plot.html | 90 +-- docs/reference/relrisk_analysis.html | 164 ++-- docs/reference/revisit_bibd.html | 68 +- docs/reference/revisit_dsgn.html | 72 +- docs/reference/revisit_rand.html | 108 +-- docs/reference/sp_balance.html | 32 +- docs/reference/sp_frame.html | 16 +- docs/reference/sp_plot.html | 84 +- docs/reference/sp_rbind.html | 14 +- docs/reference/sp_summary.html | 30 +- docs/reference/spsurvey-package.html | 2 +- docs/reference/stopprnt.html | 4 +- docs/reference/summary.html | 26 +- docs/reference/trend_analysis.html | 220 +++--- docs/reference/warnprnt.html | 4 +- docs/sitemap.xml | 3 + 92 files changed, 2330 insertions(+), 2118 deletions(-) create mode 100644 docs/reference/adjwgtNR.html diff --git a/docs/404.html b/docs/404.html index f0ae731..4ed49bb 100644 --- a/docs/404.html +++ b/docs/404.html @@ -32,7 +32,7 @@ spsurvey - 5.4.1 + 5.5.0 diff --git a/docs/LICENSE.html b/docs/LICENSE.html index f2b6b9b..f5cf6e7 100644 --- a/docs/LICENSE.html +++ b/docs/LICENSE.html @@ -17,7 +17,7 @@ spsurvey - 5.4.1 + 5.5.0 @@ -234,27 +234,27 @@

17. Interpretation of Sections

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most effectively state the exclusion of warranty; and each file should have at least the “copyright” line and a pointer to where the full notice is found.

-
<one line to give the program's name and a brief idea of what it does.>
-Copyright (C) <year>  <name of author>
-
-This program is free software: you can redistribute it and/or modify
-it under the terms of the GNU General Public License as published by
-the Free Software Foundation, either version 3 of the License, or
-(at your option) any later version.
-
-This program is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
-GNU General Public License for more details.
-
-You should have received a copy of the GNU General Public License
-along with this program.  If not, see <http://www.gnu.org/licenses/>.
+
<one line to give the program's name and a brief idea of what it does.>
+Copyright (C) <year>  <name of author>
+
+This program is free software: you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation, either version 3 of the License, or
+(at your option) any later version.
+
+This program is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with this program.  If not, see <http://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short notice like this when it starts in an interactive mode:

-
<program>  Copyright (C) <year>  <name of author>
-This program comes with ABSOLUTELY NO WARRANTY; for details type 'show w'.
-This is free software, and you are welcome to redistribute it
-under certain conditions; type 'show c' for details.
+
<program>  Copyright (C) <year>  <name of author>
+This program comes with ABSOLUTELY NO WARRANTY; for details type 'show w'.
+This is free software, and you are welcome to redistribute it
+under certain conditions; type 'show c' for details.

The hypothetical commands show w and show c should show the appropriate parts of the General Public License. Of course, your program’s commands might be different; for a GUI interface, you would use an “about box”.

You should also get your employer (if you work as a programmer) or school, if any, to sign a “copyright disclaimer” for the program, if necessary. For more information on this, and how to apply and follow the GNU GPL, see <http://www.gnu.org/licenses/>.

The GNU General Public License does not permit incorporating your program into proprietary programs. If your program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you want to do, use the GNU Lesser General Public License instead of this License. But first, please read <http://www.gnu.org/philosophy/why-not-lgpl.html>.

diff --git a/docs/articles/EDA.html b/docs/articles/EDA.html index 4859d2e..1830d95 100644 --- a/docs/articles/EDA.html +++ b/docs/articles/EDA.html @@ -33,7 +33,7 @@ spsurvey - 5.4.1 + 5.5.0 @@ -84,7 +84,7 @@ -
+

Introduction

Before proceeding, we load spsurvey by running

+library(spsurvey)

The summary() and plot() functions in spsurvey are used to summarize and visualize sampling frames, design sites, and analysis data. Both functions use a formula argument that specifies the variables to summarize or visualize. These functions behave differently for one-sided and two-sided formulas. To learn more about formulas in R, run ?formula. Only the core functionality of summary() and plot() will be covered in this vignette, so to learn more about these functions, run ?summary and ?plot. The sp_summary() and sp_plot() functions can equivalently be used in place of plot() and summary(), respectively (sp_summary() and sp_plot() are currently maintained for backwards compatibility with previous spsurvey versions).

The plot() function in spsurvey is built on the plot() function in sf. spsurvey’s plot() function accommodates all the arguments in sf’s plot() function and adds a few additional features. To learn more about the plot() function in sf, run ?plot.sf().

@@ -125,56 +125,56 @@

Sampling frames

Before summarizing or visualizing a sampling frame, turn it into an object using sp_frame():

-NE_Lakes <- sp_frame(NE_Lakes)
+NE_Lakes <- sp_frame(NE_Lakes)

One-sided formulas

One-sided formulas are used to summarize and visualize the distributions of variables. The variables of interest should be placed on the right-hand side of the formula. To summarize the distribution of ELEV, run

-summary(NE_Lakes, formula = ~ ELEV)
-#>    total          ELEV       
-#>  total:195   Min.   :  0.00  
-#>              1st Qu.: 21.93  
-#>              Median : 69.09  
-#>              Mean   :127.39  
-#>              3rd Qu.:203.25  
-#>              Max.   :561.41
+summary(NE_Lakes, formula = ~ ELEV) +#> total ELEV +#> total:195 Min. : 0.00 +#> 1st Qu.: 21.93 +#> Median : 69.09 +#> Mean :127.39 +#> 3rd Qu.:203.25 +#> Max. :561.41

The output contains two columns: total and ELEV. The total column returns the total number of lakes, functioning as an “intercept” to the formula (it can by removed by supplying - 1 to the formula). The ELEV column returns a numerical summary of lake elevation. To visualize ELEV, run

-plot(NE_Lakes, formula = ~ ELEV)
+plot(NE_Lakes, formula = ~ ELEV)

To summarize the distribution of ELEV_CAT, run

-summary(NE_Lakes, formula = ~ ELEV_CAT)
-#>    total     ELEV_CAT  
-#>  total:195   low :112  
-#>              high: 83
+summary(NE_Lakes, formula = ~ ELEV_CAT) +#> total ELEV_CAT +#> total:195 low :112 +#> high: 83

The ELEV_CAT column returns the number of lakes in each elevation category. To visualize ELEV_CAT, run

-plot(NE_Lakes, formula = ~ ELEV_CAT, key.width = lcm(3))
+plot(NE_Lakes, formula = ~ ELEV_CAT, key.width = lcm(3))

The key.width argument extends the plot’s margin to fit the legend text nicely within the plot. The plot’s default title is the formula argument, though this is changed using the main argument to plot().

The formula used by summary() and plot() is quite flexible. Additional variables are included using +:

-summary(NE_Lakes, formula = ~ ELEV_CAT + AREA_CAT)
-#>    total     ELEV_CAT    AREA_CAT  
-#>  total:195   low :112   small:135  
-#>              high: 83   large: 60
+summary(NE_Lakes, formula = ~ ELEV_CAT + AREA_CAT) +#> total ELEV_CAT AREA_CAT +#> total:195 low :112 small:135 +#> high: 83 large: 60

The plot() function returns two plots – one for ELEV_CAT and another for AREA_CAT:

-plot(NE_Lakes, formula = ~ ELEV_CAT + AREA_CAT, key.width = lcm(3))
+plot(NE_Lakes, formula = ~ ELEV_CAT + AREA_CAT, key.width = lcm(3))

Interactions are included using the interaction operator, :. The interaction operator returns the interaction between variables and is most useful when used with categorical variables. To summarize the interaction between ELEV_CAT and AREA_CAT, run

-summary(NE_Lakes, formula = ~ ELEV_CAT:AREA_CAT)
-#>    total      ELEV_CAT:AREA_CAT
-#>  total:195   low:small :82     
-#>              high:small:53     
-#>              low:large :30     
-#>              high:large:30
+summary(NE_Lakes, formula = ~ ELEV_CAT:AREA_CAT) +#> total ELEV_CAT:AREA_CAT +#> total:195 low:small :82 +#> high:small:53 +#> low:large :30 +#> high:large:30

Levels of each variable are separated by :. For example, there are 86 lakes that are in the low elevation category and the small area category. To visualize this interaction, run

-plot(NE_Lakes, formula = ~ ELEV_CAT:AREA_CAT, key.width = lcm(3))
+plot(NE_Lakes, formula = ~ ELEV_CAT:AREA_CAT, key.width = lcm(3))

The formula accommodates the * operator, which combines the + and : operators. For example, ELEV_CAT*AREA_CAT is shorthand for ELEV_CAT + AREA_CAT + ELEV_CAT:AREA_CAT. The formula also accommodates the . operator, which is shorthand for all variables separated by +.

@@ -183,42 +183,42 @@

Two-sided formulas
-summary(NE_Lakes, formula = ELEV ~ AREA_CAT)
-#> ELEV by total: 
-#>       Min. 1st Qu. Median     Mean 3rd Qu.   Max.
-#> total    0  21.925  69.09 127.3862 203.255 561.41
-#> 
-#> ELEV by AREA_CAT: 
-#>       Min. 1st Qu.  Median     Mean  3rd Qu.   Max.
-#> small 0.00   19.64  59.660 117.4473 176.1700 561.41
-#> large 0.01   26.75 102.415 149.7487 241.2025 537.84
+summary(NE_Lakes, formula = ELEV ~ AREA_CAT) +#> ELEV by total: +#> Min. 1st Qu. Median Mean 3rd Qu. Max. +#> total 0 21.925 69.09 127.3862 203.255 561.41 +#> +#> ELEV by AREA_CAT: +#> Min. 1st Qu. Median Mean 3rd Qu. Max. +#> small 0.00 19.64 59.660 117.4473 176.1700 561.41 +#> large 0.01 26.75 102.415 149.7487 241.2025 537.84

To visualize the distribution of ELEV for each level of AREA_CAT, run

-plot(NE_Lakes, formula = ELEV ~ AREA_CAT)
+plot(NE_Lakes, formula = ELEV ~ AREA_CAT)

To only summarize or visualize a particular level of a single right-hand side variable, use the onlyshow argument:

-summary(NE_Lakes, formula = ELEV ~ AREA_CAT, onlyshow = "small")
-#> ELEV by AREA_CAT: 
-#>       Min. 1st Qu. Median     Mean 3rd Qu.   Max.
-#> small    0   19.64  59.66 117.4473  176.17 561.41
+summary(NE_Lakes, formula = ELEV ~ AREA_CAT, onlyshow = "small") +#> ELEV by AREA_CAT: +#> Min. 1st Qu. Median Mean 3rd Qu. Max. +#> small 0 19.64 59.66 117.4473 176.17 561.41
-plot(NE_Lakes, formula = ELEV ~ AREA_CAT, onlyshow = "small")
+plot(NE_Lakes, formula = ELEV ~ AREA_CAT, onlyshow = "small")

To summarize the distribution of ELEV_CAT for each level of AREA_CAT, run

-summary(NE_Lakes, formula = ELEV_CAT ~ AREA_CAT)
-#> ELEV_CAT by total: 
-#>       low high
-#> total 112   83
-#> 
-#> ELEV_CAT by AREA_CAT: 
-#>       low high
-#> small  82   53
-#> large  30   30
+summary(NE_Lakes, formula = ELEV_CAT ~ AREA_CAT) +#> ELEV_CAT by total: +#> low high +#> total 112 83 +#> +#> ELEV_CAT by AREA_CAT: +#> low high +#> small 82 53 +#> large 30 30

To visualize the distribution of ELEV_CAT for each level of AREA_CAT, run

-plot(NE_Lakes, formula = ELEV_CAT ~ AREA_CAT, key.width = lcm(3))
+plot(NE_Lakes, formula = ELEV_CAT ~ AREA_CAT, key.width = lcm(3))

@@ -235,28 +235,28 @@

Adjusting graphical parameters
-list1 <- list(main = "Elevation Categories", pal = rainbow)
-list2 <- list(main = "Area Categories")
-list3 <- list(levels = c("small", "large"), pch = c(4, 19))
-plot(
-  NE_Lakes,
-  formula = ~ ELEV_CAT + AREA_CAT,
-  var_args = list(ELEV_CAT = list1, AREA_CAT = list2),
-  varlevel_args = list(AREA_CAT = list3),
-  cex = 0.75,
-  key.width = lcm(3)
-)

+list1 <- list(main = "Elevation Categories", pal = rainbow) +list2 <- list(main = "Area Categories") +list3 <- list(levels = c("small", "large"), pch = c(4, 19)) +plot( + NE_Lakes, + formula = ~ ELEV_CAT + AREA_CAT, + var_args = list(ELEV_CAT = list1, AREA_CAT = list2), + varlevel_args = list(AREA_CAT = list3), + cex = 0.75, + key.width = lcm(3) +)

var_args uses list1 to give the ELEV_CAT visualization a new title and color palette; var_args uses list2 to give the AREA_CAT visualization a new title; varlevel_args uses list3 to give the AREA_CAT visualization different shapes for the small and large levels; ... uses cex = 0.75 to reduce the size of all points; and ... uses key.width to adjust legend spacing for all visualizations.

If a two-sided formula is used, it is possible to adjust graphical parameters of the left-hand side variable for all levels of a right-hand side variable. This occurs when a sublist matching the structure of varlevel_args is used as an argument to var_args. In this next example, different shapes are used for the small and large levels of AREA_CAT for all levels of ELEV_CAT:

-sublist <- list(AREA_CAT = list3)
-plot(
-  NE_Lakes,
-  formula = AREA_CAT ~ ELEV_CAT,
-  var_args = list(ELEV_CAT = sublist),
-  key.width = lcm(3)
-)
+sublist <- list(AREA_CAT = list3) +plot( + NE_Lakes, + formula = AREA_CAT ~ ELEV_CAT, + var_args = list(ELEV_CAT = sublist), + key.width = lcm(3) +)

@@ -265,50 +265,50 @@

Design sitesgrts() or irs() functions) can be summarized and visualized using summary() and plot() very similarly to how sampling frames were summarized and visualized in the previous section. Soon you will use the grts() function to select a spatially balanced sample. The grts() function does incorporate randomness, so to match your results with this output exactly you will need to set a reproducible seed by running

+set.seed(51)

First we will obtain some design sites: To select an equal probability GRTS sample of size 50 with 10 reverse hierarchically ordered replacement sites, run

-eqprob_rho <- grts(NE_Lakes, n_base = 50, n_over = 10)
+eqprob_rho <- grts(NE_Lakes, n_base = 50, n_over = 10)

Similar to summary() and plot() for sampling frames, summary() and plot() for design sites uses a formula. The formula should include siteuse, which is the name of the variable in the design sites object that indicates the type of each site. The default formula for summary() and plot() is ~siteuse, which summarizes or visualizes the sites objects in the design sites object. By default, the formula is applied to all non-NULL sites objects (in eqprob_rho, the nonNULL sites objects are sites_base (for the base sites) and sites_over (for the reverse hierarchically ordered replacement sites)).

-summary(eqprob_rho)
-#>    total    siteuse  
-#>  total:60   Base:50  
-#>             Over:10
+summary(eqprob_rho) +#> total siteuse +#> total:60 Base:50 +#> Over:10
-plot(eqprob_rho, key.width = lcm(3))
+plot(eqprob_rho, key.width = lcm(3))

The sampling frame may be included as an argument to the plot() function:

-plot(eqprob_rho, NE_Lakes, key.width = lcm(3))
+plot(eqprob_rho, NE_Lakes, key.width = lcm(3))

When you include siteuse as a left-hand side variable (siteuse is treated as a categorical variable), you can summarize and visualize the sites object for each level of each right-hand side variable:

-summary(eqprob_rho, formula = siteuse ~ AREA_CAT)
-#> siteuse by total: 
-#>       Base Over
-#> total   50   10
-#> 
-#> siteuse by AREA_CAT: 
-#>       Base Over
-#> small   35    7
-#> large   15    3
+summary(eqprob_rho, formula = siteuse ~ AREA_CAT) +#> siteuse by total: +#> Base Over +#> total 50 10 +#> +#> siteuse by AREA_CAT: +#> Base Over +#> small 35 7 +#> large 15 3
-plot(eqprob_rho, formula = siteuse ~ AREA_CAT, key.width = lcm(3))
+plot(eqprob_rho, formula = siteuse ~ AREA_CAT, key.width = lcm(3))

You can also summarize and visualize a left-hand side variable for each level of siteuse:

-summary(eqprob_rho, formula = ELEV ~ siteuse)
-#> ELEV by total: 
-#>       Min. 1st Qu. Median    Mean  3rd Qu.   Max.
-#> total 0.03  26.385 65.535 135.364 214.2075 537.84
-#> 
-#> ELEV by siteuse: 
-#>      Min. 1st Qu. Median     Mean 3rd Qu.   Max.
-#> Base 0.68 29.4850  81.76 148.0362 263.640 537.84
-#> Over 0.03 15.1275  54.49  72.0030 119.365 209.25
+summary(eqprob_rho, formula = ELEV ~ siteuse) +#> ELEV by total: +#> Min. 1st Qu. Median Mean 3rd Qu. Max. +#> total 0.03 26.385 65.535 135.364 214.2075 537.84 +#> +#> ELEV by siteuse: +#> Min. 1st Qu. Median Mean 3rd Qu. Max. +#> Base 0.68 29.4850 81.76 148.0362 263.640 537.84 +#> Over 0.03 15.1275 54.49 72.0030 119.365 209.25
-plot(eqprob_rho, formula = ELEV ~ siteuse)
+plot(eqprob_rho, formula = ELEV ~ siteuse)

@@ -323,31 +323,31 @@

Analysis datasp_frame():

-NLA_PNW <- sp_frame(NLA_PNW)
+NLA_PNW <- sp_frame(NLA_PNW)

To summarize and visualize NITR_COND across all states, run

-summary(NLA_PNW, formula = ~ NITR_COND)
-#>    total    NITR_COND
-#>  total:96   Fair:24  
-#>             Good:38  
-#>             Poor:34
+summary(NLA_PNW, formula = ~ NITR_COND) +#> total NITR_COND +#> total:96 Fair:24 +#> Good:38 +#> Poor:34
-plot(NLA_PNW, formula = ~ NITR_COND, key.width = lcm(3))
+plot(NLA_PNW, formula = ~ NITR_COND, key.width = lcm(3))

Suppose the sampling design was stratified by STATE. To summarize and visualize NITR_COND by STATE, run

-summary(NLA_PNW, formula = NITR_COND ~ STATE)
-#> NITR_COND by total: 
-#>       Fair Good Poor
-#> total   24   38   34
-#> 
-#> NITR_COND by STATE: 
-#>            Fair Good Poor
-#> California    6    8    5
-#> Oregon        8   26   13
-#> Washington   10    4   16
+summary(NLA_PNW, formula = NITR_COND ~ STATE) +#> NITR_COND by total: +#> Fair Good Poor +#> total 24 38 34 +#> +#> NITR_COND by STATE: +#> Fair Good Poor +#> California 6 8 5 +#> Oregon 8 26 13 +#> Washington 10 4 16
-plot(NLA_PNW, formula = NITR_COND ~ STATE, key.width = lcm(3))
+plot(NLA_PNW, formula = NITR_COND ~ STATE, key.width = lcm(3))

diff --git a/docs/articles/EDA_files/figure-html/unnamed-chunk-10-1.png b/docs/articles/EDA_files/figure-html/unnamed-chunk-10-1.png index ae7f72086d6dee58d2162831ab6f68e02851c6ac..44735e5ec986a35f43ba2ef222c24a6fd819206d 100644 GIT binary patch delta 14355 zcma)Dc_38(*PbC%_OG&UDO7f1$d)3NP|23vWZ#W7%pEC|EwZnrkbPgqSjN6nmXJM+ zWQ?(7XWpy){(tZPGxy%lIp;agd7g83>!|kYs8AJ9<_MsF{!<=-6xFD-qxF*a%WQ+u zj?2{V;;PEzGr692P9x9m^Fz-EK5VTmwKc+MvUtDL6H11XQT%t~i>^`Scm5dEcY7lz z2P3y!%Qh2X`6Tqt=E3ErClr#GFm)MGRP==2)B(jc4xZT{ZLNOBzt^(y8v-3KpHcrx zaPYVPfc{oq$Cl}6H%>Dq1J^1x8#KaA9iNn%rtm`8dWNcul7&iW8$JFc*C*(bHq=uy z&T90`7*`~z@yoTxOP+VMtA6f1_FH0!CP+8d$dVD9_bM4%FxMY&L!6VUE+lf#QL7!4xJSzwXVx%Co@9<%mReP>I3++aTKh915_ zYv3g@=A3x68lQ@;$9Onc$k_Zz;w7B^t8XK+XL z(*)F&5VBW$NgeJYB~PzYD?l0eoA1c;28Es-p=gP>L~@}F{SRthBk0B_cQ+^yTHZ_U zkg%hP#7aMH_kV|9^qI2wo|yH;Wt#qa$hdgz)zMmUVwe#ix;8#+ibiidz5c=1kJ876 zM5-uE+(`kVs$H}x8KY@MIATec&7mcJ7pSzaa5#u^u4C~|FiwPNz?AdF25IFoVWG-5TT(3FjC3SY}MGEi{bKtt8U2YYL{KDvX8jZg_p?(F|?K1HZ8qR zyhX{xm#Bu`K4_TeD^*iHxvK7EV#q`99V}=UAO&>f_OG`zIP4aKcYHthDoL70$)isv zm-mNrmu+eaMCwpo#_h+?$om%BF9Er3z*-xcz4&BqG~&mlw?_uNTCH!CJs;9Vr(fH9 zs@v%E2Sv`rO#2q@SADHtLD`}6SLIaN%Dm(6cR%B5GEBZ1_`T?{i0mNC=s@8bxksTp zew|T69SKUbSyPF6e;@66Pi~XYhQzxuzeV~?esZrCR$3Xs^e0|!H^x^K&K?H>7&b41 z-WZoz&Jp9e#8n@Uj0TCL-OKTN&fXsU@jE?=vQlHM9KT3ZG&( znpQd^qI9kFhc+G2$&wz+tK4g5GX2QU%>3Ix-g$L}p(#1#s@}Tu1WJOE_cy#r8JqkS zniej;u$lgW1(MUr3rul6R#gSSr~F($JbQ6D>u|pmV_k-S-DYTtFTZlw-v`gUW)(%Q zjM%+lozb4cvc3Kw6%D=fkg1A|LrhYXMTsa;$-qR~5%l?&Qt)0~ktFCsjelXsJ zJLZDWKkT5WrLB`^b;^?aXQjQH-rk&N4Ma%8{N#pQ=X3y)j+UQ(8n*fE>XWZZE1 zr1#3wHXZ^i_BC^}CqHYdl_+#}Y#$`Q1RYhqPJ1g|Lcya4du*Y2J=qSCMOH*C_ zC*Jg5{S=W$u6FY(K`824k@CN(9=i4H`xI353QY5T2l8ggFRhY*XVcFti2wOCmy!o6 ziL5EJSqGKlCx%EX@t^s;{@#X&s}DRNmpf-Za?*Ij zs!De&)PnBOFX<=HhK8F#1DYIy4xM`NKr_dvlWen%EfBU~qOg)w)PH4Aw`w^>_M$&akh0!I z8qCE9&k7B<@0z}tbxvBxs#Lw0;G3P(qQCwZX!&?JPEg#{Ej_BkNqaWe6=>`J7N0y` zkz49@jQ2hY{$``fcEI6d@l*~+ljx?;(thL;AC}X2uJ^c;Y96B$c2EDD!tu+LIp=D4 z{18kM$HJn%NNrEJF+ahO8VaJ`-)oTaN2bbWDn!R*Aq^Hzs>;H-l%X-{CbFAOK|(2J zZB}V1k5pwA#-<_MKX}{ zFG5u{Un@aw(e9VV{N!^2JI0kzs^WNAB6t=L+(#h(SoQLRmMOv8-!Y0+92IR#%0_aX zn@mTH*9~sV{X^O34%uM;R!rL4&nCndG&>z{Iz8@>u!t^fs%cLST%@hs3>xF6 zYM3ca*eP< zM|0`jN&{C%Tbk~7)nRjHXAbxoWFMA|907`3AyxIPTzP3--GFNv9Sp6i=caJI<vkavM|>84)lb!2!1iT(d)T}g!;>iEGX{tHQ*_Rz z>VK16`eM9vpCxW`v3&sbH5`2s5Adnvoo!7_&c4el){cb@(-ql%*{g)Z$Y+uFb-xiq zCN};5@ejT-&y$l6p*C2jE@9!47k-vh-{*3(n3UbV9~L8t2M~C+ zT&-E4v&U1pcizs}I_-+6WdY*w>*f+o6i!L@&s4hTr|?GDXDtIVVJx(hBIVb|#drQ> z%?*wOEC24JUC_1mms0fcS&UZz^A`Aw4;-R{PZRY~gCSKt}46F6~!8H%O zI4KkGul3XRWbz`J^BQb?`p34L#HX;p`Sw`>$QrhvrvRnEuPy=kOEOpjN<__HplPrJa(Mty$)( z_vO&CtpUGJi&BYS3mMgZ2=AFsZAaU%H_?&D2b!GwHhI!fq5b*AD?I#VW}Z720N2pA zW1qduIs`s&I-$v@oP79ZnFiv*Uw4=5eRU%E_+*D#?mbE50YjLrHfqm=v)Qt#yqU2*^;;ndAx zPleeVMP0mn}}q=X^T1f`$f`#vXwlBEIO`sMq5jRFda zisfg>U3YxZ{ro2(1^+4zJT}H?XQtUjNU)hVfUsEBD2&LEe!lf%%;`x_&xSF3<;v?f z_yODLJ3GA_?a6D7MKT~4oz8R2W|w94ncgoQHn&qn@Wa7HMqqV_@zIikJAq*kSwnv%_D5?c_6%3HiNWb$14d1Ay^w zXE{PjF+YdH-ML{lFEuszs>R$(-tuq1^DwrxMzUAl~jJPTKAr`=k@x~Wh;dv=nZ3hN^!ql|db zM4YK!JpTK-Mqym^lit2fuO5?oDIU%eB4f&x2O7evSsD+=dT6z|XQm8QZ@$$dzU`z^ zh&x|K9&b#AwCFJsll96mJk++lO)on++3zLWER5vMOu#F!> zB)Suqc>&TyHz(OGy|()=wwahA=Ll;TK7h(AuUlHVQo3s zyX?zkZORGYocvHK=dtVgWpVKCT3F@Qg=^XrEQd&f7n%^3qLghZP2_&3TxHRZl+zye zC*6SxryT7tt6H5j>(5~iLac%+DJE(TrLw$!)E@ef%}7h#Z+(C~S28 zbCb)~O3cp0?$(M)lKzX}&EG3tJ;6!TD5-cE_p1y791f%7FO!w!kq60@>mmp(HnhD| zwGS&R`@3CAS6xwro^Yaf0TrI&xZPQ>Zfj?Ip;(l)oXp4kXyy5Q-9U5%3mXkU7H?sC zv7;&IW19;rP56h-lJk@FJ1F%Ymf^@mnVQcJ@mUl3g6d!qj|#{ z7Mp0GNQ-y=U?$W5@Ymt1!J(%&dKF%n@fM~h=5C^OjeuiTDmt)zK40z zOXWK^5H(_G5ne7%{Z9jc06x0IA2@dFtb%#E1Nog&Gs3y`DJ*Z$%&T_ja`W6wno`X| zbYA8h(3oYrn`x)kQj9NmpS=`0b9NzR55J+lgv|aV`422YE8@UL_HxEmg(tii@+wdt zXS}4uhAk<-DU`DHuq!yZhYQ2@Yss~mLr_{xGhj$9YhoMd+F9k2pO~YU#aMa)VDXhi zOy%U6kC9{VV0jg4Y&`Bv^{1q6f&?n7X+@W^gWToym^9bk!^Z+{6#Ye%Q9g}vHdDq1 zwT|$4=fjPJQB5IsxzhH7Rz_agTqa!UFS<%610V`qu~S1OUm@d z&@%+3@=Uk>$2{nyBr1!i=j+1V9;VxnjHhL*@pb#P$15Qq$zuZRTHD%_q?VWfT_N*- zPdg?O?U-1OVY`fSG>^@R%I&PsEB694Z=5@%4Tr~2+iU;&B7FM1P9G_YL*LQ*ci@D8 zd=XDQ1?6TRD%7D*2OYhDV*d$sObjUL_Vd?$+%>5gp=o$sizVKFCW7r2&yM*)C*xlsg6`mdlgcovO zRpsfXAHbV|3kZm!tfESXEm6I>x;DE^(E`j^&~K?|(NVZ=c1-B8DpSt7-V3q$Hyki_ zsr(f?c6!XxeI?i#3ZQgb`5go+P|I2~{w+Dtu#p5=p=x+VZLjBQAxIVH%#xC3Pv@f` zI7;4c&8dHAT2_i1mE{lY$bp2xWSjw{o7b4 z(Oy%$J?q~LP0g8j`sSO@h$deISocu$I#1cy7l*dU&MeG8-k9o1X=lS_wJ6~>d0haottSiI^*^F zHFI?-zk&6}#Dn6z^BO!&jw=rKDT{M-&V}5!w=Ze-EpCky`yT(1s$TA>l7CJm><3E- z>bt2;JkvVc1SGgN3XhVioR9fAX^y{+pZhoKsLI^+BfdQg*?XT&`j+Mp_^QdJEbdbX z2F}C1l>3w~PZ-0xgNERYEtzZ@ek=ycKQ3$7{`ws56f_rQX?*qqGz9H;slS@j?@Q*# z?NY>w4bSwHAto6kMnS~VJ8GoKQB@8%%2XikhMS_-G&leg|U4%hl?U>4r{35S(mlRSEmQZkpq^DKX2*4 z+cmOs6w(~=vs(gqE0ACkpQf-~;JBFhF{ulVOyw$BFbr8ieT@)$`DUc?*EBH9m0$PK zOZ=lU^a5m!-7BljtIY858ceJC$bD7>78%h(Tn9Uc_HSILNjFg)N`_xSf4`EE*NrGI zmKmMsSFs(KS7MZ9=p#A=_o@=Yr5SRoH=(&%N z980!ug+KeyNQL~XjV|MUnY1_WYMEEITw9Xqm%Eg}ZU&5y6wF;pc2MhB8EaFPS&E+N z&ItjNr?om6apVU{;|b!w0|T8WA5V){*KMXReDWF~AcHvQ$>f>TPUO(wpU2Um3=Pi~us$R+&kZstCE9w?J$*95i|DW08 z1O-0&D(i0kk~5cXrOF0jZu*&KS%a70ZQvX$16*BG?E0R@lHe*bcYnXt;Z4>~65_uS zvfamg-6=Aj_tv}r0Pud38-5A0=LG^aKkwzJ>5(0|DJv`b>}nSFJ^p5ZsF!Dv6HeAM zcrq48^@A3izo}NgKP8OOqZDN%pHtjjOdk2RAeR$vJfe&K%M)JwRsVxky{Q-&m(P*? zEWY8*aMW*{jDaj);$OSMVed@dPT8&>Soo<){`ozbJ>cm`QUSq?)}K5vhE_^nfW!WH zp`_P*NA~B{XH`&lyjROWJKn|bf)aobMJz1s(T_@xpADLSPb(dgGgq9pdyfP^LC{Ib ziX!J9SjDo8jw6yBp3}Ss)mYq9AUczfHO@|Z+^PdgyxPk zQ6`jm4PJDvinh4wtw(l>BG}R|=67Uondi-uNedoU)EOgpk!DgN=q$M)Bn&f+_{*57NIzSfti;KVLQeNV6WcA)S~>eW{ggp+2w zH(7do&AW?y>j{h{UX?^Jx2g-0N*bH%kakVql``ep z<**rl?-q$JwQBBLvGo-AFjjfY-dYT;G$1|C=sis~!M4LBu0(;_d@55Rg-exm*Bw=U zJP=z@tT^24lL!wAR1`M~*?fW`$+WLg$cwlF%wWkEh5qLY>ys_o4RWE3D9pg--{of#ru+)xAvM5DQP%5a)u&u(NGd;8Gj1l5O>GUPyZ?b_4&g()9__OO6ZsO=e0iD0j zms4LfC?g7M)~(y^>@o#LM;$m=#FAQvFSQ9(@6NqIJr7vb0vSw+oI07|q_rOdse8UP zEIxGqOexnY;S-84l`I@X{J_&{28oJuy-UkI%kR_p;%}pJV!xfoxGxplS z3qhU}LxPCqC-LcFQk@2kB_o}|NuGbdn-N_$Ekn(cJwFLPX2+M75MS(7UaW&U@*b{rri zPH|34jq$%Xw=uUX@}!g}uW4JWlF@sv;Y4!Yeq`=9`#OdCu0n#tl*}G-rdFV376A_S z*EHIUBmq$F(q^4F_|um)_pXWQiflgzt`B3WaP_kE#*K zR7G*R0Hd%Y%_@^W16vXoleVY5zY@ly2{e?zWsX;O@~HdAcW0p1rWA-C4*OA7q`d21 zo}-VE=Uj<$6)fnq_k0%yU7*1Owr!eQzr1c2NvA)cU=4x-miXed3!1OQt@R;6{7$); zll~HDb?awbySDSU>zi)WOPrRBQDg_R3X9yF8KS~+KF=O^ef6-gv#b5GRet6hl2RHR zHgWN=;nZ?|gww-r9hJ71=$U&my+;AuN!1F(j$U7e^2U-{k`YL9?BL8J_=$A6$$x{_~igDi}U)eD_fg;$?Zb7vHgT-m8qtu zJDso{ry6^83jfj3+En+Edj!0iJYcGYr^>T|Hcj7bRJr##x6IO&S+2?cteI{uP(a8? z(|am;#pLOWTlhJ_zzLKR;jpaE!r9kosVkXh(0%WzQI+3W#dV*}IG&dW)}#i8QzYvH zJJgT9C%M7^&gvFr4R5mKi(0d|NhBODrE~YtzAbp2yHGJV^CK?&MAM1L%Rp-)xcDJ8CUTzl+*X88eF}`K zGcM^dAMa!o_Si`uwm%QT4@f9c)ZJnTxT#nJe7=4ngwu9B!{d%$#PnTR7Wk(ZmLeVCPi5ZMk!K-Ibgdp z>+ngS99eCl5P0w)C}2vKc8OYqKdkv-hNVVU*%Z5R6`ggQtY_qrM{j2GfepZEw%?5l zP5{l3_5fjq_q0VM;?fCOU3rsbMK|w8_va5r)aM~Gu`$nIrH>0o(+&wEbV=j-C@!aK z$P6n`ah4tVC0$0z@Z8dCDA^Xb17VHYkFlTTy&3aE@F-{?A zT>u4hsg5a!ag$mJH-I3(%}||l>%@ryuQKVO^QOzY)P3Qh0I=)xxD?`E9uQW_Bdrpup7$P^%ba%5@v9)jwTMGpm2t8ZH1OlNM+ngYUg9hl%r7YsO*6C>mA3jU#k zr9zKuE>b(NXbN5Rt*W%qP|}U-u#Y4QRY2xynk6#hsswSZ(1Ge)I%aagHfKL@`^irRj@x5KPlp>tVB=WY7cxXwa@yj&-7X7CPk#2 zxqu#|d5MOG6tfhTwxkA3@kwzpzj2X{fX&K?DfnN@XA#aad6U1yR#yDX7AClc z^*UU_ea|rbSGBsflc+#L<1*AR22|5=UY~;v*V5(|0M4w#~1&hiV1U8 zM15IiG0!1$;N^~ImsIt0J(aI3-h*nv;QU`uUN?lXJ&Sy6U2^+P zQqt-!<=I~4FpUL8#xx5t*@g(XI+NOK^Gif-37Z^k*7cmK{=bGESmHccpiHx63sM0M zj&f;{K45C6_geAw>w6ci8|G?G8cj$4jS#UjrBi05A8_TmK^hYknkqt+FS>;s(MbXsQSlR2%?atP96D*Pv*g^{BR9{{qzr~2VjKa8I`(p42@vf!x zmX4_m>6^@eEzWLt9UXySZgtiV44`BEy#nYP!bsd~z2_Bo=Z2Yr>wn47xfV%5^swOSli+17*pR5=eOR=TD9> ztyv@ap$Az?;K3|C?B#@oHcH9iQ)){4wD%%^0fFRcE*6q6#BQ%-$4nXo&ZZlpZ`%JJ z9iVGn6^@z@3tUC%XLb&xHZ*;7a=Lh>tTDX&4bN<Yu*H8ZT&5I9 z!2AD_PY;3-xbbwJQ$8EnAE?s&w%19!r1I`zF&019S7?4p*`h_@Q(U)HZ${2Msx_G$ zUh)sO%-Jg`0+?N(jgi82MFX$w3c0sObZ!(+EB@j)H}ekG<}iLX^h|T3sdjbwy)WaK zgqOVA{%nl;O+F1!Nft4;3Edf+v~cF}a)xVa;$zKQWt#-3ZtmC!ucb(ZDZOwtGKzx@ zAAcqCkoTO$Z+WP6HAh4^C=C~qo|+4n2uB`vF5d|z0hs#Dzd7Cc-J*kh$HY|JVi;vY zuUv!qw16KdU;DY*CZ@dY-txY~+nYH$vTWHpD0J(3(lskV^&};+8aH1J1dLjkLXQjs zf!~fgjschLD#1AqBkdSzYUDbb6BrQ4@5ijDES8YGb-#_|HgAo>9^xare-g#O4J{of zAUCY^GE~9(%5EjrEbt=s<}CkY9(h>EXQ~7w`Z72o`Z0?hC!vqdv);r10SR30Vwk1d_xjp6&=rRZ; z!hL=d$nTa10t0gKe7VlKt!lG$szF3Y=3J};`07)&xjnC1mj_}a@|!On zTo4fGuN@GrbK^p>O)tf;0U8hUj^k4@&I(hJ?oN{8?oXxEc}A{Ix+iVMpXG>zjiD<8 z<)|~4Z!r-g-Ug!ut7QCtm3!`)!^mVGrT_+RIw4kFD)yc49CaTr^K*|y%i2wvl5Yg6 z+*&9(Tl3)>V1M&QA+G3j_$da_;hq?ap)3DamM{0iiyIsf`RB(5fJ6z;OqBCn>gqL4NYtS_2$wl=Q8$8khmzlb9^7d){VLH@aoFz9J zulcE|FWTnYQSc9BQzhtuvBj%3#!XOKRIC7Hu#J6?e~a8>i95FZt5$(x{=cgtqso?H zx$Q9dF-FamvP3le=Y4A*2kAF&q=5H@!UrO*_Nf-Eu6J^%rf%bo3*d={Dn`F8cW(EJ z@A|3ZeAgllGiZKD`@Kp5`Xbc930-O)Yjb9zU?09e)a6*_MsW7=xtR|f$zze&^HE2= zDGj@Q-tv+i@eg=(O4$vjKxh9{PMNo*08fRPqUjAPP|-1=|Hb8<2gOj=^7r!Bo`v|h zbR6ED4Va|YR(d9NB_a7_=`1mV+;yH1*(=ppBl}{lul134k+ZLZBg4de0bwTAvA~47 z=}E84M>P7t5x~zaWv7WBc18B`{^ejG3%hi(eI+3^Lyui=1RJb?4>LA3U_z?#1UZIc z%ixmW8s9LuAZD8(S>fVG*s<887jl-&`45HKI#KKkW6kpq%%GeQ;pxkmj^dk=^fzF> zIkcijTCA-ha>&a>K8B&X##Q&!gDF-t0J=h-vgwtUc(@cBPtUzG_+(Yi#rjoWisY`q z&eRlZln9@z<=N`zKYAA=)U1()v2(4E{|v&R(ewsjBrsxhKQk7iGX8AEPaa%0tTvH* zJwo13seIj?ITrMvwkw(u%z)42ZpZKaqDV>oS_I=ePvInX$tx3#Y=8_7_mXh{%0k9M zccQKm8Vj_0n9rUb1)s@Xa534mcTN`~MP~=PK)aV9!6c04W>zpxeS)@zap!rDQ7IeX zwqz1AMRQEQ`+|YW#_D_GhLNvX3Y7q-s#kd`OE=|rh{Rx-H7*|(>V(s zcz*IKSudX+C>#tSV{K|d_b=u?WpLW*R!A*JRazsh-tkO5Um7@`g-B#bx(^fx3a}a5 z5JIi;+uwtQ3dAUH98pFS1v zKYI>L&0q(WJ%8SV{HEYhG5^1g*l7y?#E`qv!cB8vhot8zM zLl~B?g8P&HG^#r7scQt7Ok>#uA2l*r8Tn(T?^&dIilp@;&JOq#{s0RxR{@8WuK47c z*q)>E_Z{I_f0+{T)JG;2#|GpuJ}`3jk`{;Ht4e^MJ!l#4lsyIr0;8CK6Gde` zF$}>#$mkosZs(jLJ!ABDFo!lIqEA*YetDg}%f4g+nm%w^rE`F6{~hPl|FjY%dan=W zPk12U+K}pBdsVR%yOxlSZTlhr|CK__`x8?kIuicgx{mCr&(zmVAI}i-viR{4MT7K& zMg9Y?Kj$F=j$ILNT(Qk1nx4+*Xj})Jn+pE-`@!=dtSALPqq|`=xsiV~X-e6lp!6TG z>q)TUgqmB6dEcY^-wEvT*b^TV&*~?vG79b{&vyi_o-c6smvHlOu^cg_1;1yQN?V8b z{iJf`V1e_4B640l<%ad1=F*?2??p%Kw=SsCdm!(f{#kTk6sU%O@&yejFRSg1vkepr zfdRxM3x?MBKcO1Oz}Qo{?Zd-2LjXy+Qs*v#t>aBO=Xr52a=oC&S?0-K{lkFqwHBHJooH)Imd0OkP$K_3&Y`oC|z@vec(L@lB)|wJP_cL|DWAdXc8k=>eB{ zg4XeiE84VuQIs@3XJonYZL*5j~ZwpTZw8>#kKZuw)G)csALb$cp4!Mg?#V3~0-%4q$t)1~Hvc9q@Y zIcu+Tu6!uA`K><}PfvMS0gPDG1>MMoucaB}#jjO^Qu6Gza?PetwHx-Hz zi^qaKo;b?uE%2jY>iy^C`AERF-wG9!k)9~K2}|3$$|FQD@SjR_K_66NWkg(T0(U^B z@O5MQpe8|3ps%i8-u;wfg*u9W@)&pOa|U4ugvWKG(x-&1BtJg--tBzO}=7z(#y#D?|sBo!cDs=wy5o0Sdy|Lza+fSz3;EQSdsa|4M}7f%^Zw96X@<;ZaZ-o6rOa8M(K$BypMX3V zp%=9ncVGKqnJqY#Uh#{8Cz~m?LLvWahTpG#0~hR-go(dgdm-%Zb_BBL*|A(~H(VG| z^70E$;JHsz( zR+4d_qQWfG&uCHT%|2`k_|nnD5biQNNmkH|&wng)@brWk)XJ5eK6a?br9v=19qZm$ z@trC6LJ4@tAB_N7AcuCSestpiD>LkIuF-iI2|RwjV@}gt0}E&R@S11d=+-Cy8|6FznKHAhG{~b8Rr)@lurE=O@RXUSfm z{w$vP$PY7z9)8tI+Fi^4m2SNBHbSh*7&m=^K!%(eBa!!?(F;+@?0vhWp2Fb*eqE7x zFPtnHWpVPsl84H}|H0R?^+_=d`IjV<&Omln0ye(f0lgjY6Pyj=ApP&4Lq+$b4zQG> z;PXbNz*K2lpu7s_!7`*~pn83I6p>pRHmKoBAPX(bI^8r?RaN?alI+)vO9zZ+^|5r( z6k%mLcQfW91AJ1=5+)VFRzgRdGhcxyL>AfSaU!;Ggf);9Sm|j|Y$JC4YIeFOwOTLop2|t}%3yL-aTh))GGq*AGkX+~{>naIY*L|$r@Hbw z^dU!9r$p7-QJ_hyyjaYQ2~qFlQc(pDg}4;IXPGEi}EjH#glLwP)2tYfKYPZGDIGI~3FI{9ED~Un?KBc@_2Dp& zgHyg-r@44m*k84A52rL&p0+SZ6O{?sjRErRyuF5h666WEUGa0_f{mUc;pc(B`crkP zTZ*r6j-n1)u(*I7&QY10)*HkauZ#g@e)^d8-zV(sjKt1m5MsqZvw&3#i7SwOy#}`A zzu%Xl8K(CI+Ur|R9@56RVernOP1{|jy7eYeGpgx)+|E)fO?=xxH6V~LE*kmFJ3TKT> zY3t{`XSE1v=DxWJJKp_DMvs!KdN_c*9EEw&>c6MR+{eaFNd2yj(5$&__bavZr;Naj!oRI zHRnCa8*In{nU4;kc`pqxf*}uRSf;MtQd0W*kg0`Y*MR^zKaJo|59m%t=<#F(q)Vp| z>93>Pi#q~7M*kNUPfk%^0USWwBqInv>cAnFg+$ z)D0dwe?C+O1l%kCy9H!l!Hw?fL?ng4rv1{sRdCjb${C7cdle+9-@VoI@jM$Nb?fEA zC<48Bd((;yN{qFOr$|I(Hz_$4x7~9kKT|{<(FD!1&FOK3%Y8-%)~9^M&Ek{#`>(~2 zJRZycKs;LHo9p(ZWtj|>E}qv#_xzdlK+U3*k11cd1qMq zK5H2Zb=gA+0rMe@L`^Mh0a;ZQ5oa(yQZI+hr{pzwcWjWP?p09Dg7xLuGN7wm$_`H=)%LY+gvx=alq%!L@SE5B^9@@>G}eKFx|w zzg_XEXG~Cv=-E36nhy`5*y%VCy&3DZPfB7`4$n}&l)&_9&%IRk;9R{m*xS&PE(qElD*rJWl zu)sfUvZ5(F_YvF_LbYV38VT2qq&F(m1?i_4CpG`d2+MsFD(=UnQ<2vkB&^ljYKB9T zZoz{G{hliMM`%BKWMNRZzRJK+J~xoPt&ve1G7}O;Dc>u50KBqVXky(o*h4|J#wt$B zt$Lm1f`2iF)P(&_IVkhRp`|W+P8F%Ayxev0`@wrCW%1JK13*@d_ngR8E4B9Q-v`s1 zH!=o@j^A`rx5h-YQih$QY!c~;H`a}G)A~g;ZppUu*b;NcUrWZ#>sa9=T^QHbS6uPrOeH5hPUpo2vZu75bIk7NKu@1yN{l$>zBr zlGJ9Z*7~HeQP?^^M*1g@31t0>NSN$zmUBr!U`#TQVqF!^0-+keuZt76Q{@g)KFV2a zZ+M1uA=T}2JL$Z|8RIyGn&`=I&_bQ^v7u1|r7S}8V>neVcJLV%lxD3vf8QRJOYSXy zg2{^eSjCA&{e-ES1TJIjVjGCQ7% zW?$j#lah%MmbMhT?R)D$`xCwV>Nv;#IxfR6(ME&7cvj zmfo*szocKa$Mr*=-qh3IOZaQ;LB>feee#1{<2)JC{u#$Seb^=%sbZSGad+doUVeU8a~lqrRZV~s_Q3vvDThK+01vL#3Y#lz%v=&4#so=q1U zoV_yfA7n|p3RkSLKDNMo=7athEp~R++ZRad?v|wicXGi1+pbIB1e4Q8o9ZjPXESO~ zj|2-;ZXGlFYHEw(JyZQ`#1W@1$XGDUT{@*i9HI<|Ih2EnJRl)?fJWtM}bF8Uv3^f*5QxD6oX?ow=DE2wh z5m^xg5XeMk+v%BOR9~$IW%EVe|NH-}78i@O9uHiwgrC7-QKQH584d>2_g+!i3rPVhwO9QpalH%dYH6#l#domr7G2SZ{0XG=pJs!M( zP!Pr;Hm1!PPI466A39V<*Ffzc{2M zmJgO#{^TpUc_k_5%YQoD&k|hD4cz6;*vdafTb~!GwnyzLF0d3&%en`<92mfFZ#k4> zCI%TY?zo6|$V2huY_6$}4y0%H6C-~P>u1q5hNo;>gsy`{QF{E{c^vY{)*BP#>xHrr zJbsQvENV)?Ux+ri*e>x#TfAzp(_s~s=|*$Y=}&lb{in_}N4vFjG&+6G_?G6EG6r2! zR?@??>5#C{R#HvZslG=Mtp_dUPy(n9Pe!&_^rokT-=K6_A>6MXnIM-hl;~ItBR*60 zX>G7D-&h-o_%!P590($w2U82Qjz;5|0e~~C_?sS)As4Z=xAujM5KuHu6(tf)ecS#f zc--K2H3Zi8do_kVsPo?$m81r%yR;i?IvoBwnty`L^;dFQtA`Jk%>Z+lr2#<-3ZtSEbu*QE$7I0|hW)c)Po( z@8Ge2cjUJczk9%cFi%4RqP)K(tj^5ob=wNO5uTFkwU*Vb8+&U`FNxlfVPQN5#rut` z^})`ML>$u!qRPB={fg57TaXU;S#JGzTPFfg?UJm_GXf5cakKoB5= zsrVp{koxSY(yM)e{+cV_*%D+2&AE7wcko2hMBM;UvRSYd^<&l|J}%fuX~18q6zTZm zf=(c5tLn1I1qRq5j;YGl(ss(Y=41d z=C%v`MDxotXbCyJ*u9dt*> z0x~THRgs=_%#|F&Dig}01HN86v_s$4Z83~+H+V}4t2j|>#|hSTzPPd4UGFG;TfI6g zCx5Em8IMk?M65~l!A+b2CUPd}-y6txH=|cu#G1?ZR=m}zJBb8{s_>$=eHnk8Dq#-*aiH~9U04MsxCLN{Q6zGrvrfCC#oFLBoWSiO(x)wyn~ zl#Mx+g}8Fpxsy#bMxm3X*sjbf*R!FPF#zjJQ!a(*Pj^$Z$~T5`{5=B0>h30o_t>Z7 z97iY2F?wzJ&@Vy<4(n}Sntlqi{Kneu+!2~fI65n;N)uJ!FxH-e3J+A*fDm*iVqh-V z9mD_tU1Kx5*zT8?+DBYNgv#i$(0}8XW#CGTiy$&k4ug*P|qTcCa7mS^X-u0UQc3OHSJAO-rG1|62k69yC(Ai_ow?tYre<44;7F+iLr4@GYi~b; z-qIAWF~_mC3mgb;iHgUGO3+cD2y_XBWvE!hqMs$k?tX)N6Pyv9^kGVUOnQ(1y!rU? zYqQ5Cf_RE;v~jacgBO5S{P*&@ro)iMREyk0n#UQae zr}jSBq}e%C_>pX-IW`cpXQj?`?d{L}hCems_^VwmhK+nJez>2xx-N5cP=XG^>!xI- zNUQ#ycf0X_LW1C?(+h9u&t?-&MBiEJ5$?PAW;&*y->TfU0K(ef?#QAA317DF2clt$ zG&dM^qmJiTwp=^g8xp{RIp%XO>@pKoY)Q%@A=K$WN^-Vlt6)VM7KgZ=XrCW8LqgGw zNQ*Mge&G-6LHI4d?m+Is^Wf$RSBeRa>fLy(wT_@yvNiZJ_TTl*bRg|t@tw@SUO>rC zrwaq4gC8P^TJ!V5Cm*ggb)5D4Ez$=(3Zxg9z>I%(Q)saL;bTql@YL9AJF*pRBxA9? zH%}wKQENYVCk_o+gdJwQk5~@+RwZ;v`js#vV+{gvn zd;SwK)yv#?l>y_L!pJGA(sw%2X$4I0_wF+@OZUz}B^oWgO|7(Mw$x_|8e9)f;bCwy znYsWq%hOU==I-`tlT};MC}|gw%iD?3%tJLz4mXm19BJz=K~aBG;aA7Qe8kLF9)C%; ziOf7<1S~YzT8wwx>EVC;MoCEu1}==SuZRjlO2|L)c9I|aDtW?XDHniCVJw4n{1oZ) z5>4_g%#E+|7I{~N$7Yxqc_a36D#>i1%vDsFa7&fqR1+ir<5}f_V7fZOE2tpd3&J7i zDl80b|4QLYvydt?Ag4JbQg#BKkx<6)FSl=B|M_mW1)d%nEyzzcMs{G$SZ;XtqBILX zCY*$SeZs1hW>*AQ&rI2ZkipP(kA5t3(7@nwy;F}UO=#{g9`y6-ojnd%Eq<-|cAE}z zxZR)0qUN7@K^=tyT$1+RuFenp!5Cqc+8KOYr&)}`p~1MePwKIahXp53m8S zX{2MSANQpGaqVl%jqH?ny|eA>!LO(!14OA#fVZ${6&@UNSqR!f%+Mbselw~0gK8ft zQKiJY))Yd$mDG>C`!{1ga)Tu0ZEBOxt5U}l{4YPQn-~gGHe}PtO52z56?$yYtqHQK z)(xG#_3vWjNExbKJ`gOj%WNB#FzS?G@elMmbnsJlwoA9V2Z69bo+>G7#|Qz-`wDWr z$44xb>sMqP`uAxyXWN9YshqTou>5Y$V7i9E#@Cby1QWyOK0F_|ce#)-B@Hs_gshZS z_T4~j>S7YAy&}YhB|3e3(`Z#_x^=G*!U$>kwCkYfu1HUo#6l0tw4m~p5g#Y&w`S4X zc@AngdJ=h|U7SR!Vt}Z#;?t+ZND^$E%Qxm5w43xQ$*lL=_3W=j@UJx$9I%P=!zn#< zzZdXP=+j6K4!@=QTX$Bx!6J4gIlY-r+6x&}mzk!nL{CV+{E|M^m>4sWY3-X5{>kKy ztK2H2KXHT06S!6^f{_2%yES&|CG8YHBUWGSsByhqqY>zlL6I>Dn{0kGy2K@?7h!rz zkjRCt_wadP%Ekv;I>9brry0&0JMf%2Kn!O?v_^Ztv9G%^f-1?e3$Ccoj@rIzW+NQX zwcVO}%wH7U6C5#FGyY4gw}TlqCG&PYDBZAUrFI*Z%V_N+9{uM<%Y0KX7&m}qnIGt(jDZChEDj^*Pz%T3nhLTz@C zj9%IIgJ6vu6Rn$38=;LaDnH`}UuzlX&Ot4WAUB92>H}!{#hC-jD=Tmb9=EYfvm*wL zutt8OEjZLsBU6&BdaPBb)Et=)p(T*YtAF&pqgvrN;%3{I^lV_?akXCuYz*EGvJzbjt))CJ z?8K8)9nd;wyggomGdeRdM$F|VLB}(HbtE(<%|VHXC&t}Np30eIE?b-071kPu4Q6!) zU3X>sKr%~efqBvaFh~yQ@fFKf?T)z2R(B;8i&pg#AWJyv50Z&$M1nm#iZhY9(;>vp zRU=*5r$AsW@y)+S%8wPyuSHqiO15j9W1kjG2%2!%Y}W;Mo)+e&StP%(1j7M6OCYa{ zMW2tnTEHfFUQbi!T8X_O&Ne}_1f!jKDZ1G&jugCxx(o8@lVnptjU)i9jiC%)a0Tc| z&2}`FWw>LgG4|ayGyHZ$;(%Rxz(0I|Xp29l9^PWM384+yKsL$2$x~XBYmFP~98-de zNGS!X_$@>rVW_(195)l?aoL|>C7s#z7iWQZ-+#}dDmF^haY|G)(IqQW`#>HEP)HE^ z=1ZE$7fO4)|639q*NM(uZ_*HKtuBVxS_NLC1E?nGBbiM^=E>TVidcc~zusW8`X?qo z##Xly_X`~S$x&tRV0k^J7K!&ym2`mpu`g01kmM@7*p zCqW*T+_2T>Zu^a)O=Go{Sh*aKQyGdIV4RbpSNYtQpRq-gyj#hci}yNu}>lWtDk+?;1}j5&1Wllo!#HJ%qV}596 zZrgJK*SONZ2+|x2R=Va#IR!+Kk$a>B+bM=pk-;i_pf0sHI9v;cxt4H&aDf|MGlXH5 z5&=MFeMB)vQB2T6rPddomd(NFaK2uSG8>SXfAFf7z*csRL$eZBX8$$%+GS$Sze8p{@_W0~iFO{QV?n01v5~dzf z;Ye}kb{fW*Vpk%R_j-TWIF2+seh5K zn`VUQm-{rX7F)&ZLVa_|E&kjRXO&;2oLC=cBX*s4JjU6VEEu1cU3Ni}6sNfcQlr3; z1A>Jm-88y0+vfmnd4lYZ->KxzEwn77s)3eO_ITz;SiBDmxdnKVZ6$^}xR-_{GGD{*2#x90P;)fXT|ki$MkrN#CO@Z<-e-a^a^N6OJX)oN;M z$@Uvaoc~Te(Ee8viJh6DtT^V#C14=QAUTmq`FJ616<3T9SiC`dnM++pOirEBWaUPm zR#))tegA)1Cz=N9208izmxDS=k=n7cLtB1znbb=*%K^Y?d71vtH(xo0dTUlPK(-vm z+rX}hy&>S*MZr#y!N3;j)K*XVCp%s2`(kz94CmyFT2;qw-jGoB>EQ_{WB1sV)Hdc=4q^`+%%4&u!UAZxC;j`~?tL7KtH<45~HNz+=j z<&1oWIW~7)H(vY$D)0gmS`OpZt>e7VL6sS8?HZ=yrGG`|{T9;gsOMP#DeZ z^t4p}`$Y*&{QtXOf=Qx^Hkk$H)H>v;ni#+V8sdQK!*J zPi^IqCie_G2!lAbWZ(>g7yuSFVnMoyc86%SAMOqcQ0EUDAoty6lkc ztB{PYs?V8n7m`Ked6a*_>qj%6=@1>vjD+j&CjB$$2~WfYgP{{ZVQAHZN&NujPu-1f zShxF|LBh619Zf-R;Cu*4RsrOrG;Kc}4iB291?EILgID~0Mc6l=B}b$6ec6U-pR zQz6(h{=ul2i|vMiWOjtXg(zU2sp0drIv!(*6V4Y?8v~bYU^oSwz%gSHnxsmK8M}&4 z!1?XuH$iAv5^29?$nBS8|PPYk%8%bCb#i4w_EGMPJ%pypH9 zCT`8w%3{jW)bh>ogMw>Qu)AQpq@V1&k%-$?A-c=Duh;(Iyy8M?ar)Eohwx{3gE810 z-tmYduB_|ZW;@I4idyES`9p3YJvF03)G6_f!Dqe=5-Cr{R6lfdS{*mD0BkMX>dXT| zD_Q*6FLS2_r2Z=cVVMLw>0#niTFVoRq^V@mK2HT`%q~RTrp&|J3hY~~*q4c*z^XN* zAMmd2Wa8xOO6T2{$png@WUD@3OtBxWc%;c}$}7yxixMb>*SK#l&(Np@Pa;3x&0g!4 zku}#33VM=SPbmRh*S{X%i-@^nbG{JNk@X|U+iK)QsHW-6F^*fkZo zM28vg!{E&$>kf=CSkWJk^mR}l+LHGYx$K|2Yj}RIK!*2k;cqDX_Wq|-H0v1&1Mmo9v0i3; zL;bCQwGSjLZ= zzS5c2yB>ANuOWBq>VSM#Ulw;sjusxfD=W$) zpYqW*BF|=Sov10J)i`O%TU`!IhqmGVZ| z0ybymQMmk@G#42@V+ngZFU^%F!Y!0$FA|MJY+BW4zXQw&xtH<>Ny=oWh(2e6V~TRB zgIr4}5kEwlV4*$Ih6`q|;?&0k&Nt*q1DSls$%>mqm;YJjfbbmbj3K!%lkGf@w9He# z&H_D+@*_P7`TDQfd+D0IZ8@v;GYN4BgLi#i4Ne8E>`ucW#E7q!Wk2-&6JoTMEXuqE zTxEkE?2oOJH;&-as_Z6H@Oes~9!$@FcCFAx3MkD^yOs$2WX&%?N z=$w}Y%tre``A0*8pN~16k58HnzqJ4_QIPiu)*O;3%W2+y-3PU64s4R0mVKM$`+cbg z+7=WIm|g-|cQQy5n5_!|ZMt1|Hlhqxb!Op?GBsRXVMSVDZZ!LDC)`;AO3J;TIay+E z1@qY5&Ygt-6chbpj@if0bgEwWZUzq|hsPR9EdSRXXoDE)Uukz{^H>}?Rhk#~5`qer zaOx12?LsoR4t zt!ylfCa#a?$2t^CR~pkQEB1b~wNwu1@s^(3bO>RX;5#h%j(=BcHEYaO!_EoDD2R z8zdUnFN#%vcQ^Z~*q9sKdmeb!^-+{m|H$NMuy-Pi{l6T~q$%;tSPhnhS*g=(< zI^1k)yKaEg+2gCd6RyPhV2)fISn0R;x(Xp zd!u8M@E@Pjr%>M0Wkhxge|qb9(kSD=PW2w2IXDXZo$ zIVWfP0Xi{^i@H?^!~Oa$@bGTR$C#xcsI9kz*M$aE|Ge5b_=Na_paeFf)5E*Bny()l zRI${<+FSkjl6HxybNl9LEor2levy78G@c9yc|P}&xZ=o$EnDEBI=0%Z*u^%@j7VBB zT4EKoHnzI`t^g8K7Jv{)H>T%m-flZ43()xDpKvm);0g#Nyr&z>I9nRGoi0*T0%?7_ zjS7;Setf^>bX8i+C<8@|D)O|&bGutlT+c^Kb8-iC z#yng_%QsOyAVb`WiDrt4Os*neHsiHU*)*O8f$yw>lt95Z+2Qkp~6z)?L8WwUtKqa8hVc>uA%8nu^ z+&sw^C~lEs0w;68iGMPHHme=8=CKZ8G;;%MkDs{-ei#;ijNpbfbX{~-q+AHzCM$ch zp(|z&%Ap@b59kptGYgU{IZ(0p+^nU?#W3KezB)suTv7QtQQyq@64+t2(bDbGVv3yP z7Nn)H>|SBJ=ZHpc3i>fH%$5Q{6)r47CsFSaerVD4YaMIcjLWC5 z`=$<7$IAYI&LtPgkgtc!AP;r8!;*DdN;|;yfBO0du+1A@%bb28FTf~}x9h_ou;|<~)KH~d_`M#LDhGqGA2n2Ps!E=#PX(0fo_*$Ot}a|DB)SuDqRc&+tjS94AuH(gm*xxq>xlkJh@MjS%s zxD9DgPczZ>wsO}rmV4e)(R;KHs{^JyX@{ zij3iq9|S&&LcadyD!yWhl1E@vLJbYX~{A)!~tj<%^jqB|fGQ0FdIvmClEyq=zoew(?6W3ih0zsv31qBq9EieALzCeC7!s5{VRS@(#HXM_;q*pG06p(v z6v)jOl-4Oh-NEi=w1a$TBSFUbv7fZI$XHh2)EoJcVU)4UfqyrIMizvN|}Wc~yI7YqD!5S_n{}gR;^MciwU8YPQtaxX7#Ts{fSN^{I{3 zR0cS;1vRFhMRS$eQfkBq!ygBr94j1KT{I>xJOM!wn6$qs)1#*ZiiwERO)! zK;K(`L5$puDoF(lB5AJY^!@cjYqSHnP8K-Drq4FA^*+aV;7Feav2F+;%W^Qhn58}| z*5&QgjPz4|8{5UWJ~alAD_zmyP-Whz?)kqj?S<4zhk#SNmG;saoW| z%hCVpiU}#k8oj^P=i$HqnKxf ztyg3e{?b}x-c02@t&#!CHcPf;pff|GAmWn_xVN~D5S?ilz-TNQbaC2rh7M4Gj+}x$&cw;rBTcef zTY$*eL2YO}gj*Ib?0j+}K8rFGV!@V1${#xnI~OW2wn#2E$i=alnG(<@v_b$xqp91x{Nct-a}{2 zaN*4ai&Y;S`&w&8>PoVCurO~QFjHU&l@~sJO9QMUDK6rWYYtHnbxCY<8c{y0n?!@55>nP=8=SYfFEPz3$it z=MEtPi?7xGk(CWLG?`;_?~WCkD(pa@%LS4}X7LJNYaHs44KU^=wu4EhxzZhICRCN@tRz?E(`Pm>o-S~JZUjL6(_x`BJ)uF@$HLE# zs({P{b1i2srb7x>0@t<++A!FayzekWsCZcfzD!>@c_Sp7D9jLdHVVm!1JV~qf-g7Z?d}F=NkpSeb?}PFB|IEE6>G2*M<^4$D_M(dTl%L0}v;wjq zZc2JB>L)2Z!wH*Vxu=TRKgU_CVZ-lolQ~$wo>Lr70)?sZ-VcOxiWS}|rX2;*-`B8Xt1!8EK z5+*NpUUHxR6W)^wG(B86V#Z~x_6i8eSxEj7Mnup$IM1T=vxTq=36o*)ESyoIcs=%` z5q66^QTnmpBz$dn^PPOw!gEbmQtuCs#1>X!<5cC0rE}UC0 zxa}o*x<@_W-7}GpIzT}8j@IG5ILb#=Ch3_HiE1{9+&mpXzpS1y^Sye2^MAPqqr14A zuu=yql-ZUhRK;ZH{=bLNIfYC7Rz(Pz^g=E`${pzFD#l`WYuF+Xe8U`W!1g?(R-hKbSEXk+;ElWns538z>Hx89fN%4_lb4Z(+ z3A^cMU{dZfT1;#v+?Ccj~&BaGw|0q=5FKLzP-%xf% zF5C?@1(r+@G!SdNMZw}F*wG}MgVzl9t_JHInz+3wlL}^|3OYGLn4yM+I2mo7?h|M*8;gd10oM{iek8jFlIW6=db4Cz7?8tRHgR zEZuoeAM&>UfTNYtbW|yieVe{xj48Cen8}5AlpR^!`m||fc z7CuQ&XzWy+4Wc@Sx|TP#ZMyB}J+5np0f?;xc$NZblZ>F`zdJ7zD-wY6fgPT zOKTKC)i6m0l!>?=95B1eOzgT*rz~ou{#k~`I2gd3N%c3mLHL>0Ht6r5uyR0(uE!s;8s$b7=*mFX<5-z(}=SI+)EIeY8bN$@0A zhck7u6CMSzju{`nEZRz6)-HnlQd<;D*cD9Lbe%LxWAg1@k>Ty^3o6ykI2C8h>lbX`?C*rYg{$`wk%+uh9L3n}lJZ z|Nd$AaVvYGmgQxrvH1Vns(bOqxbbF&@o@-*+4aIq042{&AvejlT6+iPHJH{_9RH=+ zIpsQTEBmb#v?|KOWb&mtxXQ-3Q)1uy-;>BDe*h#7(#u!nP6AiIHdnEjyq#RZGJT&5 z3Tq{-CF?sat=&X@Zz8*UIm?W6r2U0SGAXFHM^zAP=fb1sex%2z%{h(MSxy!%x!j^a z_=*TtVC%#jUKX-}$E&Vm2&)~Q=rEkQ12O*M*HfpFeyG>Ca95C#qG@C66WKQNAwX*_ zKdDtOBkC_rT2AYr+iD5kc92ba^uHFw@Dr$6vTxG+dP-PBV(UeG2!ynH<0)R%T!Ck1 zx))YxbM-%G_8@W=WpO1P5zNdEofFyel-z( z&2a&XuPhPI8IzB0pXo~H2Ne9-SKRozLKnR8J6u-X`2p6gQZZip$N zv@#vf#hy1v7;=_<~HYAik#Oz zl1)B)zV_LTPNb%wKjty!yw+#g+&lTt3;=K4_ps)0R3xUk!bNxU1xmc;9>cf!H#s#* z-EWk--*!@dEvugLwy(yI5|%1l_pZeJ7+X^QWzU!z!l>_Ncih7DOw&L~@s7gBG!NW< zJOwX;hgMDK=i+XC=}$?&EcB)vnsfZ8e5+sS@l&T&-NQi%2>6KcLJcg7w2zLYYQO#< cXt{Mmg_kLK=;y50#UGz4KUXUK$L!7j0kdv}tN;K2 diff --git a/docs/articles/EDA_files/figure-html/unnamed-chunk-13-1.png b/docs/articles/EDA_files/figure-html/unnamed-chunk-13-1.png index ae7f72086d6dee58d2162831ab6f68e02851c6ac..44735e5ec986a35f43ba2ef222c24a6fd819206d 100644 GIT binary patch delta 14355 zcma)Dc_38(*PbC%_OG&UDO7f1$d)3NP|23vWZ#W7%pEC|EwZnrkbPgqSjN6nmXJM+ zWQ?(7XWpy){(tZPGxy%lIp;agd7g83>!|kYs8AJ9<_MsF{!<=-6xFD-qxF*a%WQ+u zj?2{V;;PEzGr692P9x9m^Fz-EK5VTmwKc+MvUtDL6H11XQT%t~i>^`Scm5dEcY7lz z2P3y!%Qh2X`6Tqt=E3ErClr#GFm)MGRP==2)B(jc4xZT{ZLNOBzt^(y8v-3KpHcrx zaPYVPfc{oq$Cl}6H%>Dq1J^1x8#KaA9iNn%rtm`8dWNcul7&iW8$JFc*C*(bHq=uy z&T90`7*`~z@yoTxOP+VMtA6f1_FH0!CP+8d$dVD9_bM4%FxMY&L!6VUE+lf#QL7!4xJSzwXVx%Co@9<%mReP>I3++aTKh915_ zYv3g@=A3x68lQ@;$9Onc$k_Zz;w7B^t8XK+XL z(*)F&5VBW$NgeJYB~PzYD?l0eoA1c;28Es-p=gP>L~@}F{SRthBk0B_cQ+^yTHZ_U zkg%hP#7aMH_kV|9^qI2wo|yH;Wt#qa$hdgz)zMmUVwe#ix;8#+ibiidz5c=1kJ876 zM5-uE+(`kVs$H}x8KY@MIATec&7mcJ7pSzaa5#u^u4C~|FiwPNz?AdF25IFoVWG-5TT(3FjC3SY}MGEi{bKtt8U2YYL{KDvX8jZg_p?(F|?K1HZ8qR zyhX{xm#Bu`K4_TeD^*iHxvK7EV#q`99V}=UAO&>f_OG`zIP4aKcYHthDoL70$)isv zm-mNrmu+eaMCwpo#_h+?$om%BF9Er3z*-xcz4&BqG~&mlw?_uNTCH!CJs;9Vr(fH9 zs@v%E2Sv`rO#2q@SADHtLD`}6SLIaN%Dm(6cR%B5GEBZ1_`T?{i0mNC=s@8bxksTp zew|T69SKUbSyPF6e;@66Pi~XYhQzxuzeV~?esZrCR$3Xs^e0|!H^x^K&K?H>7&b41 z-WZoz&Jp9e#8n@Uj0TCL-OKTN&fXsU@jE?=vQlHM9KT3ZG&( znpQd^qI9kFhc+G2$&wz+tK4g5GX2QU%>3Ix-g$L}p(#1#s@}Tu1WJOE_cy#r8JqkS zniej;u$lgW1(MUr3rul6R#gSSr~F($JbQ6D>u|pmV_k-S-DYTtFTZlw-v`gUW)(%Q zjM%+lozb4cvc3Kw6%D=fkg1A|LrhYXMTsa;$-qR~5%l?&Qt)0~ktFCsjelXsJ zJLZDWKkT5WrLB`^b;^?aXQjQH-rk&N4Ma%8{N#pQ=X3y)j+UQ(8n*fE>XWZZE1 zr1#3wHXZ^i_BC^}CqHYdl_+#}Y#$`Q1RYhqPJ1g|Lcya4du*Y2J=qSCMOH*C_ zC*Jg5{S=W$u6FY(K`824k@CN(9=i4H`xI353QY5T2l8ggFRhY*XVcFti2wOCmy!o6 ziL5EJSqGKlCx%EX@t^s;{@#X&s}DRNmpf-Za?*Ij zs!De&)PnBOFX<=HhK8F#1DYIy4xM`NKr_dvlWen%EfBU~qOg)w)PH4Aw`w^>_M$&akh0!I z8qCE9&k7B<@0z}tbxvBxs#Lw0;G3P(qQCwZX!&?JPEg#{Ej_BkNqaWe6=>`J7N0y` zkz49@jQ2hY{$``fcEI6d@l*~+ljx?;(thL;AC}X2uJ^c;Y96B$c2EDD!tu+LIp=D4 z{18kM$HJn%NNrEJF+ahO8VaJ`-)oTaN2bbWDn!R*Aq^Hzs>;H-l%X-{CbFAOK|(2J zZB}V1k5pwA#-<_MKX}{ zFG5u{Un@aw(e9VV{N!^2JI0kzs^WNAB6t=L+(#h(SoQLRmMOv8-!Y0+92IR#%0_aX zn@mTH*9~sV{X^O34%uM;R!rL4&nCndG&>z{Iz8@>u!t^fs%cLST%@hs3>xF6 zYM3ca*eP< zM|0`jN&{C%Tbk~7)nRjHXAbxoWFMA|907`3AyxIPTzP3--GFNv9Sp6i=caJI<vkavM|>84)lb!2!1iT(d)T}g!;>iEGX{tHQ*_Rz z>VK16`eM9vpCxW`v3&sbH5`2s5Adnvoo!7_&c4el){cb@(-ql%*{g)Z$Y+uFb-xiq zCN};5@ejT-&y$l6p*C2jE@9!47k-vh-{*3(n3UbV9~L8t2M~C+ zT&-E4v&U1pcizs}I_-+6WdY*w>*f+o6i!L@&s4hTr|?GDXDtIVVJx(hBIVb|#drQ> z%?*wOEC24JUC_1mms0fcS&UZz^A`Aw4;-R{PZRY~gCSKt}46F6~!8H%O zI4KkGul3XRWbz`J^BQb?`p34L#HX;p`Sw`>$QrhvrvRnEuPy=kOEOpjN<__HplPrJa(Mty$)( z_vO&CtpUGJi&BYS3mMgZ2=AFsZAaU%H_?&D2b!GwHhI!fq5b*AD?I#VW}Z720N2pA zW1qduIs`s&I-$v@oP79ZnFiv*Uw4=5eRU%E_+*D#?mbE50YjLrHfqm=v)Qt#yqU2*^;;ndAx zPleeVMP0mn}}q=X^T1f`$f`#vXwlBEIO`sMq5jRFda zisfg>U3YxZ{ro2(1^+4zJT}H?XQtUjNU)hVfUsEBD2&LEe!lf%%;`x_&xSF3<;v?f z_yODLJ3GA_?a6D7MKT~4oz8R2W|w94ncgoQHn&qn@Wa7HMqqV_@zIikJAq*kSwnv%_D5?c_6%3HiNWb$14d1Ay^w zXE{PjF+YdH-ML{lFEuszs>R$(-tuq1^DwrxMzUAl~jJPTKAr`=k@x~Wh;dv=nZ3hN^!ql|db zM4YK!JpTK-Mqym^lit2fuO5?oDIU%eB4f&x2O7evSsD+=dT6z|XQm8QZ@$$dzU`z^ zh&x|K9&b#AwCFJsll96mJk++lO)on++3zLWER5vMOu#F!> zB)Suqc>&TyHz(OGy|()=wwahA=Ll;TK7h(AuUlHVQo3s zyX?zkZORGYocvHK=dtVgWpVKCT3F@Qg=^XrEQd&f7n%^3qLghZP2_&3TxHRZl+zye zC*6SxryT7tt6H5j>(5~iLac%+DJE(TrLw$!)E@ef%}7h#Z+(C~S28 zbCb)~O3cp0?$(M)lKzX}&EG3tJ;6!TD5-cE_p1y791f%7FO!w!kq60@>mmp(HnhD| zwGS&R`@3CAS6xwro^Yaf0TrI&xZPQ>Zfj?Ip;(l)oXp4kXyy5Q-9U5%3mXkU7H?sC zv7;&IW19;rP56h-lJk@FJ1F%Ymf^@mnVQcJ@mUl3g6d!qj|#{ z7Mp0GNQ-y=U?$W5@Ymt1!J(%&dKF%n@fM~h=5C^OjeuiTDmt)zK40z zOXWK^5H(_G5ne7%{Z9jc06x0IA2@dFtb%#E1Nog&Gs3y`DJ*Z$%&T_ja`W6wno`X| zbYA8h(3oYrn`x)kQj9NmpS=`0b9NzR55J+lgv|aV`422YE8@UL_HxEmg(tii@+wdt zXS}4uhAk<-DU`DHuq!yZhYQ2@Yss~mLr_{xGhj$9YhoMd+F9k2pO~YU#aMa)VDXhi zOy%U6kC9{VV0jg4Y&`Bv^{1q6f&?n7X+@W^gWToym^9bk!^Z+{6#Ye%Q9g}vHdDq1 zwT|$4=fjPJQB5IsxzhH7Rz_agTqa!UFS<%610V`qu~S1OUm@d z&@%+3@=Uk>$2{nyBr1!i=j+1V9;VxnjHhL*@pb#P$15Qq$zuZRTHD%_q?VWfT_N*- zPdg?O?U-1OVY`fSG>^@R%I&PsEB694Z=5@%4Tr~2+iU;&B7FM1P9G_YL*LQ*ci@D8 zd=XDQ1?6TRD%7D*2OYhDV*d$sObjUL_Vd?$+%>5gp=o$sizVKFCW7r2&yM*)C*xlsg6`mdlgcovO zRpsfXAHbV|3kZm!tfESXEm6I>x;DE^(E`j^&~K?|(NVZ=c1-B8DpSt7-V3q$Hyki_ zsr(f?c6!XxeI?i#3ZQgb`5go+P|I2~{w+Dtu#p5=p=x+VZLjBQAxIVH%#xC3Pv@f` zI7;4c&8dHAT2_i1mE{lY$bp2xWSjw{o7b4 z(Oy%$J?q~LP0g8j`sSO@h$deISocu$I#1cy7l*dU&MeG8-k9o1X=lS_wJ6~>d0haottSiI^*^F zHFI?-zk&6}#Dn6z^BO!&jw=rKDT{M-&V}5!w=Ze-EpCky`yT(1s$TA>l7CJm><3E- z>bt2;JkvVc1SGgN3XhVioR9fAX^y{+pZhoKsLI^+BfdQg*?XT&`j+Mp_^QdJEbdbX z2F}C1l>3w~PZ-0xgNERYEtzZ@ek=ycKQ3$7{`ws56f_rQX?*qqGz9H;slS@j?@Q*# z?NY>w4bSwHAto6kMnS~VJ8GoKQB@8%%2XikhMS_-G&leg|U4%hl?U>4r{35S(mlRSEmQZkpq^DKX2*4 z+cmOs6w(~=vs(gqE0ACkpQf-~;JBFhF{ulVOyw$BFbr8ieT@)$`DUc?*EBH9m0$PK zOZ=lU^a5m!-7BljtIY858ceJC$bD7>78%h(Tn9Uc_HSILNjFg)N`_xSf4`EE*NrGI zmKmMsSFs(KS7MZ9=p#A=_o@=Yr5SRoH=(&%N z980!ug+KeyNQL~XjV|MUnY1_WYMEEITw9Xqm%Eg}ZU&5y6wF;pc2MhB8EaFPS&E+N z&ItjNr?om6apVU{;|b!w0|T8WA5V){*KMXReDWF~AcHvQ$>f>TPUO(wpU2Um3=Pi~us$R+&kZstCE9w?J$*95i|DW08 z1O-0&D(i0kk~5cXrOF0jZu*&KS%a70ZQvX$16*BG?E0R@lHe*bcYnXt;Z4>~65_uS zvfamg-6=Aj_tv}r0Pud38-5A0=LG^aKkwzJ>5(0|DJv`b>}nSFJ^p5ZsF!Dv6HeAM zcrq48^@A3izo}NgKP8OOqZDN%pHtjjOdk2RAeR$vJfe&K%M)JwRsVxky{Q-&m(P*? zEWY8*aMW*{jDaj);$OSMVed@dPT8&>Soo<){`ozbJ>cm`QUSq?)}K5vhE_^nfW!WH zp`_P*NA~B{XH`&lyjROWJKn|bf)aobMJz1s(T_@xpADLSPb(dgGgq9pdyfP^LC{Ib ziX!J9SjDo8jw6yBp3}Ss)mYq9AUczfHO@|Z+^PdgyxPk zQ6`jm4PJDvinh4wtw(l>BG}R|=67Uondi-uNedoU)EOgpk!DgN=q$M)Bn&f+_{*57NIzSfti;KVLQeNV6WcA)S~>eW{ggp+2w zH(7do&AW?y>j{h{UX?^Jx2g-0N*bH%kakVql``ep z<**rl?-q$JwQBBLvGo-AFjjfY-dYT;G$1|C=sis~!M4LBu0(;_d@55Rg-exm*Bw=U zJP=z@tT^24lL!wAR1`M~*?fW`$+WLg$cwlF%wWkEh5qLY>ys_o4RWE3D9pg--{of#ru+)xAvM5DQP%5a)u&u(NGd;8Gj1l5O>GUPyZ?b_4&g()9__OO6ZsO=e0iD0j zms4LfC?g7M)~(y^>@o#LM;$m=#FAQvFSQ9(@6NqIJr7vb0vSw+oI07|q_rOdse8UP zEIxGqOexnY;S-84l`I@X{J_&{28oJuy-UkI%kR_p;%}pJV!xfoxGxplS z3qhU}LxPCqC-LcFQk@2kB_o}|NuGbdn-N_$Ekn(cJwFLPX2+M75MS(7UaW&U@*b{rri zPH|34jq$%Xw=uUX@}!g}uW4JWlF@sv;Y4!Yeq`=9`#OdCu0n#tl*}G-rdFV376A_S z*EHIUBmq$F(q^4F_|um)_pXWQiflgzt`B3WaP_kE#*K zR7G*R0Hd%Y%_@^W16vXoleVY5zY@ly2{e?zWsX;O@~HdAcW0p1rWA-C4*OA7q`d21 zo}-VE=Uj<$6)fnq_k0%yU7*1Owr!eQzr1c2NvA)cU=4x-miXed3!1OQt@R;6{7$); zll~HDb?awbySDSU>zi)WOPrRBQDg_R3X9yF8KS~+KF=O^ef6-gv#b5GRet6hl2RHR zHgWN=;nZ?|gww-r9hJ71=$U&my+;AuN!1F(j$U7e^2U-{k`YL9?BL8J_=$A6$$x{_~igDi}U)eD_fg;$?Zb7vHgT-m8qtu zJDso{ry6^83jfj3+En+Edj!0iJYcGYr^>T|Hcj7bRJr##x6IO&S+2?cteI{uP(a8? z(|am;#pLOWTlhJ_zzLKR;jpaE!r9kosVkXh(0%WzQI+3W#dV*}IG&dW)}#i8QzYvH zJJgT9C%M7^&gvFr4R5mKi(0d|NhBODrE~YtzAbp2yHGJV^CK?&MAM1L%Rp-)xcDJ8CUTzl+*X88eF}`K zGcM^dAMa!o_Si`uwm%QT4@f9c)ZJnTxT#nJe7=4ngwu9B!{d%$#PnTR7Wk(ZmLeVCPi5ZMk!K-Ibgdp z>+ngS99eCl5P0w)C}2vKc8OYqKdkv-hNVVU*%Z5R6`ggQtY_qrM{j2GfepZEw%?5l zP5{l3_5fjq_q0VM;?fCOU3rsbMK|w8_va5r)aM~Gu`$nIrH>0o(+&wEbV=j-C@!aK z$P6n`ah4tVC0$0z@Z8dCDA^Xb17VHYkFlTTy&3aE@F-{?A zT>u4hsg5a!ag$mJH-I3(%}||l>%@ryuQKVO^QOzY)P3Qh0I=)xxD?`E9uQW_Bdrpup7$P^%ba%5@v9)jwTMGpm2t8ZH1OlNM+ngYUg9hl%r7YsO*6C>mA3jU#k zr9zKuE>b(NXbN5Rt*W%qP|}U-u#Y4QRY2xynk6#hsswSZ(1Ge)I%aagHfKL@`^irRj@x5KPlp>tVB=WY7cxXwa@yj&-7X7CPk#2 zxqu#|d5MOG6tfhTwxkA3@kwzpzj2X{fX&K?DfnN@XA#aad6U1yR#yDX7AClc z^*UU_ea|rbSGBsflc+#L<1*AR22|5=UY~;v*V5(|0M4w#~1&hiV1U8 zM15IiG0!1$;N^~ImsIt0J(aI3-h*nv;QU`uUN?lXJ&Sy6U2^+P zQqt-!<=I~4FpUL8#xx5t*@g(XI+NOK^Gif-37Z^k*7cmK{=bGESmHccpiHx63sM0M zj&f;{K45C6_geAw>w6ci8|G?G8cj$4jS#UjrBi05A8_TmK^hYknkqt+FS>;s(MbXsQSlR2%?atP96D*Pv*g^{BR9{{qzr~2VjKa8I`(p42@vf!x zmX4_m>6^@eEzWLt9UXySZgtiV44`BEy#nYP!bsd~z2_Bo=Z2Yr>wn47xfV%5^swOSli+17*pR5=eOR=TD9> ztyv@ap$Az?;K3|C?B#@oHcH9iQ)){4wD%%^0fFRcE*6q6#BQ%-$4nXo&ZZlpZ`%JJ z9iVGn6^@z@3tUC%XLb&xHZ*;7a=Lh>tTDX&4bN<Yu*H8ZT&5I9 z!2AD_PY;3-xbbwJQ$8EnAE?s&w%19!r1I`zF&019S7?4p*`h_@Q(U)HZ${2Msx_G$ zUh)sO%-Jg`0+?N(jgi82MFX$w3c0sObZ!(+EB@j)H}ekG<}iLX^h|T3sdjbwy)WaK zgqOVA{%nl;O+F1!Nft4;3Edf+v~cF}a)xVa;$zKQWt#-3ZtmC!ucb(ZDZOwtGKzx@ zAAcqCkoTO$Z+WP6HAh4^C=C~qo|+4n2uB`vF5d|z0hs#Dzd7Cc-J*kh$HY|JVi;vY zuUv!qw16KdU;DY*CZ@dY-txY~+nYH$vTWHpD0J(3(lskV^&};+8aH1J1dLjkLXQjs zf!~fgjschLD#1AqBkdSzYUDbb6BrQ4@5ijDES8YGb-#_|HgAo>9^xare-g#O4J{of zAUCY^GE~9(%5EjrEbt=s<}CkY9(h>EXQ~7w`Z72o`Z0?hC!vqdv);r10SR30Vwk1d_xjp6&=rRZ; z!hL=d$nTa10t0gKe7VlKt!lG$szF3Y=3J};`07)&xjnC1mj_}a@|!On zTo4fGuN@GrbK^p>O)tf;0U8hUj^k4@&I(hJ?oN{8?oXxEc}A{Ix+iVMpXG>zjiD<8 z<)|~4Z!r-g-Ug!ut7QCtm3!`)!^mVGrT_+RIw4kFD)yc49CaTr^K*|y%i2wvl5Yg6 z+*&9(Tl3)>V1M&QA+G3j_$da_;hq?ap)3DamM{0iiyIsf`RB(5fJ6z;OqBCn>gqL4NYtS_2$wl=Q8$8khmzlb9^7d){VLH@aoFz9J zulcE|FWTnYQSc9BQzhtuvBj%3#!XOKRIC7Hu#J6?e~a8>i95FZt5$(x{=cgtqso?H zx$Q9dF-FamvP3le=Y4A*2kAF&q=5H@!UrO*_Nf-Eu6J^%rf%bo3*d={Dn`F8cW(EJ z@A|3ZeAgllGiZKD`@Kp5`Xbc930-O)Yjb9zU?09e)a6*_MsW7=xtR|f$zze&^HE2= zDGj@Q-tv+i@eg=(O4$vjKxh9{PMNo*08fRPqUjAPP|-1=|Hb8<2gOj=^7r!Bo`v|h zbR6ED4Va|YR(d9NB_a7_=`1mV+;yH1*(=ppBl}{lul134k+ZLZBg4de0bwTAvA~47 z=}E84M>P7t5x~zaWv7WBc18B`{^ejG3%hi(eI+3^Lyui=1RJb?4>LA3U_z?#1UZIc z%ixmW8s9LuAZD8(S>fVG*s<887jl-&`45HKI#KKkW6kpq%%GeQ;pxkmj^dk=^fzF> zIkcijTCA-ha>&a>K8B&X##Q&!gDF-t0J=h-vgwtUc(@cBPtUzG_+(Yi#rjoWisY`q z&eRlZln9@z<=N`zKYAA=)U1()v2(4E{|v&R(ewsjBrsxhKQk7iGX8AEPaa%0tTvH* zJwo13seIj?ITrMvwkw(u%z)42ZpZKaqDV>oS_I=ePvInX$tx3#Y=8_7_mXh{%0k9M zccQKm8Vj_0n9rUb1)s@Xa534mcTN`~MP~=PK)aV9!6c04W>zpxeS)@zap!rDQ7IeX zwqz1AMRQEQ`+|YW#_D_GhLNvX3Y7q-s#kd`OE=|rh{Rx-H7*|(>V(s zcz*IKSudX+C>#tSV{K|d_b=u?WpLW*R!A*JRazsh-tkO5Um7@`g-B#bx(^fx3a}a5 z5JIi;+uwtQ3dAUH98pFS1v zKYI>L&0q(WJ%8SV{HEYhG5^1g*l7y?#E`qv!cB8vhot8zM zLl~B?g8P&HG^#r7scQt7Ok>#uA2l*r8Tn(T?^&dIilp@;&JOq#{s0RxR{@8WuK47c z*q)>E_Z{I_f0+{T)JG;2#|GpuJ}`3jk`{;Ht4e^MJ!l#4lsyIr0;8CK6Gde` zF$}>#$mkosZs(jLJ!ABDFo!lIqEA*YetDg}%f4g+nm%w^rE`F6{~hPl|FjY%dan=W zPk12U+K}pBdsVR%yOxlSZTlhr|CK__`x8?kIuicgx{mCr&(zmVAI}i-viR{4MT7K& zMg9Y?Kj$F=j$ILNT(Qk1nx4+*Xj})Jn+pE-`@!=dtSALPqq|`=xsiV~X-e6lp!6TG z>q)TUgqmB6dEcY^-wEvT*b^TV&*~?vG79b{&vyi_o-c6smvHlOu^cg_1;1yQN?V8b z{iJf`V1e_4B640l<%ad1=F*?2??p%Kw=SsCdm!(f{#kTk6sU%O@&yejFRSg1vkepr zfdRxM3x?MBKcO1Oz}Qo{?Zd-2LjXy+Qs*v#t>aBO=Xr52a=oC&S?0-K{lkFqwHBHJooH)Imd0OkP$K_3&Y`oC|z@vec(L@lB)|wJP_cL|DWAdXc8k=>eB{ zg4XeiE84VuQIs@3XJonYZL*5j~ZwpTZw8>#kKZuw)G)csALb$cp4!Mg?#V3~0-%4q$t)1~Hvc9q@Y zIcu+Tu6!uA`K><}PfvMS0gPDG1>MMoucaB}#jjO^Qu6Gza?PetwHx-Hz zi^qaKo;b?uE%2jY>iy^C`AERF-wG9!k)9~K2}|3$$|FQD@SjR_K_66NWkg(T0(U^B z@O5MQpe8|3ps%i8-u;wfg*u9W@)&pOa|U4ugvWKG(x-&1BtJg--tBzO}=7z(#y#D?|sBo!cDs=wy5o0Sdy|Lza+fSz3;EQSdsa|4M}7f%^Zw96X@<;ZaZ-o6rOa8M(K$BypMX3V zp%=9ncVGKqnJqY#Uh#{8Cz~m?LLvWahTpG#0~hR-go(dgdm-%Zb_BBL*|A(~H(VG| z^70E$;JHsz( zR+4d_qQWfG&uCHT%|2`k_|nnD5biQNNmkH|&wng)@brWk)XJ5eK6a?br9v=19qZm$ z@trC6LJ4@tAB_N7AcuCSestpiD>LkIuF-iI2|RwjV@}gt0}E&R@S11d=+-Cy8|6FznKHAhG{~b8Rr)@lurE=O@RXUSfm z{w$vP$PY7z9)8tI+Fi^4m2SNBHbSh*7&m=^K!%(eBa!!?(F;+@?0vhWp2Fb*eqE7x zFPtnHWpVPsl84H}|H0R?^+_=d`IjV<&Omln0ye(f0lgjY6Pyj=ApP&4Lq+$b4zQG> z;PXbNz*K2lpu7s_!7`*~pn83I6p>pRHmKoBAPX(bI^8r?RaN?alI+)vO9zZ+^|5r( z6k%mLcQfW91AJ1=5+)VFRzgRdGhcxyL>AfSaU!;Ggf);9Sm|j|Y$JC4YIeFOwOTLop2|t}%3yL-aTh))GGq*AGkX+~{>naIY*L|$r@Hbw z^dU!9r$p7-QJ_hyyjaYQ2~qFlQc(pDg}4;IXPGEi}EjH#glLwP)2tYfKYPZGDIGI~3FI{9ED~Un?KBc@_2Dp& zgHyg-r@44m*k84A52rL&p0+SZ6O{?sjRErRyuF5h666WEUGa0_f{mUc;pc(B`crkP zTZ*r6j-n1)u(*I7&QY10)*HkauZ#g@e)^d8-zV(sjKt1m5MsqZvw&3#i7SwOy#}`A zzu%Xl8K(CI+Ur|R9@56RVernOP1{|jy7eYeGpgx)+|E)fO?=xxH6V~LE*kmFJ3TKT> zY3t{`XSE1v=DxWJJKp_DMvs!KdN_c*9EEw&>c6MR+{eaFNd2yj(5$&__bavZr;Naj!oRI zHRnCa8*In{nU4;kc`pqxf*}uRSf;MtQd0W*kg0`Y*MR^zKaJo|59m%t=<#F(q)Vp| z>93>Pi#q~7M*kNUPfk%^0USWwBqInv>cAnFg+$ z)D0dwe?C+O1l%kCy9H!l!Hw?fL?ng4rv1{sRdCjb${C7cdle+9-@VoI@jM$Nb?fEA zC<48Bd((;yN{qFOr$|I(Hz_$4x7~9kKT|{<(FD!1&FOK3%Y8-%)~9^M&Ek{#`>(~2 zJRZycKs;LHo9p(ZWtj|>E}qv#_xzdlK+U3*k11cd1qMq zK5H2Zb=gA+0rMe@L`^Mh0a;ZQ5oa(yQZI+hr{pzwcWjWP?p09Dg7xLuGN7wm$_`H=)%LY+gvx=alq%!L@SE5B^9@@>G}eKFx|w zzg_XEXG~Cv=-E36nhy`5*y%VCy&3DZPfB7`4$n}&l)&_9&%IRk;9R{m*xS&PE(qElD*rJWl zu)sfUvZ5(F_YvF_LbYV38VT2qq&F(m1?i_4CpG`d2+MsFD(=UnQ<2vkB&^ljYKB9T zZoz{G{hliMM`%BKWMNRZzRJK+J~xoPt&ve1G7}O;Dc>u50KBqVXky(o*h4|J#wt$B zt$Lm1f`2iF)P(&_IVkhRp`|W+P8F%Ayxev0`@wrCW%1JK13*@d_ngR8E4B9Q-v`s1 zH!=o@j^A`rx5h-YQih$QY!c~;H`a}G)A~g;ZppUu*b;NcUrWZ#>sa9=T^QHbS6uPrOeH5hPUpo2vZu75bIk7NKu@1yN{l$>zBr zlGJ9Z*7~HeQP?^^M*1g@31t0>NSN$zmUBr!U`#TQVqF!^0-+keuZt76Q{@g)KFV2a zZ+M1uA=T}2JL$Z|8RIyGn&`=I&_bQ^v7u1|r7S}8V>neVcJLV%lxD3vf8QRJOYSXy zg2{^eSjCA&{e-ES1TJIjVjGCQ7% zW?$j#lah%MmbMhT?R)D$`xCwV>Nv;#IxfR6(ME&7cvj zmfo*szocKa$Mr*=-qh3IOZaQ;LB>feee#1{<2)JC{u#$Seb^=%sbZSGad+doUVeU8a~lqrRZV~s_Q3vvDThK+01vL#3Y#lz%v=&4#so=q1U zoV_yfA7n|p3RkSLKDNMo=7athEp~R++ZRad?v|wicXGi1+pbIB1e4Q8o9ZjPXESO~ zj|2-;ZXGlFYHEw(JyZQ`#1W@1$XGDUT{@*i9HI<|Ih2EnJRl)?fJWtM}bF8Uv3^f*5QxD6oX?ow=DE2wh z5m^xg5XeMk+v%BOR9~$IW%EVe|NH-}78i@O9uHiwgrC7-QKQH584d>2_g+!i3rPVhwO9QpalH%dYH6#l#domr7G2SZ{0XG=pJs!M( zP!Pr;Hm1!PPI466A39V<*Ffzc{2M zmJgO#{^TpUc_k_5%YQoD&k|hD4cz6;*vdafTb~!GwnyzLF0d3&%en`<92mfFZ#k4> zCI%TY?zo6|$V2huY_6$}4y0%H6C-~P>u1q5hNo;>gsy`{QF{E{c^vY{)*BP#>xHrr zJbsQvENV)?Ux+ri*e>x#TfAzp(_s~s=|*$Y=}&lb{in_}N4vFjG&+6G_?G6EG6r2! zR?@??>5#C{R#HvZslG=Mtp_dUPy(n9Pe!&_^rokT-=K6_A>6MXnIM-hl;~ItBR*60 zX>G7D-&h-o_%!P590($w2U82Qjz;5|0e~~C_?sS)As4Z=xAujM5KuHu6(tf)ecS#f zc--K2H3Zi8do_kVsPo?$m81r%yR;i?IvoBwnty`L^;dFQtA`Jk%>Z+lr2#<-3ZtSEbu*QE$7I0|hW)c)Po( z@8Ge2cjUJczk9%cFi%4RqP)K(tj^5ob=wNO5uTFkwU*Vb8+&U`FNxlfVPQN5#rut` z^})`ML>$u!qRPB={fg57TaXU;S#JGzTPFfg?UJm_GXf5cakKoB5= zsrVp{koxSY(yM)e{+cV_*%D+2&AE7wcko2hMBM;UvRSYd^<&l|J}%fuX~18q6zTZm zf=(c5tLn1I1qRq5j;YGl(ss(Y=41d z=C%v`MDxotXbCyJ*u9dt*> z0x~THRgs=_%#|F&Dig}01HN86v_s$4Z83~+H+V}4t2j|>#|hSTzPPd4UGFG;TfI6g zCx5Em8IMk?M65~l!A+b2CUPd}-y6txH=|cu#G1?ZR=m}zJBb8{s_>$=eHnk8Dq#-*aiH~9U04MsxCLN{Q6zGrvrfCC#oFLBoWSiO(x)wyn~ zl#Mx+g}8Fpxsy#bMxm3X*sjbf*R!FPF#zjJQ!a(*Pj^$Z$~T5`{5=B0>h30o_t>Z7 z97iY2F?wzJ&@Vy<4(n}Sntlqi{Kneu+!2~fI65n;N)uJ!FxH-e3J+A*fDm*iVqh-V z9mD_tU1Kx5*zT8?+DBYNgv#i$(0}8XW#CGTiy$&k4ug*P|qTcCa7mS^X-u0UQc3OHSJAO-rG1|62k69yC(Ai_ow?tYre<44;7F+iLr4@GYi~b; z-qIAWF~_mC3mgb;iHgUGO3+cD2y_XBWvE!hqMs$k?tX)N6Pyv9^kGVUOnQ(1y!rU? zYqQ5Cf_RE;v~jacgBO5S{P*&@ro)iMREyk0n#UQae zr}jSBq}e%C_>pX-IW`cpXQj?`?d{L}hCems_^VwmhK+nJez>2xx-N5cP=XG^>!xI- zNUQ#ycf0X_LW1C?(+h9u&t?-&MBiEJ5$?PAW;&*y->TfU0K(ef?#QAA317DF2clt$ zG&dM^qmJiTwp=^g8xp{RIp%XO>@pKoY)Q%@A=K$WN^-Vlt6)VM7KgZ=XrCW8LqgGw zNQ*Mge&G-6LHI4d?m+Is^Wf$RSBeRa>fLy(wT_@yvNiZJ_TTl*bRg|t@tw@SUO>rC zrwaq4gC8P^TJ!V5Cm*ggb)5D4Ez$=(3Zxg9z>I%(Q)saL;bTql@YL9AJF*pRBxA9? zH%}wKQENYVCk_o+gdJwQk5~@+RwZ;v`js#vV+{gvn zd;SwK)yv#?l>y_L!pJGA(sw%2X$4I0_wF+@OZUz}B^oWgO|7(Mw$x_|8e9)f;bCwy znYsWq%hOU==I-`tlT};MC}|gw%iD?3%tJLz4mXm19BJz=K~aBG;aA7Qe8kLF9)C%; ziOf7<1S~YzT8wwx>EVC;MoCEu1}==SuZRjlO2|L)c9I|aDtW?XDHniCVJw4n{1oZ) z5>4_g%#E+|7I{~N$7Yxqc_a36D#>i1%vDsFa7&fqR1+ir<5}f_V7fZOE2tpd3&J7i zDl80b|4QLYvydt?Ag4JbQg#BKkx<6)FSl=B|M_mW1)d%nEyzzcMs{G$SZ;XtqBILX zCY*$SeZs1hW>*AQ&rI2ZkipP(kA5t3(7@nwy;F}UO=#{g9`y6-ojnd%Eq<-|cAE}z zxZR)0qUN7@K^=tyT$1+RuFenp!5Cqc+8KOYr&)}`p~1MePwKIahXp53m8S zX{2MSANQpGaqVl%jqH?ny|eA>!LO(!14OA#fVZ${6&@UNSqR!f%+Mbselw~0gK8ft zQKiJY))Yd$mDG>C`!{1ga)Tu0ZEBOxt5U}l{4YPQn-~gGHe}PtO52z56?$yYtqHQK z)(xG#_3vWjNExbKJ`gOj%WNB#FzS?G@elMmbnsJlwoA9V2Z69bo+>G7#|Qz-`wDWr z$44xb>sMqP`uAxyXWN9YshqTou>5Y$V7i9E#@Cby1QWyOK0F_|ce#)-B@Hs_gshZS z_T4~j>S7YAy&}YhB|3e3(`Z#_x^=G*!U$>kwCkYfu1HUo#6l0tw4m~p5g#Y&w`S4X zc@AngdJ=h|U7SR!Vt}Z#;?t+ZND^$E%Qxm5w43xQ$*lL=_3W=j@UJx$9I%P=!zn#< zzZdXP=+j6K4!@=QTX$Bx!6J4gIlY-r+6x&}mzk!nL{CV+{E|M^m>4sWY3-X5{>kKy ztK2H2KXHT06S!6^f{_2%yES&|CG8YHBUWGSsByhqqY>zlL6I>Dn{0kGy2K@?7h!rz zkjRCt_wadP%Ekv;I>9brry0&0JMf%2Kn!O?v_^Ztv9G%^f-1?e3$Ccoj@rIzW+NQX zwcVO}%wH7U6C5#FGyY4gw}TlqCG&PYDBZAUrFI*Z%V_N+9{uM<%Y0KX7&m}qnIGt(jDZChEDj^*Pz%T3nhLTz@C zj9%IIgJ6vu6Rn$38=;LaDnH`}UuzlX&Ot4WAUB92>H}!{#hC-jD=Tmb9=EYfvm*wL zutt8OEjZLsBU6&BdaPBb)Et=)p(T*YtAF&pqgvrN;%3{I^lV_?akXCuYz*EGvJzbjt))CJ z?8K8)9nd;wyggomGdeRdM$F|VLB}(HbtE(<%|VHXC&t}Np30eIE?b-071kPu4Q6!) zU3X>sKr%~efqBvaFh~yQ@fFKf?T)z2R(B;8i&pg#AWJyv50Z&$M1nm#iZhY9(;>vp zRU=*5r$AsW@y)+S%8wPyuSHqiO15j9W1kjG2%2!%Y}W;Mo)+e&StP%(1j7M6OCYa{ zMW2tnTEHfFUQbi!T8X_O&Ne}_1f!jKDZ1G&jugCxx(o8@lVnptjU)i9jiC%)a0Tc| z&2}`FWw>LgG4|ayGyHZ$;(%Rxz(0I|Xp29l9^PWM384+yKsL$2$x~XBYmFP~98-de zNGS!X_$@>rVW_(195)l?aoL|>C7s#z7iWQZ-+#}dDmF^haY|G)(IqQW`#>HEP)HE^ z=1ZE$7fO4)|639q*NM(uZ_*HKtuBVxS_NLC1E?nGBbiM^=E>TVidcc~zusW8`X?qo z##Xly_X`~S$x&tRV0k^J7K!&ym2`mpu`g01kmM@7*p zCqW*T+_2T>Zu^a)O=Go{Sh*aKQyGdIV4RbpSNYtQpRq-gyj#hci}yNu}>lWtDk+?;1}j5&1Wllo!#HJ%qV}596 zZrgJK*SONZ2+|x2R=Va#IR!+Kk$a>B+bM=pk-;i_pf0sHI9v;cxt4H&aDf|MGlXH5 z5&=MFeMB)vQB2T6rPddomd(NFaK2uSG8>SXfAFf7z*csRL$eZBX8$$%+GS$Sze8p{@_W0~iFO{QV?n01v5~dzf z;Ye}kb{fW*Vpk%R_j-TWIF2+seh5K zn`VUQm-{rX7F)&ZLVa_|E&kjRXO&;2oLC=cBX*s4JjU6VEEu1cU3Ni}6sNfcQlr3; z1A>Jm-88y0+vfmnd4lYZ->KxzEwn77s)3eO_ITz;SiBDmxdnKVZ6$^}xR-_{GGD{*2#x90P;)fXT|ki$MkrN#CO@Z<-e-a^a^N6OJX)oN;M z$@Uvaoc~Te(Ee8viJh6DtT^V#C14=QAUTmq`FJ616<3T9SiC`dnM++pOirEBWaUPm zR#))tegA)1Cz=N9208izmxDS=k=n7cLtB1znbb=*%K^Y?d71vtH(xo0dTUlPK(-vm z+rX}hy&>S*MZr#y!N3;j)K*XVCp%s2`(kz94CmyFT2;qw-jGoB>EQ_{WB1sV)Hdc=4q^`+%%4&u!UAZxC;j`~?tL7KtH<45~HNz+=j z<&1oWIW~7)H(vY$D)0gmS`OpZt>e7VL6sS8?HZ=yrGG`|{T9;gsOMP#DeZ z^t4p}`$Y*&{QtXOf=Qx^Hkk$H)H>v;ni#+V8sdQK!*J zPi^IqCie_G2!lAbWZ(>g7yuSFVnMoyc86%SAMOqcQ0EUDAoty6lkc ztB{PYs?V8n7m`Ked6a*_>qj%6=@1>vjD+j&CjB$$2~WfYgP{{ZVQAHZN&NujPu-1f zShxF|LBh619Zf-R;Cu*4RsrOrG;Kc}4iB291?EILgID~0Mc6l=B}b$6ec6U-pR zQz6(h{=ul2i|vMiWOjtXg(zU2sp0drIv!(*6V4Y?8v~bYU^oSwz%gSHnxsmK8M}&4 z!1?XuH$iAv5^29?$nBS8|PPYk%8%bCb#i4w_EGMPJ%pypH9 zCT`8w%3{jW)bh>ogMw>Qu)AQpq@V1&k%-$?A-c=Duh;(Iyy8M?ar)Eohwx{3gE810 z-tmYduB_|ZW;@I4idyES`9p3YJvF03)G6_f!Dqe=5-Cr{R6lfdS{*mD0BkMX>dXT| zD_Q*6FLS2_r2Z=cVVMLw>0#niTFVoRq^V@mK2HT`%q~RTrp&|J3hY~~*q4c*z^XN* zAMmd2Wa8xOO6T2{$png@WUD@3OtBxWc%;c}$}7yxixMb>*SK#l&(Np@Pa;3x&0g!4 zku}#33VM=SPbmRh*S{X%i-@^nbG{JNk@X|U+iK)QsHW-6F^*fkZo zM28vg!{E&$>kf=CSkWJk^mR}l+LHGYx$K|2Yj}RIK!*2k;cqDX_Wq|-H0v1&1Mmo9v0i3; zL;bCQwGSjLZ= zzS5c2yB>ANuOWBq>VSM#Ulw;sjusxfD=W$) zpYqW*BF|=Sov10J)i`O%TU`!IhqmGVZ| z0ybymQMmk@G#42@V+ngZFU^%F!Y!0$FA|MJY+BW4zXQw&xtH<>Ny=oWh(2e6V~TRB zgIr4}5kEwlV4*$Ih6`q|;?&0k&Nt*q1DSls$%>mqm;YJjfbbmbj3K!%lkGf@w9He# z&H_D+@*_P7`TDQfd+D0IZ8@v;GYN4BgLi#i4Ne8E>`ucW#E7q!Wk2-&6JoTMEXuqE zTxEkE?2oOJH;&-as_Z6H@Oes~9!$@FcCFAx3MkD^yOs$2WX&%?N z=$w}Y%tre``A0*8pN~16k58HnzqJ4_QIPiu)*O;3%W2+y-3PU64s4R0mVKM$`+cbg z+7=WIm|g-|cQQy5n5_!|ZMt1|Hlhqxb!Op?GBsRXVMSVDZZ!LDC)`;AO3J;TIay+E z1@qY5&Ygt-6chbpj@if0bgEwWZUzq|hsPR9EdSRXXoDE)Uukz{^H>}?Rhk#~5`qer zaOx12?LsoR4t zt!ylfCa#a?$2t^CR~pkQEB1b~wNwu1@s^(3bO>RX;5#h%j(=BcHEYaO!_EoDD2R z8zdUnFN#%vcQ^Z~*q9sKdmeb!^-+{m|H$NMuy-Pi{l6T~q$%;tSPhnhS*g=(< zI^1k)yKaEg+2gCd6RyPhV2)fISn0R;x(Xp zd!u8M@E@Pjr%>M0Wkhxge|qb9(kSD=PW2w2IXDXZo$ zIVWfP0Xi{^i@H?^!~Oa$@bGTR$C#xcsI9kz*M$aE|Ge5b_=Na_paeFf)5E*Bny()l zRI${<+FSkjl6HxybNl9LEor2levy78G@c9yc|P}&xZ=o$EnDEBI=0%Z*u^%@j7VBB zT4EKoHnzI`t^g8K7Jv{)H>T%m-flZ43()xDpKvm);0g#Nyr&z>I9nRGoi0*T0%?7_ zjS7;Setf^>bX8i+C<8@|D)O|&bGutlT+c^Kb8-iC z#yng_%QsOyAVb`WiDrt4Os*neHsiHU*)*O8f$yw>lt95Z+2Qkp~6z)?L8WwUtKqa8hVc>uA%8nu^ z+&sw^C~lEs0w;68iGMPHHme=8=CKZ8G;;%MkDs{-ei#;ijNpbfbX{~-q+AHzCM$ch zp(|z&%Ap@b59kptGYgU{IZ(0p+^nU?#W3KezB)suTv7QtQQyq@64+t2(bDbGVv3yP z7Nn)H>|SBJ=ZHpc3i>fH%$5Q{6)r47CsFSaerVD4YaMIcjLWC5 z`=$<7$IAYI&LtPgkgtc!AP;r8!;*DdN;|;yfBO0du+1A@%bb28FTf~}x9h_ou;|<~)KH~d_`M#LDhGqGA2n2Ps!E=#PX(0fo_*$Ot}a|DB)SuDqRc&+tjS94AuH(gm*xxq>xlkJh@MjS%s zxD9DgPczZ>wsO}rmV4e)(R;KHs{^JyX@{ zij3iq9|S&&LcadyD!yWhl1E@vLJbYX~{A)!~tj<%^jqB|fGQ0FdIvmClEyq=zoew(?6W3ih0zsv31qBq9EieALzCeC7!s5{VRS@(#HXM_;q*pG06p(v z6v)jOl-4Oh-NEi=w1a$TBSFUbv7fZI$XHh2)EoJcVU)4UfqyrIMizvN|}Wc~yI7YqD!5S_n{}gR;^MciwU8YPQtaxX7#Ts{fSN^{I{3 zR0cS;1vRFhMRS$eQfkBq!ygBr94j1KT{I>xJOM!wn6$qs)1#*ZiiwERO)! zK;K(`L5$puDoF(lB5AJY^!@cjYqSHnP8K-Drq4FA^*+aV;7Feav2F+;%W^Qhn58}| z*5&QgjPz4|8{5UWJ~alAD_zmyP-Whz?)kqj?S<4zhk#SNmG;saoW| z%hCVpiU}#k8oj^P=i$HqnKxf ztyg3e{?b}x-c02@t&#!CHcPf;pff|GAmWn_xVN~D5S?ilz-TNQbaC2rh7M4Gj+}x$&cw;rBTcef zTY$*eL2YO}gj*Ib?0j+}K8rFGV!@V1${#xnI~OW2wn#2E$i=alnG(<@v_b$xqp91x{Nct-a}{2 zaN*4ai&Y;S`&w&8>PoVCurO~QFjHU&l@~sJO9QMUDK6rWYYtHnbxCY<8c{y0n?!@55>nP=8=SYfFEPz3$it z=MEtPi?7xGk(CWLG?`;_?~WCkD(pa@%LS4}X7LJNYaHs44KU^=wu4EhxzZhICRCN@tRz?E(`Pm>o-S~JZUjL6(_x`BJ)uF@$HLE# zs({P{b1i2srb7x>0@t<++A!FayzekWsCZcfzD!>@c_Sp7D9jLdHVVm!1JV~qf-g7Z?d}F=NkpSeb?}PFB|IEE6>G2*M<^4$D_M(dTl%L0}v;wjq zZc2JB>L)2Z!wH*Vxu=TRKgU_CVZ-lolQ~$wo>Lr70)?sZ-VcOxiWS}|rX2;*-`B8Xt1!8EK z5+*NpUUHxR6W)^wG(B86V#Z~x_6i8eSxEj7Mnup$IM1T=vxTq=36o*)ESyoIcs=%` z5q66^QTnmpBz$dn^PPOw!gEbmQtuCs#1>X!<5cC0rE}UC0 zxa}o*x<@_W-7}GpIzT}8j@IG5ILb#=Ch3_HiE1{9+&mpXzpS1y^Sye2^MAPqqr14A zuu=yql-ZUhRK;ZH{=bLNIfYC7Rz(Pz^g=E`${pzFD#l`WYuF+Xe8U`W!1g?(R-hKbSEXk+;ElWns538z>Hx89fN%4_lb4Z(+ z3A^cMU{dZfT1;#v+?Ccj~&BaGw|0q=5FKLzP-%xf% zF5C?@1(r+@G!SdNMZw}F*wG}MgVzl9t_JHInz+3wlL}^|3OYGLn4yM+I2mo7?h|M*8;gd10oM{iek8jFlIW6=db4Cz7?8tRHgR zEZuoeAM&>UfTNYtbW|yieVe{xj48Cen8}5AlpR^!`m||fc z7CuQ&XzWy+4Wc@Sx|TP#ZMyB}J+5np0f?;xc$NZblZ>F`zdJ7zD-wY6fgPT zOKTKC)i6m0l!>?=95B1eOzgT*rz~ou{#k~`I2gd3N%c3mLHL>0Ht6r5uyR0(uE!s;8s$b7=*mFX<5-z(}=SI+)EIeY8bN$@0A zhck7u6CMSzju{`nEZRz6)-HnlQd<;D*cD9Lbe%LxWAg1@k>Ty^3o6ykI2C8h>lbX`?C*rYg{$`wk%+uh9L3n}lJZ z|Nd$AaVvYGmgQxrvH1Vns(bOqxbbF&@o@-*+4aIq042{&AvejlT6+iPHJH{_9RH=+ zIpsQTEBmb#v?|KOWb&mtxXQ-3Q)1uy-;>BDe*h#7(#u!nP6AiIHdnEjyq#RZGJT&5 z3Tq{-CF?sat=&X@Zz8*UIm?W6r2U0SGAXFHM^zAP=fb1sex%2z%{h(MSxy!%x!j^a z_=*TtVC%#jUKX-}$E&Vm2&)~Q=rEkQ12O*M*HfpFeyG>Ca95C#qG@C66WKQNAwX*_ zKdDtOBkC_rT2AYr+iD5kc92ba^uHFw@Dr$6vTxG+dP-PBV(UeG2!ynH<0)R%T!Ck1 zx))YxbM-%G_8@W=WpO1P5zNdEofFyel-z( z&2a&XuPhPI8IzB0pXo~H2Ne9-SKRozLKnR8J6u-X`2p6gQZZip$N zv@#vf#hy1v7;=_<~HYAik#Oz zl1)B)zV_LTPNb%wKjty!yw+#g+&lTt3;=K4_ps)0R3xUk!bNxU1xmc;9>cf!H#s#* z-EWk--*!@dEvugLwy(yI5|%1l_pZeJ7+X^QWzU!z!l>_Ncih7DOw&L~@s7gBG!NW< zJOwX;hgMDK=i+XC=}$?&EcB)vnsfZ8e5+sS@l&T&-NQi%2>6KcLJcg7w2zLYYQO#< cXt{Mmg_kLK=;y50#UGz4KUXUK$L!7j0kdv}tN;K2 diff --git a/docs/articles/EDA_files/figure-html/unnamed-chunk-13-2.png b/docs/articles/EDA_files/figure-html/unnamed-chunk-13-2.png index b533bee863c6ff5bce9ce649bb9bd526ee9224f0..29ff42682847c6c81a470a0a7f3d5164adb1c19a 100644 GIT binary patch delta 20711 zcma%iWmr_-7w!xQgHoah(u#r7(hdFu5fKnUI;Esz=sJYbAtGG@Dk9Q3`3kmM)+x!fx!T+ys}TBq@a7Bycc@r0FbxrVI~!S^8z+w%M>_2OBI_%sv> z0RVT8zIO5Xzq@)|TM*7sDzWb&1>*@o@63CchTDnddfU$91aHAk_uM^u%VNUm@qh#R zb6Xp4y4}qMpzTD)pYBXo^VK5&&qhNP(`!Cj3bAVpUE?V0gI4X>u(cdXuWLw3yU2Zt zl(cUXG&+kOKHJbHqz*{Cb zcArpKBO#tz60bEeOv1`KaUWAD>&>*ENh>UP|J$dy!tqy~tvgHDjC)6KtbNwgdm}U_ z(Y(JS9BowqI<4KEfH*?t`a^8#NIT10bfi9?MIt=1Ifr0Jdhp9C&krs-CkqSnYgFeC z@P}-82>Qi~F3wKmK9UWZWBaC~d)>RH;7itHJcAt|xT9uKbJ$W5XT`9iDcm-4LsP0s zKQOeTw|&y8pFA8bLX{ZLSrB5sjz0xmT6Bg)Nm5u4G(3w}r&#~_cBm&ea}h06pT z@0nafP0s!qq@1kE$w%Pr+wFQ*f^O6IJM;&%i-V@5^C}V3B$$J*DOT$QC@!A9d*K{~ zP;){_COhm;J}4B)a3hHN*mdc%Fa7;4)vI}J;W`Y)HE%Z@R2qz zmt8by>`e3v4Lf(ccPMv4VXT09&qSH`UH?5n*zb(W|5u`?o7SO6k9Mc*1 z5qtB-_5}OT7FM7a+v0xVLMCN$gBUyR5Ta?w8>7mRcnXAx;@oOjFvskmx3@d|pY<>5eg>n3FHnANql?Ac>OW@=-_P zB|?7xcE6<_j}~;!O#Vc9g}%=57hQr~EL4zV9tR_a6b{j7p5B?R_EF3@<1Zo@wU^yNPgV*B zpLvf$Q1{Cv^C{ZLo{C-`*6nnX49csbwDY>~vATU6 z?>-!op!5lPUmpQUocw67RJDyXgmjZfZ88M2ROi#l%0irsd1P|7Obegnq4p3$#b5tQMHr_di5VAs)C3Or=(PFQ1fp+KVjCerxj=?8(hYCUS#j zic9Bm<=0j!5?r9E4WXdBT(xNFGBI)zQFdP+Scz}b6dnP7r?TII%|uQ}0IPtpReqiy zo@+A4r?rB|FQpEVFDffL#lPRN9j{e@3BTDu;M#mRoi5p2IrnEU>)?2>Zp*njc8s@l zFpUF(I<(VQXcevzsrY;J9U7{EnqN}#xR{SV84E))O&anQgvl%?O!gb@N>B}=R3Zf` z#i7kuyh|%B*Lor~?xqYWcZwwc^pyt7gLY&BS3Hypcn?M#C84BWpRqUeSnD%URrizA zoQksT_VMJ$vgc2Ao|Y!;YK(0qc5l=TPmUtH^i)Ku<{M(>xyp!eGSOK`R;sbkn3Mvi`^NY5f;9?t{c+p0phN=>a)TRT=32b+UVMrYKF zGMwB{Q@YcrG|a_ud-+(Dl%jihKqkc7DVP8T^dc z4~9FTAZ0BH+>~XFpWKUM=<&hg3mc`$r(8z|FubXxga^;fXFFJ0HP+4odrp#KY~5Bn zo2M?7F-816BCPWu=Ek3=v(Y2Cl5!tz_{}Ihm52yb^m8?0M#V@?vyguKiPs)Q@0Eyw z)VDx8D?iZ6ihoiV5P-K6OV~<)-T>C6EL*+``7UxWMD4VEZu)LNtvG2p`KqZZ(+Io! zo+(ZK3kSjkkrI#MwRrHs(c~5CjdW>o=g1Tbzh%p*wn;5Q-+Xbpd(Q_U?VvsKmF901 zjagrLf_DzmA|IZdX6ZK`PJWWl67St&w6YM(*(+mJPo^v8i+SSfB!Oh-S8u& zPs-~g$izHD)JD(&e~)tNwC05|wi3C7Y7%$gnVe#4o){W9B_hLRL{;-8g!kI$A}086 zc?#0HS7W*+()pg`40S6%q@_-kTV<{RDBAjti8O5y_eX)(eE5xelO9ol8g@+riNP^Z zxpPYZS<|IV;=&FJ?g-DQR&T@9_5{iYHy>3VVB?h{>lVri>-bqG-3_2gIg@oFQxZ$H zchTjNJN4}asW@WZ)hG55C!1O^X+b+4WDe`7{XjB~jFj#dKaOrVkjv&|5f}aq(vY&i zinmwCVh|}auOU>fJ?J~#!eeNkKGetUN&s1CpI5jt|BiLr&>MhIx>rcP4&ox_EjEt*La|9+;Sj8`5m_&ljNxY%2MN1rl4cBx;Ge;F z2Xo~_YlsR_0C?+zluLg$zjylwThPWEhubpLWkVNmA2P21mLsM_xyEadz%$|R#g8^v z4x@MyT_C?;S{@S*o6iQc4`r)UR4Ik9ad75G$Nw3TA6()Tc_eUT@nCdda{y@vBM8p3 zQOcO6@cdTHJG~n0V?s&5lMH`5=+?P#IB1F|o(2eTkKEaD8HCJ})#BGLvNxLD_V=w4 z!kWEL;RaE{!V)mXai9>Dgsk(pvH0djBH=OA+UM4`>bXT^SNPosf}sGZQzN1>p4|5j zVKXxU^N)0CHcOhx1qbs6v!qVs*F%)CVCM_h*^aHmv+k1 zZuO+@?;K9?LZiM= zv3bmWzKXmas%5?%(vSV}V;ZRDzk!U%BW+Uw-lo{Syhu)|kLMBBxEIyxOHm79w6s1# zJ36YFWGF>4)h*+EN@-3gmSLy(@vO#u`^wL(;$o#75QnoxuwIN*3LFoA?2=A;L{t=l zDZ#zC0V0!^x$EU3ilzUWX%-Fs)QE}au9WLd-?K*9GUt;6^FzpyCP)7J<#^wV#bsXx zYMKVS4Ja&FOBU_;xiQrzlJlz!eqjhw=SrN~uX~hD+dIymUeLhT)s}uK3YyOGwv+rf zj;vqbgOzHhvl+K{Ia_Kbbf(5;b#M01m=|F?VV-UlipgUs#9Pb{kui{dh}v{O?>@{l zqjXFJ$ZAP;A;bhk6ycLqw&(L}OM7<3U7 z{;p2I$((NV?F7!-IF$UHUE>aUSTckzM$gX}`WcZq&~F-;j5M+cCf@j|CpdWxt~>6v zb`TK6%4$yx2x#-ox46D5afdgHef|I#FoN7&Mr%D(fwJv)+rzMN3n@bK-jG`fPqH50~e|lhIE7G`TO?%O3<|?A}=Y{$(*2 zJ;JdsksyR@7FYp4K zo&}$CBnE}_m$A?lzv|*}danZ1PX?`LkA)_@T32m1pmF+is$V9LgAVLe8>`LHQJ3OV z9DR(6JsDEG$&vN|qDsYXZJY<8-4xOMq)!sM^xo0|4_5U)J>W{b8W|*^@aGH8O&4H%o($z5yL;&_h(H*8!I=FZ@7}Ork z`)eN`=J|;lFf@o)vg=ZMi-rW$9J9TapAh8NSmX!VWpHOpuj093Qc~5H!>V8sdx>RK zlhhB=2fV+mD7#j}{}&WMB_QX?u&nHtZqxhG4~Xi?ent?bnrNQ5!QGx{#Ohryh+rp6 zhfqYk(M#Hp2rVi3*~|n{y?IKq&$a$o+Evv=#jTzkvku=*Q@n_BQ?FNnnjrZDA`q_$ zt0t6$T-(BR88fPE^{EeELnwyU4_RpF+e)Orxlm5-3vggb*7Qu$syWv4b!8=l{_sXv~e;u=qe|_+~TMzqL>LCyQnRg_D>JB9pfr z0=WfIkbSJqxk!FU)1m>ei13WKb*>^$U(oxCpmBZPD|V89tP9&x)S4aX$!iKgBHH0_ znrg57km6iLEqd_Z39>CmmSj%8R6OpnNj6*SG7#jMI zIUCU;dpraJS`%p#iR9;esUd9)F^7leJzRhK>fg-tR{#GYIbaVy?{it@lHx${)H}Gx zgkoRdNmm3=eLeY5m3i!aBFmaTFl{)HdSq_vxS&!kQ08n{ho{RckvWZ=+?SKhXHnIu zsic1%Phoj;OaQN9eDj#(AdG>HK9z)c9qf=SnTd8#PB*|N|8CKw{~1Ju0bPgP3z+T! zHGy*R%6|z08(^+w-LBV6p~O?PEyxh>D<(7;ILMZKnN1#_4Fi%oKZaSBx5jDWv`&fx zA6CCWSu zN8Tl0oE(I-gpo6x!Yr0;BdCY>%rhLZ?xo9i&D@0Ip~H3V(&P~iRe94>V{F!og5Gx4 zix)(d>JRV?EH$i<2)kq#^>=KLU`%&sf8)N54Z6o7qmKFDu}igYuCW5VMl?O$$FRh7 z*?K~-2z&LoZHBP47*m2gsby4*x;1de)M@AldlzUzt&=$=>8`DegZ&=I$QcsZ zby)ObRq~VtETl1eO+)xIAKmS~2lR+*RcCcez}BK@#ytiufn`e0_FAE^0N8)w2Exk; zf!CU?9HhGl7hm_;-_+66`CWD1HvWAo-h-@z1k5hqlwlu)y+XWAEutp#Tu7mCBdm)s z(#wH;Vp6tq8d}!7S!>i=$tZq}#9vT`vgrC`QX=UUgN_#kVkT-M4yAPYh6rHXK5V1z ztEgm5h<3}nisT8--;Tj2kp|BA`m2-VyTS+hZy8fLnYVi^zuo|To@-RPib0$|Ip~~x zqFimz&`cexr7AUl=Hhq`=YC|mmq}%%8OwU-7B~j_)9QU&p0!aJFlKfx&HO%%ZRm zG!oIAFGIP|Ib>pvbG29^A4f)k?G1e%`fY#h zi+f36r*Z+i@RF_!jrUudupBXV+P=>!*yvX0<(Y6Uw$;q9|7DR6RCJh$$4yf2LH zCpXDwv1n-BRU85}T zY&sXcIeVx}ZyywFZV1zOle!rDgK}cI3Tz*n2sLQtgvgGmfX}~*?=VHdT;X$~{CK;n zZtmb4Q5m>ruxXl`@{p>-<~5E88mI{4)J)R9@ZY|=x&mSC-{VW#Ct z@Od}6ldD^e*;IKlNUG(uW5J=>^r4rWUB3^@2|-&dc_EV`Q|dXzEnDmx*;)J2E^|&T zS8W3bQ6nMVi9(hE9<{1dhy*)l2T|d;Ab-5;AeT)<%6=<3T%#<9n@o#J6jI~zocABr zbAcpHwkqGIrP>|7B9%(o^s4|;(3|%wn?tw3iPn57l*&xr*qb2uK@r=;>qUu$r*fv= z5`|m&_*K_Y<{I7k;c7_*r0*L04&Wf|fO5}Pb2=9#!Nv8+t(~`vm+i>`7NntH*3GW#3!L4wy)7Vjm@2!brVBc1ppk=XBBp*M2uvo zgJYNfwuGQM_0;PeVFtoD&d8*oAyk_+$5$q`Xl7R8gdaFo+2+l~U+W7bKH*I+rmtpQAY9!_Zjv4`fYn@gn zb}pxa1hB;&5Zlu;)~XU>FgGw!%7}Lt+f#R`p7AnCRs$QrgT>vb_rRrie-_=kTQ15{ zf;6_>t1`}X6JPr$$wrH`&(r~p`}Q1nM;f&2b4~| zq~|L-yC3va{rR$8ZtlwEhv*66Ic{xCVUPxO?{*a2jo=a5PBGp4H|fN^@8Ed@;7pT@@WdpD+kNPeC5AD_)s83OMk5;>W+(`<^?uSO7mj)wUzB@&fVZp?y0(GplOM|jZpsjTdr4UuvAwVsr*ggpQ+Ynj2SQEiNQNo5!fcAw zl?NVPZ-(`2%MZTF@qA?wN92Lm6x3j~lYKj>G9-u~MLyJE>&l~ErbYHkG%T3VWVswLyLVcE-sjs8ta=mm8S5zH0p%e zSS?*$n$!?_Gl}cEbCJ3wqE^6WSO{eO^h}3kEX#GM@xMS-cV}6P`EgZkC8tR7K=^g} z-us*O(2V8-MiE;@TYh9+%vRtu*2`hlpqeVT$JVPjGew25gf(4x5~O(87ZoOf`;xYi zQ$)56|LTS7Gq8GwK+Nm&YW(rQxEiep2O3g2DfV!jqMIxj__Gh$FSF}>>HaPWKoL%b zm2Z~m^PAk0k?>h5w*W0#Ao$!k1uDMg*rfme~CC2O@-6Ye9^ zuUT1vzn)0>3qr~Vt7aZ5X*nl111xhEuG$5+YWRdb<|7|(Y_e&@qMTJ<#85t( zd*lX@zMlBOjVbky3gQA1p zrl<@LMjDxh%&scr!^#NvLc`F&i9BK`N$n));83TBL%-FYQHqyVC)XH18}Eg;C!Ip9 z$FddZGqfl(ohxLPa!;7Y`UTIMAa7Y`ieJ~vNqtM1-ngkez0ONkb@jkQ>fTnnHK~@# z5>)mQfNgR92ho$spwDjW+>bscTaN^p=+UpLrZy!*oWC(3YJNI%*K?@Clu9&!La zY9pb-f>>tlT~Z|Sn~fb-ULRE@zH|(G5Sg=-8p}!N-A5BXyo;a~foL7CGt6YCrCo^n zvR`U|E1Q3mVy^mDzOvT&f4Z|pF5g(J0&_2aDs-q0QW@Nff zjSxO<&GXJA>YSb$<-_u+hN7*MeXQVfKwipf0||Qc2vv}zYfwPx|1WBV9&@;xr7ReX z?GZFfU#_L5*+n${bWxrEHabejW6l;;#aK$5x>3zsJjYUc_iSQqWhkAJ5LH{y^d)Dgg(4yn5Y!??!< zbWHa}u}=*;ynFxKsQtOW53g?Y&KtiosiqC6IGY1a%Rug`Q*nUqw+!{u)8NP1$t(M$ z1U2+ad`RAuPn-o+d8_MBFYGsM2aB?e_&(`dNtr+9HOGs4ho9c%QPkc6du>?^5~U)~ zNXdWJ-}w+&xPxMgIFgNe%kGz?e=RCS%FJXAyIR?R32jMQbvtq6qmjEKFL^fdz!9Y& zZxMi5uHdM1bHH4I-`{0_km!6alT{AbVt;YlSz%*C&3wbW;!MumYTvAOy2#5paF6mu z5Q)ekDVuE;@!;0!BHaAy9HZO|uN)YZyxok>1m4t4|I@mjxq*VU4Zm=d;4NBN50-bP zp|YRS1l}-f$zd2tK`c$XPdi^vs6m1nQ-|+Mf|r~I3@q34!=wgyN>7&`g=Zvhm)?o; zq6>gtt($`a-KKm>m2r_;BU6l_-@c9ZkFI7oMN3iLd|%Z-zj%cu?UhEoRi3>a0J~~$ zH7dzq&dj%T^H%r-CuNqQ7qwU88wB%X)Aky?!{E3 z^1sX$z8sTtyZbN8eLw>zP(~1$$BLU^kHF|P0NF8;$+>hLD)Hz$Z?F&1EwaPMQi33e zn6gFJQtXS$|I~A}DKP~)?oE8WeJV3&x7*?E^H5QKZdZ6pcht(X8FjScd{UT|3fOy& z{aUItOE2IB1>d_U^kqgu&L{~9Kn}_n(ITw+oCjtfXnUp#y#ZQ`3 z_oA;H=Syj9{?w5D=istv`r48n#&|kxQfM)(NMKqlP!fQkv)n2KG)%3_cc<1uKD-si zc+@zxl^zbiFLv2qbwN`^S@OHw6<@k*-ED2BI; z^v6=p)8ROcZx!b0Ty!yZ=xp9D=4?6j;8(vanOr87+YVX!j~U4D?4oj=~6i1e9cs->IL2}mZDJ1fC< z4w6lMtLb!D;kPVFL>+`TzAUGgTO}V7Px$Dlq4sqis+}{@r)nV)#^|?G<>la1QZ-vt z{W0t@I84w5PHI??II##ngG!>l7b@p)j|0gFq5CtTpUr(wG{LDD`70f@fBbp)mY}H9 zu4F0uwt?L07*aKuT{q*p?+rgHJ<061n>5mxT#!+GMV!zt({(R!PsJnt5qDW~gFhr~ z`Vc$4#n8v^4?oSj>O0-;^+j?JaZvm^t?BpRtfYtJ*n4$J#E|$&K}^e?8QQ_fEahFqEP0t$2jq;ON;9QSj+h zk1rIbZN#*hXtLu+>mLoxZer{k7RU**?O_D@I}Dm}X==}aW22+ySJD+fB13et$3HXY z&(5QjQ?K|e4Oo{T^>rw)pAKCgU2Ma*#K30JWJaUqy7=r3*256Fv3*>*bIqPN z)}teJz`xRwL8j zgtAgDt1VKdBW{qjBz0v_mShydZxG3D>HZeMinxAPE-Fc5p7ojBP z*w3ifZ|;(h(wD?5MacW>XAOQ2PNgn5G2a z3B#eeZ}Tfxb3Vn{dk_^RwFjWxASgP4<)pS+jb{57LLH|(ZH~yDO9+*FiX2w4Y=b|? z98hKb;ioa2xwRy7VZ&8IX6n^5iLOeYNOd&j7&yk&DwZAshJ><6?k#Dya@yL9aPAQL zCH?d36Y7Wz!~=21K{+j>PXu{gH%$Bbl<7TSZRf;5EgDL8Zxb93uz1I@v!saQIDi2JH5hlkh6j0#q1 z6&BGgKKohtAJvNH%g4k~T(7YjFU-1i#Hhvpi^ZF4y%Ops_QJ|~y}X)Q%9 z!Oix~;dhdDrH1QOETfVZ5@o(ldod~WDM{zuK@9^X3Df=2*Oe#m=KVYx)R;xWbOrP- zAhnif9lMk1XDnrMj%6J=cTI?V4T9<%+a2@}cghN%RSDkuxICgDL9lu-e`;*`N#CPGVnN?m)!`%_Y6mmEa2Xut1B z$NHeWF^sUVa{EjQM6^z2_?%HH8^4A_8>)Z1Qc6T+dp_I%!an;ah`$kEGscw=Sp{VV z>JzUMNsJVTX_2KeBi1I;tC3t(Nx`i%`LqMJ9T3Ve#~xtNY+U8+wf zg7huiO_Zun+pUM63inFEM_0((TWL>cjhwioVdA7(q`xt;+CUNx^G`+|dkXHQgJJ_@ zq*7x=3$#W{Wp%p|jXrj@Z>VbCcn{CK;17};8`aLH8O#vQf7@{gF{11D-Nu`UVY$79a*RAk+>{~cixq7)WZMq z=@k3waG_}6#DA3a!V8}o3(LGH{s+Ggz&6|Ul?kmNPH!ejlJt%S@Pg}y`+gw#@AX-* z9FYkh>tQB&LzI(s1a`H*AOEV#ZH?o(pPbyQM_-Rq+=O4Y5nKPto4bOxiWDa>{wGGI8=#pRu8M*zizIa6Jj* za_@)g{;t7zt655c^{3G&QlwwU+Tghy4`4$$K~Ae=L>Yn`LmS(%2vm#4g{5AJAYmJw zmszThxZ!PU-Wg13XI%(px2pi#$AC zPH$%rP+W?~>TaV`y{$gxB%HNJ=0f}r-!sLv&KN?NM;+I4!;4HH5^ruET*BBRpBqVT zvfA;3gRCFF##y+@!fB1BXIrI(Dh&xwLTVqTD=Xz1Bm!a-Zh^y;1V09H!?h;%dCG*` zMi``?_2~br9_#YD0wLH-p!i2C<_f#&$HP}?O{%%?wY*r`XAoTznJ$cfMj7zPPJ{4t z&zF!Nc3(m@rbu>hXiT`BKshXTr4hRw7Ns+A@BJqdD#W6mfby`xIwpt;k-8Lq;_!%;MNzlI+5qC`kRgb)2~5?+&3aE=Z{URGg2L zt^e1+ylna5In8TdYdDAg>T~wR8jp#~X1GbJKW$Ogey#-k06>e>P5HR?J=<`i*-e~X zvE=ROwPyRbJtlDL#hm9tfcE2#xROLDv#iKlsN4%O2H_Yq5 zCRfjD-EIiaSp_IvHT=zp38hz$zv#B3GaSkIIjmIl=M5t0h=Gj`iEaa)W8<^B68W0L zgvkRFiL_)oA}PsHv%QSij4+G2o;|{?O}*g*VZUfX4$18ud(k!P1lI;A4?*8@LQVse zoqF7W{)Q}$*ZQceC52)5aS`>7u4TeP1C)h{5wc{z_5<$qZH)jV=*J0?uNtg-0z}yc z&jo;l+eqkb9tx40TD2;!8HR4A%x`VC!4Adu4q4V6rUp89Xvo{iX;-3NA3HMLQ_sfY zf#*C&364l82cWyED{>?2CRC(%#imRMRJK-cOBaYEwmb6?IGD%A>sal9{r@&i;JwEy zi-vkyn%=)>DWe!_z85bg>n(b^6+lX&TCba#jYV}7JyHt~k|IU1?E?S1_tvA(lRD2! zw_n@Lwz{|em4Of&VX%TZoA_^qi33%KGi!M}&5jPGKxK~IFaF5)CsVy>?9oAvPU2PjpDeShaEA+_61VCB4D)se%@1;1rWm*(q_B#} zXA8ZgVNufj2uH*h^!lD6`=Wh!?b;(yD-6a}{ENI8?$5+vE=b3dA4eNgIP~6}64)^T zduVsz!v8F;%0MU=#5J3)H}(@HiQc4ztTNWr7u|z*2f;%AURSDCVAwaiAJsP`j5R_Z zFnl!qgOQsM%emN~%~bV+?B3#-PmtRu1sJV z91w9O@G>S&v!Z zI@D{Z78M*!)kX%GI?8o=0V9*CvTABJmQ}l=m^oGIxEJDPZ+C_#)BbN@JpVNW1&1oZ zBLnQr!3#`G9?jtZ2x|#ok~2r;sP(-YL!}r=XO<(pV09X4Y4&hhWGWxTZ5@?^ApP)w zqdQ=d=<2)1r3paupBl(oat{nP>|LvH4s&4fKZkVJ*#BpRE-3eO0LtIjWJ+6Y8!FPauK6`T zLfTKLdI-q;(%|{uYfOq@Q%&;&Y#Z3(yM2<7%1vXWHsxSAWO)(O)O}FaVqIB@5a$oX zGqqt19)XqwRS<8R>!Sxp*%TMMA*#rew2Xg4pWtwaJh{PGW-CkKT5EFs$ThhHz(@m$ zZ}$?VsDf$M4SO$V$a8&faMt<#L0;(R-(fRJT?Z)54a9`Zrl3(@%9v!gLAc}xmDpE0 zHwsqv@q0e;JW#1IzzFvSv&c1M+JvGcbAtDKZK9}qSUJNRNGDge!koDN7-=r36 zbPG**zcVO$Mi{g22XI|ZowCDeZ)PH=WZH^;jDHL}`a8tbYhFOa4ZR}lc-U~=(Q^A! z*S9ri@kxVPQ9+U%s*dEbB5-&^l!0m4ZsQMoMkI2VvHGUEI6KT>jFPIgPjG7pF zEPJUxt?2$Aqjn;yJ5dq0C!y*xs?LiBH;iQnIX{w*ZsXP4@Qb}sBJP4F1cR3yu4fKTT7BBYVcJTBge2rW7UfS9jY@6kF`a3jpRW{lEUh70Bpu4&}hfDiagZXY(A3+8&-<{~B3EsUG zXmwo7J^tkCaTTKaD>fsQl`!{9qjV3BaFW;Ne-3Y{HAr51c(Gaq9fi9f_62tNJGRVg ze-g=@v``GE%y1q0=BX3UosY=T+FBxU?VkVr+_ujbP9eFK9=RvrQl25VxYSu?0jS&d z7%VZ4AI#I#gi;l_`OGD&+-D@k?nOMQr1H)on64@^?&`|yV*9(ZvU~?*p0UN^HW7^0 z3{8R_8|L*;VRedCN_v!+chb1*6Smt{v86^asjjG4LCsN(tEO|ezSNUXt~PGqe&o+z zYCSU%&L>S)3=oUMwyw?>mI6&~OUyzG!88bIP>T~@75yeH$@Tk{kXw01LK3Y-XRx2KC`J-t zJ(E6!+EJKN-1TJ}z*`V7UVnXxupDb*d70~5Ym2_@M($d#$cEA)2hhT!BXQ@eDD+Pc zcYg|sO@pwye{Uc+)2`jJ&v>(Rird>&ukqA%f6_2Oo~7MQ!=$5R7vRoQ#LmY<;`D}U z;T=kZ+n8cgq!IRzLs*!{&>8vCBL3oon61kO5f69no!kz!LR zt|m=;Ktn65o~ufJbK{_?jLdMg2Rz5y(i}8p4K80*kD{w`{^tO0#!V}&aT7EPjcnV# z-y`+yqs89$?H}n@hXq}Fr%mKW45s}PpO+Bd>g4G&s94Tt5C_0`w0t`h6Fh2y8_DxKit zSr3?dUxdu;_lsOO#MT4MRvUfZ%&p>3CZ=|58Gd}=79jOxlP09{(ubs9!qCWw4KpRj z#oFem2A`vT#p)GymkH=~{!*XT?K-ImG-7iFRU2!h{)&<05b7D+1Sq{t9pN?8%5NZ* z*{$E@;&Yu=|09N5Uh9Sly?*d_(J%QKARt-$s0{m_>@tYyux#WqQ_UMItSgsV^!h|wDaRF3$+RSP94mgTH0_*4Y@~V)ytMfA zH!H@IB`lQGEWadPK(t#lr3gUg6peCE4VmDOEH>?Zr{G56QXeU5HkPHiE9(KfYNjy- z8aQ|6r6$>^WJTG*YplF}TF~@iJ0heQwS6`h97UW&eLD&kAnBBGJPZZx=_8 z`|`l;yLnHT{05KjbS1^+2ayZF%e!qr`Ju&y%0vGerEC&UBx_U$DyV*Y;=vF3%1H5< zg3PX(f_R&U8qVu3q>Z{Hz4q3L+gp)CDuAJ9r|X{FWIq{26pB=bGQ)Gl$m{|X$LU2e zLqdi7t%j4a;qx2Ur|NrWV6l4Yy7~B7qU-b<3}N0mCpL}Y!_KrB_jcxFPCTD$SUB0) zYU2+{?+Zu?jUEb_Yb-VGU($QhCYfzzjT2k?)y5_~G=N56$Q97UpN5jhCjoA;vaOlN zA?$y{wd}PMGS7A#yUGJt#tTmSwy71V5Hzge@q$Q>Bb;=63>(Te@u)7d<8s|9HonCx z)(Pku6=h{+?KWH*ueKhKvhsHR?qvHyZKTQmV=Ddpl1{tINx~^k(2e`J@7gJu%4?;? ze*Bw~iO=3D*3D&J8LzL#z-Ki0qAhi%PPISMeC$>R)^*&w-;=AI3f#@C-Q%Sok1Z$M0%Gr z^ztLe@n{|vK_r#@yJvPFp{YBu>mtKQLR8z72xDLTg%V zA68&QR{Xf~l1a`Co?Nog`i|%~|JBT=Sy``6E;-P)Jf5&OL}Yp#W)Y^VeWEKBn>Z_Y z_0X5N_R@B8-2QO7^s@24jN%h~!X!h_>PCPEMl?pSlzNqPKK2A10pgY3Ut%nKjoFUP zG)8X7%V`u6VvV5Jrk&$IhZc}hLhxX}sm4(&+}@JdaHgkHcf1A7)$PegqV0{Jvd0LK@S~aBD7=h|`C> z+%wkjc9p~6$Ct$j(n`uqoK?Oqb$s#mc^T1(g0aha?5s=j7*6pS2Phi;<5R@2+HrG1 zH?CvP`v9c}%RB%ZKj+6sE9WRyGyZ(7_3?{<+Co>`y~rgNkJ%@IX>KOTc6O8gL*n&Z zc@ghdtk~lwK-%`FA*3U-_x{D!{pY~Q`Wf1=`hDUsbDiZLBlPF(*%UKvJpub;$FqbG znvmf3k*4c> zmV_(NXLesPDoHl9^AopRH#kms*yBvbDa224w@EoJY=(l_Kw$0)aCv*hIMUDK{q^y# z`;d{?;LV%N}+{c@of_2wA0=NDfFK;Mq@G;Z)M)+YN zn)q(w#ixSa5gJ%>^k3t;*Let`P8DBkPlz5@SJ^3fKX*F^DyeRz0~5=>c$GN%{8crz zd`Z~Boy~7+m4$kuV1r>Iq%OWweMnB{P5B_?c)y}KYWinFDe%|JcP-sl_vzC=21O@z z7r6US4Jl*pUD{V$)XdFAIAO;pPc2%b8VXJJqU^J~$XIg-iCSKBY~&qwoKxVd@(F*} z?WZ~4?DHOj>g6HrPvLwb2Xr;D7H16w|D{S+RJUt$UBACe<|KQu9yu@QxM5EIWX@_D zCQ?y45k~iiMe!JwyV7CvO~cJO$HpQ5&Qsx|&{wlR{q%e%vrl6hr2tFQ@V})1EavO0 z=%t?5PK8-U>U0Y}W~%!;;S{#s2Ob#${N`NtfaYBm=oA6=T4%E?`srevSHxMfAlNV2 z6{mc-Fj%M$T3GQgXZlz1iOJ+-4)K-(t6@d&40|W=iRetC(71~$1wOUdOJx7-4YNZ> zkQISlC?{avBkJ8>n6Bdb&vE(`?&Up+buN-qP2KF{U%{C?ltb1^FG_}paEG*NJCrA=FD?VST? z52&McFc3A>&%)4#Ntf@;*K{Iq3Sie(1~QR7$5=Q<(}tuBux-iUJ)`U!5(p z0AM5@s!YM(HTP0dJLDzhkzE_z+zdAexu6dp5}PP}Ckb4RjroX-tAhQ5zY~zXl{Gd1 z{tv*V>c^MAUc|RWJ?ga3&ObYeOQBRN8LzlXdF(5^(JFt@evlM6?%wowoW`?XG3h$j zliCkNE27oL6LPvn=vBP?s{9IXr@-8Uej(nzb)qrMWqWDnOoVXH>lx7%9)f{=DOsWbvdY6Zyx}+7 zr@dEXv1<+s(+(VTA8OU|5G=n5+ga)utK)KUv0p1ydNQi|5orI|RWFVx2eI5jkAA{D zxGb^0it2HlHWv1pPT4jJ2~i48W_V#^F21tmZc{CnG9tJ5fSsXQUl zLmHi;-c}#njVf-eQ+_oHQz>LV{@fwmfrsecn%fXZOJ9*&9Q>>wg4_B< zWroe4t+WCi&`ctTm9MKdoO&rxJmgw}cvr%M(`5*XBcg#wzL7ylOtuwT6Iv+AY_X2) z=^hLLCO(uwJG{4(&FMM;69z zwWufYd;Dbz2TTg!yoGOTY|Pzimm7+kbK~>xTV}G1Z=AvyD~7^3b;J@LV}F2ntVF6^ zElDjCCZEdVscCC<)`XccY4<^Kn@uI&oB8H}J`ZLP5RSShr4tzd5IpFSgPByTxVHF3 zJwh)13m%i#5ZLGXpU3+L)Op)G%X~>-37?2_{Ag|~s{z~BY!<$IcELBd^obtR#9b~A zn)>O~_pjVMI#VJ4X#I^$Wmb7dl-$_mW# zj=V~D&~_sMAcL+TcR^pNB*qPlD?BOJLmnq)1!*lL_dG^+oiy0!!CW0#_gf2QDg7)3 zIPT+&21rh%GXVEDj$8y}wiFJJG)y8xqNd+{3;8ibzF41iMbWhN1;mt8a?<(h#aOOM zNi*;r@QX*NwYO6tT`1CkutChg#U$C6~R<-2Lr~a4Ki}SvKHmUl($E79XwU zn4uEPodE*BaWR^A*YTngVVE@JCEPoqOy*Vr3Clda{>Z_QRJ2Q`*bV%mbS zTqitDAlx&@tOm{-Y85y^Dj}l=5e-(y1D)Q^Y`;Cu!Vl{$4X;vFOrWXWO7|DnEj8Qo zsQtB^HPdKqV9e>{lQU(%pl_YGn>qG=A<(k2*jU{S&G|rIX0rAi=FmOVEY9%U#$?m0 zxR|&YQI$y6lc!$M-a)m~vsrt-bZP$QOq+n?Cs!C2R>_=8pNFk_b|VQzYo~^GR%8fP zDpm-?2Etpz{e=Y#3lv>{rI?nF3kn5R!DvM;!ZGR}6%(ln`LhRVbUJ2LBLht5M&3V+ ziI0^;Lx;iaXn&7iUF}M4OS*v~!iRK1H6oEQE)k6JVh;C6mQV4;nwpUZ7@b6`b%{RK z!K|OH=&KCD2lF};3FYdWFx!4Z1Z}H-r+vcn_%SD9aPOWsg&7Y5YfDMKLJHf0r~EN9VGWUCXCimQhS zk2dH_r;*AQ7O0ng0^E@UdpVAMPtCGLlP(rnN?oLG-Tjty$v)RI!xz7N%JVqK>xAYm zu+cqf#<&gf){R=a@#!%H_s(B$(n_GcKw0%LMU*IG^k*CZ4aUwy8husf0dpMiSNH~92U!Ns{dZ1jhSKqIf z$k-GMnHyPwbP&W4fClN}*h)a9MsscfqrroyQJ0PQaF{L zJWPS<>ovQ1%y^C8c5GiRUr3#o-3uFS@?sb9j~u4ragqB&MJhC#aZPT1AXC*w@e=9D~+PG z`d5k0ds1~(>~i^H;?h81X?1PDPOe@OJf0mdKC3)3v%Eyx-C-^ZSi1oB2W;mbJN?k$ zkBi!UD*rO$%bTEnG5_F<6gO5>aD;?6lJ36=YXq%)b4bG2 zl&g+K#)-tc>T&CJ;A?FsKqYlB+$IY*0euY|`7bCQ&fon^-r;5;%ATrXqfa=?TGEiO z*|otv&oyXz{onZ&eTi!VC0C6z(sAyneWNM&=D?DH9Ori7)~kVsevL|4wBVj5fab*2 z9>v5yQ4dq7fK|xVXpdL#%V;8tEeKVK)E%?&gPTOsu21tz3#3)~fGVt|o8`7%5O?Cr z)i1RFwB*P?$^9^qbK#Xc=DRjE{KD@3JP9f3bXT~#&XGqX!Epw_KCDV8#@{1lZ_JN? zzjfNWJ5qBBuYUZJJ$;lCYwlAZY1sFtET-H*ly7X(KKQj<7x^M;N8c9nl=tKfg#m^E zz->_b41}fkK;H^Slw?qLjSfo-5FOVF9w1{9B4bRKIWwhRrYh43%uY5>W$eFpr9!!48i(}HTCFCO-((R)=QX~wd-E}5|1lW>Fsr7++#5WN!l!~`a@Wp) z*+5VuTop)5t8W=-mxn-Lh`sN-p(V2QL4_`YYy4G_!`i3mR9_l`YWo~~(7k`t@tyyl zMf|mC1)vLZub>{<{`LTT^@O>1XQ*`Y9@_~KV0DfrG!zrk!nZ1E=2{}8sOBh-(o7TK zgf~6&As&(ezF#-Nr{?!|FgEDuXIw$|s6GX|N7@WQ9;oIm?qxRL?YG}du{ZZE`o*a< z>OLD6bc1x~UitO^w%u?@V?ryP8I<>Ra!R$&hxbxKvz%RMvdvw)+4a}E`e@6a1%2UD z0=vUVII6V!cl51gP1xfU2B2Y`&vrD+WP2B_2O*Ml9~H!?PF^Mk3JW>O85kO)N>BpW zaV-NQg(J@Vu$G2Gr0&9pVqxA?DASl^#dc0w3ve^Y=KXBdPf)^sQ!vIb(oH%gOEO4v z6x!E}w|sl1)NFIl1}n0X1vRWjPe6yDIF9JyhvmD6k|g9ezxWUoAmCzYW@GyHH&5*U E0f+b(M*si- delta 20769 zcma%iby$?&^Y$*OQX4#Dg5CM?}DXAqESo$FpP#UC5kr3%-Szs4YI;5Lj zT43q!-y(jm_uu!q_=k(bbI#0}xo75{c~;tp|FjYNSAvrw0cxkFhN9Jyb@ceKEsfUd zONSx-r<~v$0nbs)zsDN}e&v*pIu@C7@!m*&5mY_?sz`@131nNPW8lEUuTxkXWXUZI zT}QKi@XIfM&US}Du4Hw#gSXc=qqixH?LgX-Wh{$Py)bRL7>?KOLZ5$7Qp~QP-{V$>D4e| zu{7^Zbru=D__}xDJq&tp${jG(mLl65m4es*%t>j}edpJ4vfoahU_h16)kvCwyaEp?Xa%_xLeEu`F(p>Pt)XBHzI>~3#8A)!m zj(mPLeX7f?>gy}K?956AkDef&^W-1em1l2P3Wi34Si^RpU3NmZ0+cLI7WZYciz^@I zEUvpRLbhC2R3MWB!;@zc@OLC4rAk3j;B)gi7>S0&l|v$S@1ho z`th%vgXsx#a|Hq4Y`+n|6AOlk6oezyeDQkWYlV%>p@~UHkke_bng|TMn2@*>`zu}- zzak)mT+Hn^WLWTN2&(ZD@AucgZ9EtA9&~>bJA^to|H|7rLOJjL(DPP; zZ<@%L7`CM3eEK3*T^?78OO>ryl|&q@ z{DCW3oD}fn*9zaLzg>|RfG>pX;njcg=R(jYLjp~>@AR6EsLxue0#0JOXpL7Z#DmV{ zf-lUQIpQ6Fe*)}1e|~yg`3|!>nQ;t+Ka>zn@W!-eD1jXAtBNzYkS-@IxoIL>X@TTJ zRjb)h);U??(Gkq`W&v29_(R!1(izp4=h4{81vC|AwY{SCRCJeTm1Lv z!~B(C5Mp5KqP^-TLxc10;;NDJEx$?V6+td$g0!z4ogjOs65I<~1O2cg zYEyh6@8g76l1%J;=s%S|!>N3|uoXxE@dV&2cW3Tx`E)AxruuUHX7#YUNbLOtz6(Tv ztooSEX}V;6pmPOFy|S(8b|BvE0;x9|E>{X$dwO|syq^E55!Dj2k^bo1DeC<7g9kKu zs5aqFX3$Ob!GCy-9L&x;?dpq&6;7tPJL^%8DlzfY|9 zrk%Q!)FSZhQnciRN!IcHg8_c}2Kt_ki3Bu%cN-(J-TdeZwd&jRM?jyd)twLWMU+5_ zFJdKh<(0c3jm<7Hv!=^+*KSFHq4pPQD z*s*mWUuo+o-+OL3n7hKvDqkuQKWV3-F7~6No3s6ua7EHtL?utebPc3;?>83{|JUkg z5C@^_uWnrjo_er&J?qh}g4Mn|`8>#)~Hm8~rc@w~V03pr@ zDez_dd(C_(PhWo~tnE}d&#SK7<{nRZ{1=An3SR3H-;8mn!S0P79FujC5-5wyB68s~ zH#A1XQV1_Xv(n7m=ld5ic1f%gueQT1`Y?81vdr=5BE+rX&hgwtQ&u0~dFy1l3)gM|o-chgJ0Sir74u3$YPE%SC{=9aeZ(xgqY zC*LI5q>R^0VM95+lr(Ac6qKexC+WVA*E7AN@5Pb#{+dg9(IAF;IagU`v{X#S=OX$Z zW3=AGs&8*B+@LFF&3?0+_e(Y4QdS#$gE0Rbh)+dvt&6C(`|AXt6gC=d6n|DN5wdW+ zpSgeQhHEVNFwuG zB;!2-q#*9BYZC(bp}425n%=4HG0(>qvJJ$6W{8{Hr+OJ7V3mJb|Fl0Vu|Fz(a!5~6 z@*}w()iTldr6EAlDJ1~kIpfiiy;l)KG;h8*zursF!SO0MxR!$07%a>DZr@2-#yfK@ zy#mu=L-9`2NxDZM0B^IR3yX+6BPhH<_h%E<)pMUt&b%-MQC_iiUBO%G{Od5caRYpj zU%sh!87X!Od>poRZy0GIk(9~4JY;AnR=ZLusExeXwrRI9fy9q&n(FJ9*6)5gV(D(f z$7HQtvgV_Ka+gVD*B;^q2hi#N&o#+%K5IGmlh@CtUzFC)9U~eY9_D3iPeJPBDSUw+iUT zzXxgSQNW=UvmxCcQ`nK8c$5I^3&A&#Ej_+e2Jao(#`B&~*Eu+$MTYyqtjA6oG|p*c zzw3kr@n)P6RY=hwwBKy5R1^nvgT=db9ZhHj>RWT?MF)qZkdJnONA z$|59K7pyos1dZZFTR;zFgjGAxc*x?S#_w@dAKQQ}e2_F|Y+swcnhw>qzY(r|_210F^rQtYo;k{VYZs@6G3VYZZ%A4Ig-Y9-m`xmp+N-EsCQ!Hx zBt5nI?ai?OLd`}0Z@?Zj$(kzRBEX_O_DjjHfqZII@m?wt-pSzC_9czZY_ux zHE)8&?YkdLg4k;O+@>SUVxj_ty7T>pmV@DsEhzBKogx9yG2WT~ob!nl9nrSQPJ#1Q6XR@^M6j=S3UL zr>PJ>Ko-?uph170+0((@KNap(YPONK6FNf+vO{s3HhuWgC#TS491MW5qHIpJ{lmLQ zYrtn~29liyzfrM$w#_Vw5M|#)!vqbrYR63nQ)Hy09{eMJc2zlx(g`qocF#x7NA zpbp<$@PIZ$QD4pudeXp?sk&zTuL2}ctfj-m?5u7<42;d61);=FbelD7v}sV)F-)SY zAodRC%gPZn)~e5l+%I^^nA@_%r5oYC z|BZ)J9*v0jmZ-7B-Zr$$g=M2uV zV&pf#(lMcyTv7MB)xRGXNoj$*YQLMF?uJw^6Dj@G{QTX^0M2Z<@fu5uB0Oek_Y8qg%M1k14p&{JbQu9P}nto zhhFWnEn%di6+nx>>clT-Z?+!aSWpr7-MDklsJvxzv2R@7n9N6pNzD8uVngNX+6hEF zl-xbUGPE0q@ug@zMrKsU1a}nG>dc-D1upxd8HF#S((LjvPnJFQDTWRM4@{W6>CnqI z70-Q3C{x;AE>m!2E`zSIv)Wi7Bcp-BNxHNS;Ov;pfJL_D;U}GpttI!8QnadN-qPQ{ z8Pbjllcz9cdx0q(jaY5IxAS52kiKFZ>TqQWF=Tp|ariV`Pw-^Z@b>AALyHMjJ&cI{ zK|f2|#hIsHbQ+m@f=>Mup^#E_ic~_X^l8}5aBw52eq_{bQ-#cmkVjXo=I11kux~8Y z`1wm{TWS-lS^}v=8S@w3>B&;^d)Xu3r`xG)hbv+02Ld8yZymE(&h8!dN{K?&$BP;w zFCnTe@(t<^anU^nvHFc^73Sd~&F%f4g$NJ3E!8mNXL9Z?y4IA-_arUUvQv}vAMK9e z?4|W6WxBbk5#n^qNq%C24+8*?unFU{AJK0Yie1J0rjq>Nj3d27qK5ZRh<@W?N!+uV zKa9!x3Yf^jj|*g4hGYhcue)dpbfF4;$@GP})AdPi)6^qWHB1W_>)nU2LzR$rwtv`W zc9{bx$8rx^_)C6c!XDpXkJEl?;CGMGv`Y{ZbVjRxAK#q>3I0~V|d zX9>Y#2Fy=J0S^zbDO`R6g89L_1R9?B8^2Um77YcUj+%4=GNLpb0vlZ zmas&XSkDz?Ld{0cm8mF7X5uh*YA}L3zJ&06Xh=e_TBn#ziVFKA1ZbJ;soWYcncnn8 zcys^{Oe05HHhPLWhVf0VXJPm+Y=-*W_rl|kx`d+f&*7hPIs>92ASrHxe3s1_J$d|r z0yV*=W&B_JMiu=Paz#nj|f^bp6$JD#sMf^hJh zMW;J2rIA(0yXqt*e>+&N#W&3Rca#w@I69EN0jfPo^I5urXUee*oZ={B_{||hpmq1J z5$RjAG_BkaBU&XtPJe|e@AHuN!DU#Dw^IrS^|-QGOl)L6LeAKrR5CRg%tRz@-S7&X zvLXEsFDBw}SRWJd5x2n9&MQ&g>HFLX<2)*n?$pe5YlmVLXdTK4N~`uoeFK5mKu;AP zYZKiJ^HgXgEE^*3#`)s5q!TDEn3cTdTsX7NK>hf*U~6&EDNVV#xX1<~{xD5$$w2EF zF|vH7wr^*NX~XUeU=|>Hr7}u5FpZwmzfzDzYwSS>H|5cvP_aCsnbX^%o@_&C-tw)g zJZ)*9R0i7K^NX8eC3&aO&i}bMM43WZ8a-Dzr#w)znwZO6b3(Y~eRunRO?sa_RW5$gI@(!LZ%TK=ujM;$G+=(X~VZN|SVjp^~(b+;w{jj2vo!2qxg&fPq0fJE3bmeE%Gzsgk$^2(8~3T5N6% zbEc1OI*VN>p=FBU&9AMiu6<)wp8ZDO!FhpN=GBIupfVmReYGHUwV+P43VTmF=Gy5} zJYo?cP>i!NP^bTYT#?7Gr+37aQIsIfNWf8Tc-c}RQzJo}yoYF&NIY$M@ox8FokY%0 ztZ*c=Bh8eT1Di?O#;kK zA5J~V!;FXs#ByQ9Fuq)&`iOuCuMI@(*FeRFY67XR1A-`lIS?)AV=78x$WWV^YTiz1 z;q~r$v3_RyyhhR(^J9K!n30J0o)!PrO~HHRf9z0uM_oYjncmQcMJz?VaqY1`(oyxC zUg@qb-U0GJdRls^!s6?DqO*X7q!DG!P5HNdt3+omFW$T+TUYT!)vp|pDXc!@VW{B@ z`kSxe65QXodj+%IXx{i;Cvec+9vdMB6VujxnB6l2`J6}@zPjsQ-rTNM%#cnJMB8;# zZLWd`+$kmc19s1nqJlndB1vx7$#Yy`fQWwG5Mo{2;g+)gnP; zPp4}+L?xk4mvuR)k>KWh;L{^uSkIIS%+#}y{kA-)<9TsiOM1S%Kq*27Q|V+mC@kuy zyisa;20;;`GW{F6;Q~_5KQR$T+@kKsXW|riXHd<3vGW~DZ-}jWNd)cuaibwg8fiVf z0eUVtvOdp{%bl-hnh4l6F6hbBH-!6`&p|G^KHMSsp|ym6%&fEkr;#r?|Ll?T5_j~E zd8O$7;MaRxCN0}V291yQ1xv{f6)!`q)cp*sDXt>y=spsSCS+w`lsl^rEE8s_{8_XL z!j=zy#Dz#$Fb~CP8si8a*h<)dONaTS$u4>3i}izmM1Lw5dT(|q8;f|fk7njU%ViPw z94MBQsd<37S$O01MnJkFI;F0U2s<2_XT4$G@`8<#ZU`3w9~ykus}Y599(|u#hw|gN44v{0?GXqBownDQn%v%I+7y*H%N_Ao59N}g(;!6?CJ~rgnVZj94?Efx za^BLk$A)j<4Fs?R2s?kBD^58BtmuBK|L~+6rSS2BOx4vuUJ4bhyAsZhD1 zkhBIG%Cwh)?#DkO>jic&yeOyjRDHvvH?krXy>!*%QxJSMOeb^lzZ`|b1ecm#qajHI z*OsYxuiVPG_EskRV_*i{GX18SyC7V4pEK=@EQ9Ey;&B@lTC z%!BJ+N+SKUPSQWrwc)wd8OeLI8GTH&rrO?#1`p%*hR;d@zxe6E%{{z?$=$Jzc)@IF z(6bR?DJlSTFm}Y^WHpy7(5cR_Wl;LD4QdSv6O%0VfsiMWb?vXV>~`KRmb)2sgT$q& z02di^nB7Pi=N5gPo71S*@=5StDUzcg>9_s`Lkp5iBZBZTmhn%g)ln>+3RZRo6l_1( z{qu3SWb%D7?2Y1>CLL?*og3J8_jm~n0Io?%&)R9{vwB{~jH60u;8hTfTcrS^Lwb^x zNqG9tC&PcfWAGX0JD{6QRp7J@CnX=_mFfBW@oK4zCh6)%*9@-}Mp4?kIu1d)r@p5y zeM&kxqH6`?ciAV;0U`$`BRE2B>+aZ~I}eE1IxHmmjJARX6vV>VC=JxxEb=$}Y4EPz z*oJLOj27+?MEys=;zN1hxO9RZ?nZ_NHDyXlefftlEpI7s2xF@6ypY+%4HClh)5TFd zfe2qG!>s)KG#Vo&W-lmAM|J*_7OmWNg|<DO77kB4ycM)^I2Q+LN z5Y^x{Fl91ph@Em~sQV(U{8mmqptdj6fV%S#)#jXD|EX*5P*qjGf`GoNe5qG%bzeUH zW+nXS4t2$ zpp7ZK`KLWSm1<2%i-X*x7b2xRPTZ>`uQyz zARHCoxV#e1%$K2l#vtB{ft}ozgF$}W>dS56lBVQ!kgcRVd~moC$Ena*dlu_n)Rq1H zT@!`Bn8LwBgv%mYOu~J;O}P6^3|L3Pns$St@Y+&NqR0F1)Hqh6rfg{*`821m2Jq4V zw>iUz<;L%el~X3lzC^Ab(?E!&D%NsnommKsp*!cwFYx^AC%l2~_i4gs^Bsvby0Vud z#4xw}E0F7JK7x3l8=@o&3%<^;eb9q#4bLXhG<@>I&KLKv_iJ84!523todS??V3jklVlnkx1d@($zMxRNMz%$V1_g%jl9TbKhTl~#pk`3;mN7=F(jGM?iBuGl%!hmqimBwQ>INMsw@?5T=%ym?W#w$qnzdiS5J~5@j~4yJnR3zi zlLK{}3Nw^ejR@j;YP%U5gjdTme~;rqyYU<2W7&JiKr=AwD(25WfR-W?@yO9C#1+{| zuQAq$lP`3>{v*zSco)s29r}57K>$~|OzlJ}=yjJ^1Y1r_kdjS*KjikZbB ziSPJRSx$HkRc{p|3;qRo(Z?5W6UeLlezbl4Z-=q$4+;5&Z+PZd4m=RsF*zS2M$pil zsjv2MKuJhR_GftOB>0rn^uK90r(k^WX?{hy8*IJamWU_>?_kL&gw=|UW(+AMlyRlv zCpEc5C9XgcHv2miwFGMLzW~8NQL~L5r9qS8jQ3m)SeIT|tM9GOE!l{axKbm{4pD}0 zbAs1G4A$3>d>%{V8X2|j4mYLT1_O_&@~Fu?EmTM7WPqM6%Dypq)g->dZuihB8G1F8 zAO;UZd-Um&*fNbsC%H*^T1GYS;pz~sfSv8;vyitq##Xpi3{M8NqA=&eDCRpx9Bh=C z{AgRddDU5pQ#UDnE+VMWegO(KiqVrz(dUYgmPM6xHzmuj2AD3AzD8tR2h>%f)`gA_MJi#`D`erh?qjMYtOZar;>_4A{Q45)j##ik5kz^gy7 zbPFSIx`l9j7v=7*{12hlAN*MX^`Cjpef~XZjXRiKv-3cRLpGd5zUgq8;ysuf-*L`I z=wPF(?qcf_zRkBy;XL*pA#u_Fx|u*_Y+kfS(;B=la4WGnKgH zRaQVp`450cj_+-|28?52HLDS>!dhWGi9uB?mCD+3-zE0)yZ^RoZaFEe3M0HAo^V-$ z|5+_T5hmUt!P|0VhwOr5^X2Q`OD+||N-?Q#%&qH_(#2;Vb}=|LF7<@-4TahlV6$U% zA~kHhy`ZCaPw){I!%~cqTa1l#e=c3l@uUB)g z=b18%=%ePwe)pvNwv-M{ocOtGPhLd?Ck?NQidUIBye+7M?4WPcr4q(`InIqOzeMNA}iuyIRVeqSOq^58?yw&ihA=n z4BdXO!5dY%@Q5w_L}xvcjuO??@3Wf8nhmx>6>&5icGhWf_dX+|HM(|_{J~sZQj&^5rN(HvAqZbLN%)KI-fLQqj}3zU^wvQg#3=;nep-?INO0y>3^m@xhaT^GDY_7@x!FII=jh! z$$KhMdZ&Y*GFhD`J8zQu|6!&$G~kM}sjIU8S+~FVJa3+je;p;E>D;@2MEIZ^`hj8-T1%s;L`lT>lAKA`FdrVj zmjJK@AhR}#o&2&C3ocv>yQ;QV;>|+2IWDg9PbZLGPDOlGS!7hzlVr$4ZcYDqb(hg< zST}DKpk6pV8R!g_Me^;qzQ<9}cgz;aF?6QR^D~|U&je0eiGyW6oD_+4Lmx1gG)quq zIm_Je{XHJe%&=GpXk#4r$^xyc*!6K^6_-!8?;y^o7fZWLOP+_z1mqkI(_^n=Xc{VV z%GeDGat-U({qjP4r#@FIj*;xc$sPlE#wcNIm+NH4P$ahGI70RDur*K`?o zcRk_K3k*RsQOK8c6B#*?a@@E>mB@~LJFa7q@m_O3`rhs|%@O0S@mVi0e_bTmp#gH? zTi!f*pAe8?d}k^Ak$>{=03=-U{&>Z;S-*J$RIHay=9sA|eb_tkuMep>|CRSIK+x~s zmjC1atWhN62?1RWh;qM1{Ug_ZrdTrnvTPYQcRgFeQl`+pi-jV6OIfQXY%^c0G)6wH zbt)(>?iY2)5D>3T`iw^R6>bbfP9gdv>G6#}X3D;9l5R7@T~$KYH3&p@R*|^GTJEL% zq8f!yj0A=0zV7g@r*MY)P=sNUu zuUf&Bl(^7zmktK5b6hFZ)0d5zHzc|@=wp2E03rcHTyT7Bz4mt)! z8x5_?xDey|`tW;i3Ec5d)Kmvw8tO`V;DX^ytwmocXVouih3-Qx|EBQ6Ks{o}Zq}Nh zi>CR7E-llsx7Z2isC9rF$~>|g-VM{Xfy+(oE1Z6TVYNHFhfVNCU+y~dRK^V|6_$5UDu1&P`?aXXu=%?* zmgtF*{kOQWijEroiiyrvFd^MVwKH_0K>)k%ZOxzUW-^{=4u8F1MPVttGoJO4kqLqS zXPLzh*|6jACo8u_){G11S$P21aZWVFxPXWQcLBIr9?b;ad};CR%{bJWJOvC=pgy8o z1Is8pnsK0Db?kMg_|nP(@tqHuYaH94{fB7fp0=AEq7{nlVV=~{VE%437NPEvsEz8f zvgG#WFz6ylK!Xzt=_?jNUqo$kg?B#YS9&N=dX*s#~wHe zYQVNXA3E0!m6f_I&5EeB`t%(~a2*8n_6<|vC_?xKUXt+J-@*}|MZxGK`{*;1@Hzjb z>n@qk5?&2*X?)YGm`Sq9p*_EgYgXQAStxRL==kQ^EVPz#kG8V-qv)&3Jo^%@^G2dj zf1_DI-4+n=_@{Y?&%kTdkb87;P)+yQZzN^+2w%nXv}GiwKiYN=S8+D6bc$xQp7Uue zvM@_p)`WaetX2)`R0*2k*i?r3VX0K6t##D_PiV7noXV$J(Ho)v9c21$o+)Z+VXH>_ zAB2>Ns~mbG_&pTOUf0%n`K_o!p9!H{kck4-;5$H?jZ%E-l()E^;nB|F>0k`q)=ebQ zq04j}y(7qD)t$%F`)np^Lt<yi;oSv)I2AM?J)aLUJmE%Xmo^+cDE?;oq!2r0X?! zF!ATMcI(B?ht9Pw3rlMTT8S`+H%H&DwW=ZUYgtF{T1!{@x$MRKuThL(q`1b+H5y-Y z4sAXtpy?WeB~Dj^Ie^Bs0=u}KFaBn-=K9O;FWT}r%n8wi`b<46F_1}NbiVuj@C?vH zBJOZwak~$e|eHL}a{EVWSG-r-OnB-)4C*#JR-gT66i&_tTzt5ye*Xg-W*A+bL zr*20H`?+s&lulM6eCca~sZWELNqL1196dIMkmF9&wmvfg6xH`m%oFQt!1wO*War#& zE7;Ga3MmZDV_e6Vy?NEkl#vit80mrN(JFOj$w%xcweFwL@h%qvHTtq7)YwI&P@ z5Is1FYaAt(S4$vRhRcSGd=*;U)@AtX9U9Hx zGP!8r*I^?3?9R0xdZMC7UzD9MIbZmZuK&a5L2qp@yu`|IMJR_FVOfSBOG#g={wH&&qEEly$60}blgwalumn;N(UeCdJDX ziQD#%@5|rbEC76nMyPe9wFc6T;ZlinH1nmJsCN+&Mf!r)=;ybm2z|ORz0-C>l@4v5 zaxVgpUSNuSZrCp7k-LdgzP;Z@(_?oKZk6$lH4>5`Bjd>gbl`_UZ`I)r;W9o7%9!=pew7uN5&BJ{e|!)tqRGIqZp)wx(zR4t!mPBqGNoWbK<;Aw#K^|d z7DqN*C2)kM^7HO1mHi(9Id{bb56L~QQf|c)$hu$+1;bR@GbMFG<#$x}E}x+$EjJov zE9RStYpQhJ>Sj)YFK)h8H(lZgdq87vZ@Bse;+qTl>c61b6P5f*bRIn+iTryupGW^6 zW2u${-9!N8@~hdMRSgsLn_m2pN)cEE>ZK`lX`;kkzHMa70GS*!&b8fbMx`4hFQPTT z#9-BZ9#4q6tVsJn$HiQWwm<4LFtTHIQvgJPt=%6~8WjSu2$A~WZHk$4ma=$I*3jcd zT-*CQDkQVuB&8->vzbW~B>{el)3-J9a1NzEDO6BnREf z`1a&A`^pM7)jS~m_x|RWeG4*n7N38H zyu30)^DU zRT64kUnfX&baa$gamMRuB_^ zfjuOS<3l|R3dn@{^%t41_lgH6Q&;8jy9l(91|eY<8I~oq=ie@-$G%RT@<2|7GSs`n z@iJMk<;T748ow&G7LNlwJjm@%Q&Fw{@hnH4V!+I5q8kz{fTyvMn2Q8IcrjtjK&`kh zXm?!sGnH}pap~mQhvQ%Q36o~sWkz220EfPv zLc0_8_(Dhx&b^w-E^DwvClr_mm{>Isr_Q1Si}$S9SBhq+Pp#gO%a?+0w->?pi9I)T z;`9a%@HWk%J*O*+CdMyxeP(7UA{i0i%9c_L7bRi*#O0B{s4OkVBHK!Zw8DaA6Rfm7 z{?{ufF(fh+y<{8@J}k(LSIghL%FHOoAUNuCxdm^I8U{G+G*9R*h0I~BE+86Hm*Yk! z4e9Xq2#*O>%1zyHm=o)@{R{sR{m7lU9WA->nt3>@!}{+U9}ZkDOJyRs%9OQ9f$Cd? zTjTQLiMvaUAY*5e<5_rbQIAE4IhNRhv;b!TUFZbQ33G_2C;6HK&%Y>Tge%QsAacBn zhpf#^m^4{jI=x<#5aA(K@}Kohc@V{dl{j^jsa`FI2_*UQs3Egpngo%tlz>MI8M6n;Z z#BqF)oT4B(Q?fGx;g8qKk2BI*;SI*|z{^?k55EFS>Y(h0#=%A5o4*!MA?Vm8*2!V& z=Bq=;ifycb49ugNWrdd3ehIvCbt8|7yc(;ODLEgY8Euw-dzdsHd#A?U)*d&~8y6{a z4T~>(NAKZ0<53qS@Yz|+3$QT8bB9Is6!9=0r}7Oy%HwZ7GQk{Ow$}TqBLc2Oz)G(Z zWaONPcrD=re^zedz8SzND_veXy^f$Ze{FeSQ9;G^K2MhML>cZerYhgSQPB_yJ$?!`HW!I0w|}$Lrl--2bkF zJ@uBW8;Ekuy*;+WBuS6Dl;to*>D;v*KC^)PbRq=DIt!bL?r@E2*f^|DtC#3lFHB4l z3g(fb(xtX-*6}WZ$P@-9Fxx!ZN5}tj^icZ`mjV6*t~rtnk8XC3MM;dbkEWM9FT*eteBjQo!R=hJzfA`1UI`T zFz%cA$F$dSpIqUUMd8A)%Z_|?Bt!o>iIfECHC}s-WHX^w=eBC#=403}nqUA3riA#MBkjPvh!zuDR!rJA*+vA~_OZ*5aVfhAz? z>8^FXeSK_zPs*qM?@l^Mbje1A&-KmrbNmWgu$V(W7nPOY+fw4guWsBrvV`&JtlIw+ zHh;GT*Jf?Y{ag0jqn#!`rNEFQ!AN5JrO*;G*k zPx{XW;ecz<&2m?^hU^_rq;dM7mYe!e&GyPEG{fs`WoA8-h>3g>Y-v7Gn~yZCDPB$( zX7=#eO}r)x*3NHH$)C>)2=XUr%!~o#+RAHrKDvakOWgYq=dTO4jLxfyOnvD6!V$tV zJUMp$i$iYcU`y)u)*f}I9YlX{^tFud*6i`nSKWGH3@^qA^f+S{S;Fx&mg8wZ${AH) zmY;9e#Qmh_?woO!*9+YC2M(2u6=xUn=XZa`MNiJQ1YW8=3g{=Z3;l^8f zm;rgK`7$U&uA#7e&BJmFWi8zk8kdB%Vww$ZoM4Q1S z!RgnTnd8$B{xlMg3Rg%&dMLF@rnNOXV>v|*XgV*Ln%0x0U*)fj0sCg$Q;4#R+~WO; z_ETy4gUIhiV<(f%3_#}O8!@3Dd&Q21JMHi0{2MZz|F{QkXk!>@MV=cAX&?RFE4G@N z+(QK0^;+~IIx9TYA2H6rwWg#9DZejl`>BZW-rg?N z@_7YRDbr>~f0b#8?IIz^2B#M?Zuv|Y92xQ8VzSb;iQ=2K+_dQaPXw_P+Hx+hglL@= zyZS7a1HkRG?6_+Athv1hL@7Oq4ld`NKCICwQw2`EyuKSX@YR1oFBA23<&aPmaEU3@ z)4rxprX`a266)e(#gr+?=#hpA`V?=FlE^3R^i5dx@4;<04+(HrbB(3r9ml~R7zKP_ zfG3iJV(;Y5-d@!20Wx2Og&B+C*!Ly;Ux9jtQNryI?J%37Iqni~M`qz-JI4>lX|(Nq zdanS%)s{|*$-(31D}6A~`vmGXzt~Fzf#=vCojHi zvfbxdfTN0|M~Z8a>$TNeal@(3>zZ*ap=-Ln{-)P|vJ7Q(=n_kO|EppkHaHaDm`tk3 zJnxjK7XM9DI?O~WM^0v{@Mt4XZt&;OS;H%3rlFd#jW3&~NoBhoBlxU%8UE6qn&#$i z=6eprqA;o<8`L-(SI=v&Uv@-y^R5ggI05%oIZFDbrQ>SkbY-?LG9tdlLRFKt>f&&4 zDXSyt+;H)){Xgvig?4S!`~NgB%=yMLfuIf>Z&7O~k&|&S*Ql3bFTuO^pq1QE^3oh) zIml>nX2`oHu}`sccg`E7uDu<+*hAPFL%%vK;?^?(#TgztAnCtyBDQvcUj4ewB1S1d zwfeT5vW(ZAO=5M?Kwtn@pWtd*OSK@ea5CU9o7w<)U2kJ z1RvZd4?G1mD9j+a9`!gRNf!>I3E8|%j%nzhnr!JoZ8*WlbN$fJbO}d`=1ESz?j{nWcp?JF@RH>jPRT@ z`}()tpR;3g+|we1N1}^^IV2{1R14|ypY%NEChw{rZm8`&f^~aCt+seRBMcc!(!2+= ziHT%wE<{Ywes5{UZq(Z-h+Ge=Na=>QY8>sbDaZX4f816A6Ca$PTYOZ}{+7s3%OsI( ziS^+^3FCK}9J{6-o!S_{0(q^+&LQcv{c(8R({9xz)=bJBe|-##DLH3nc>=W(h50=X z7#AzPvcj~Q?c^1w}wcpvOXyzs$cE?3ri`Mq8` z$+YH=`n(mdk3%8G5BJS^h^01yAGz^KC-F)JNMcg$3ha980Q=M3q1EB;+G5{>ELqyv zaN_k`21iFmx#cg9DR{56M(vE^k!cQJ9fy?+meMN06-4Y3jBH90L zWsJY&<wx_LqtKaltFllntA}nFT%Z2W>9Ilc ze3WCMA21%PT2mmfl3?NV#KL&g>*uEdBA$YOw$lbKsrGCTIA6)o<^VD`_ua_lKF$9a zx1FLDU_yIbyqK3dv)(bO%tajXCbJT+jA)fh#_ia4j`x~e8oBAxL{c(N2~NP! z>H2c;%c4f%C}TJ{|3IdIjeQB_V8Jp`S$I~#!N-x9 z3G`QChQk=RE^MCs=V%j#9$Io~9a*b~WK`Km?>~MOvwu61dePRCtkRrVp z#q)=MCCZLz!rhG;{T%q?v#quB>RqxxNAOC`#21%8AWlZjkLAaM$c@2VOWpc%IT@k0k$0t)#qcs)$ zlU?`usy#O*W|J^>0Py#{#=^EU$Fp7{wRozKd+PR<>ME0PV1Dxr|B1rP zC(E7vqJ&=?pc~@$`?c-J(bv8Md_`5#LdSWi(RU@?^kPS>M4W%Fxvs=U_Q}L&e2v}S zdt9bvCHwk*hr#|I&!h5$tvRFP|E@GB{MRhuc1Emho|uwRqIo-KXW?^^7f3~m0S!rGrac+f=i9=lMiiB0%tnfo zdq;1u_%SdbTWvADYWqM*^@oc8+K7Y?#m}R!wziF)>t+!eXYKKh|EgroGYfyENN z!$k&WZUKZxYu&f0^BM0NZ;#8g>Dx}Boz+PEiQ+3q;uU}4i55Uj7N$^@cVT}XHtbG2 zVqv9lYoymE$s>Dp8<(QujvB#4?vYdUTx%)tJ?eV0q0mxjJGaAkKQHT6NR{h_SgD<2 zeMyyBe-(b_%PThz`a-t?iap*K3+>E9yP%SBI!%t6=IN7EYXbP&=ya>36Ntz!Pl z$#92h^O->myNepy>TGehDBq~c2)($%m-^)D-xY9hUP=9QTf;ZiaVm}5Ic#mXp4vZD z>O)&V+Z9d%*-cCSy5k?iZEEL41Bv~0Mfe;5Yv81#@HswPCo9<#!GG6vow&aLRW_&o zvse<)J#ojCs1mxW{EWpMl9tEngkIkUE6H7z|1D*?T$-D!@6Erdf>E1rG=baVq8x1e z#aj64k_c{?=rh|kdV*ZetirelxH?AmOcC17;~9gj6>r1#o|3jyK;lhl`DBxv+{N!g zcCd@g1*!AK$RVl5hzA27(ui)~)Get+F5V4eU@TBzGP)AhAR2e)JR)}OKXk1%`MWUD z)>!q7vx~YL&OJ#h8P+x7tZ3mj$}6yVgt}B*Mb}&26@3q;c@E4qOb$vvP%h^5UTm0t zRMKh49rgQH;yfMyl)$NK+qN6V829+PERY?;_cs>k<7^NKMT_aSH-rUhT7Ei6RGR7) zkS*MbS@P}gN`e=j8O8Vzc#xFZaYWs8mP*!LlUS!1sa8~l|AJhB!P5!pORq|EHgDZ8 zs6%Lw%*H7;+NU?`#9rJZIroG#&l`v>)pw`wprd~pVt$hi5lk}Z0bOanKYyCYWMZ$R z?yqCov`rPdlsYkf+ZLndi#TVZ7qg!K9_ry{#d2d1MBkLB->QCmgA(4pgmN^#l1dVl>8rkSjcWM1kM#}NJWIb{HC+LZ|p zPEr$|VM;ks%`u`gr}$wi6$fdx@25Pu{18w34;z9Z`&dBaaW->W{>*B>$DRNLnZb4@ z&v~_rvV}5#%5271BSP-pPg~#P(u3O-Y=JuMteYN;Y4B;{^t(vhKc#4 zN>W@pZ>C|^G5#f6E2=>7+OhFna__y7Bv=0tGpdYDT3NGfwmC}p%%0OJ0TZ!q^Zo-H zWPXj|c@5y)75j1W6`p2T&0AgCe_aiV3aUMFM@^e)*Oii@BbY1m#Ai0OVtNfBuOzhN z7jjE_;7kLhTRa|eTu9yOOkctA?d=lzJ^IXgFuqf~#NzuJwd?O!SQ;T!Ge*-B7C39y zaJNa#8d)tuh}Zt6sG@4edXNU*8~7F%53;Np#j)yh@_R7rM$=ko7eU>{w>)A6Tmo($ zBvwlybgA(Z_Cu>0C>Wr;0bAb{Beit9=2`z8*1||LCeurza94HfVGNlxJ_Miq*o7R5 zw`J^<{Dz*MnuwY}2*6IdbA_vRD98Mon@X*?#1nhEw9FrdmK{kTsnq<@f8Ei!8-10k zhLax4)EygXX-VWHCKlus?49&JJf1+sQjOoc1)_<@;~WBDIPZniMU&gaWQxrEvqNrk zBSSM*LMRxtwd2LA-O4j_N&IF_R7?8%Yhh=}`)N%GQ-t^DMNA>%OAN43@j6C;A=uuE ze&>wTdJP?$@v=vzxumVVF!UZCpELH54i;LCJ~)xGIDc4 zb}kG!=kRF&qQ3ZqL#+7XB6&`dDNOlJ3p=h$OFH|srVmxbU%gZc#0|GpHnIKTSOnv* z%hBURlR<2`;drryrdvlO)K3&?x8ERr(ABp#9-^yZ_qLrAlPtp%ehr+(gKOyck{8+-?@uSG{i-#z zbVdGtd76P0+&A-hY;T5gWhFytisxg?3GAtAY>m)^;0+BN9f*tTr>jfuz+2d6)du#6 zDJaZo_d+7B6-SQ3*h|Z56&&9jEj^ON(BHxkZuZE&;KZ2y^8l^#9=5jzBsdliPm5-# zM+=wuRc*M*wHkx>s?cqDLRm!if#3s6AX#i%atE};FjVKPJ93!zCeM593D>{@yQ3WzVUwlvxat6<1T(w8!R7|C44}1^jcFMO+YV%XHR{(oQ_=1$U*b$l-mUv z^kdOQ2Hk9z9Vr6R6s5grAlhoB&5fIo8#HMhxzE6a);wX3osYlp+@k!{6)xv(KCLv1 zd*nLXm|973-jw)ttl339WM`ceic-YvYqL?D?jrMRwqF|4obo8rTt+NoKW@DtFWB-w z;;jbNv>O+=wqfp0y%ggKHG$$U<2o>Spiy#3${(^D#HbEoKwfk*(5*}m5qng_1ht%| zmDBUR@mI{AB8;(ubMXPDQi1R3iQEiuX^fSUFH#Hz(bMpF}WoHRJ!At+x6tHQ4&&$6ybX zTq=MD5vlM{BJpUGgb-akR*->UKe{x0P->l%cgr-x1&ZA2m*fX%f}bbXePLoxWD?B3 zIm%fjRQ2J2($Jf7w3+uR9|ZBsU#a=e2$>eeGrN86&JVnEqy%+(=QcyAG6uOVj>LW? zd-?OKLNUGb9|JJsT1%4*N=`Lk=c~`8o6NkMy5!By@u$aJaBjYUlC6E8ObFsio~;n1Mv-QCv%M z5_iWzC#kG3D=|W z7uTQJD!C|S&2M_JN{IslwgZbXMD$yw1O*w5j=Wa1JHyswW#Y+h%GU~y`>6&i?H=8z zrTkI3P?oz})9Ebc?izqtafok@cnXO3I!WxogcXg;lyp`D#aRNsk>dIf@W~sBq*ZKM zMtB-{Ala#9K_35Thgj@16;*VGhB*vnA@~k*2dCDw5ilTS%e$k#Ezw$XK^CckwC(-$u$g_^ zbu;ccS0giZ_&0?}+#WagUu~h96R%#sE^cKEHM+45;o(wrvC~3>FP_n`Kl)6y{T{yv z%0^oy1&%?ofzGqhul8g-^X?J1t15N)AP<|+Y|gyICR+J+a7rYMe-6KD=i^M(IH5fu zW%X@zQc!xv+7Y}&36WNWQ<9l9E!*k|l68FD3V(4oh|DrmjHdzp$E^<(aAj1^&Kj)@ zq2AklJ(vceTTLVlG+6WWr9Qq|o629- z(_54uc}&dg3mZDO&1|x+YJ%|dV$>P~0lq-f+7Qbf{{hI!F$7DWq=je)>?<^TlgDG$ zM)6^lYMef}z#Dmqr>s>_vWMF%JhS0BGTrsdQ86_!+mOUPDEqA}{Wo9XJ}`)9IFPey zu)gB9;pQxXW(L3*oVx){vf-b6Fj<~8D?FE@8O$800>1I$yw`^g0MDKeLeHw*&~XzG zfL`DFIQ&f?R;HVO1-@q#XQy+swm%U|F!sBLW@Qf7L?;q7wj;0v(jZR6d|+R?qTpWw zbO@xSVL!~&It?++2b9<}+ ze_AQK?QlWzkFt?$@$OTgOla7$A>n!#zss@l>S{;rWetAP$H^O*DV$ZYptF9NPRP7= zfdx3J0;Zm`J~e+7`{-!a`2Bq9 zm!gS>=xWV_dALoFLcp*JxrbQ&TWm@G*9l9|iL?5kxUN_7@=7gPCG?1mc*@9cvzZSU&uf28u33*&)~!W diff --git a/docs/articles/EDA_files/figure-html/unnamed-chunk-16-1.png b/docs/articles/EDA_files/figure-html/unnamed-chunk-16-1.png index 55cfc484a23e6376940e25526253bb57f67f0afb..17437eb45c1b267da935a24596b3c7e29e5f8383 100644 GIT binary patch delta 11668 zcmX|HcOcaN|GzUEMiP>Yj3_Gb3 zG}W=3)5F37{1S{MO57&Dr%vWx@p4-Dy_qV6*KV&hk`3Q9tKD0B%c~a6t2TOz8sq&n z!^WUO;Kv4VPj;4?v&M6zpjF|B#8Qab{TvcUE7GyaY!>l`bD8w?U?54du<{N|s8<)9 zn{cCeLYMZ{fyRJ%DFauGqvIEcZ_##eg}?KZ{Eux@fG0D(Z&f2qNucIIcW6$Pd z29rkU)hIWWl^94A4W}PWy=w9uJlHpbz&zjHI4qS6kNIZ}b+J3fv#l*nnf6D+SN zv)xLMd_L07aF_FPW6toZJUzU88O5vEB>=lv0!LsNH}@#W9Bfcx+==h>4rJ;o{nQ@6 z1zxtdX~D&ptfW#DfA0Xp+N5$jN47*hMt|`SqD3UHzUgK+`XTw-3eUycuMs-)&l~n? z+j!beM-$)?2mz?_%DdHhjLXkIQ<9b4N5W3)Aslv!G=Daz5RCD{(jUcJp(_^pn#p&p z`>BRF9600_dt3On==rP*BGV`*CsvXu0f4FvF_nt&ogIu{(`XgF%()g8HhJo&I06;g zy9*1jZHHZHW(&y17DZZJyek!iRuN~~^fY5iNb`F&P}I7HFZmjQcShLrw?fb zqNEc`u{nkL8Fz}&B!Y|l=;%FUKvR6JYGhjBHw z`>{GvKj2O~*AuYo&(l*qH!5E{2Gd_U%AOGbMkhFqy%SyT(C`&yTCt`YUMC^(UcvX5 zu&Q#@T4*P^dhj77VF7q!WIOQAaqVCulXGP$d9+el*;M){KKFJxns9BsmUlH-247iY z__RSkFRoEg(8A=&RgU&QZy2Fu4V7!*c;xiR&|OliaGiesO5p`Ggd?akVm4e0IWyw; zS#okS7N%@SdS#hR)~{u2a?6?OHlAx`7lNqC5BauJE!}hN7` zuUNC4dxgT6nrk9UOWeL{MDoW~)J8yK>J|yOFsWUmrWww^ox`NCkrNN~%G|~2p+kZw z;ynD+>K6m0CWjr}j#{TEoL@!ySZwmDOtL3P-JxeCt?%zENG`6oiZ<-B1ctbDv0Q6W zdK^@mtj!GEW0teaMdt?eD0m%3v4mU8ET&093hdC`9XKXlk4jaN(E<(o#!$stpYM1( z9>T+B#Dbx9849iToi3%U>b!b;v#2Pw(3ueGt-o=_|5+T~9p5uM!fnpUedD~}P^LmP zoAl?-;aq;C$^%_if3p?L}nZIE+ zy=}MlDXwC(U;Hw2v8Z-f+d=fSkIL7I7*$R}^8JmhBo>Sq&(wK2m2CIk;WD~j(S6XFpZg=E$Y<DkjtxuUrb$rEiavBO2hZ7B|6>(o_Fd0WV-H>A_J!E9!Gq3&GXyam zdX1-1t@R1lk<)xH;UK=f^UX|%xImOX)&;4?Kdc=&pDTWo2)P zcFigwF5P)S=Co03+bU`VNEg=&p{Y%oom5wgT?Ws$5lqa^L}dmn)%D%7X(y61hC@de zQM6L{y>NyRnj^QC-le#YtZDD1uUt;;!B|Xe)HC0zif#ssH*$12mN(@8KQCe{pWLO5Q@{#l5baEf7)f@)P(o_3g_-zX^CN^%@~8jVqr! zn&9u{qPUB$yZ#vs#Icxh`um~mCOEDv> zIF?^%5{Frp_)J&XyKth8Bf{oo$`Om1hX6I;U@cKqky7&NkSNZorX780N%*mYZNz@x zJdM|Ci@p3E5QP8=0vtPY$@#@rdeo0Wy`hpkqa#88v)CC6VfwT?%l(QCKM&N83%lg9 zJJwH&E>YYan~GNWg3f$3)`PB3ZJb0NMXWj2ld2oKxp(4r=-GJfbw+c;0K39^U}{Zb z@8yD1)j2te0*YOTCK|C4zoM&k^j{?ndfR5$VZSe$JRGu1&M|D&w#Mw9n@f1Z0QBG< z`EzfQ>SOtSEBFgdSIGYr{Llm~MbOMPW6}Oh*ef_waZ45*Iy(-TMfQ5Jamrz<^@+3( zp^jvA+Vj(3xWgV}EDr73Y5W2DL&T&eqtQZIXCJxWgH|UGjmReU)ki0#W6t>lm5rcw zJ!1Sot>ICtsJ$P}oR#1Xx!>gl)5_~H)^)SnN`g^V7ayP7*ws)1m~36Y)muI!#HYhJwNAU*)Lt@{P(rwvjwzqUrP}*^6WZw#vV5GYcBDX z`NFZGylVA5Ql8nu#-`%C7r2WkgJ~4th8w+K-4?p)#k%WX(%z#OS$mB-s#+zESXs>` z1@K=})ZRU6A|R6hjGfx@q}T8YA494MXR#0L?Sy{6CDa~E4MLlbD{QW5&DO@hnuhE7 ze1?*0`OdRA2kR@61v2JsU(S~XHK`@G?=k*_ET8MY=m1q1*0+<*8u?vxVv>;%HKv!j zh`ISKb{9*mZ7)-7_*~_(l-p@YcJ~|?&!N01`;ZSg@H32yI}Oqn{ux2PKb*a_{$aAC zSI)YV{JviUkCxCemPGChNQ$JDG>Jr1iuy}4dw%&`xL-5b@k>{NIt+vI`twDtOG$P0 z2c4jY(9H^YP9Upcs`FYV68pQtCjH z_+~vT@k@!@VRC63Dr6Z%K8+fwHVzv4Zwrxi>8!YKQs!NWNwhNYpa^ztyyOAbd2>esqs#Ofsw!39hg*jrZbB%#tUzv}&LaFh|1gc*6gn!$9LJHKWsV%zs+`Z#?DFWBB-!Xz-Sdw~nkt+|M@Gd1t&-R7PA)Aycxti@_*sMzN!3h{bz7Rzvp3SF^{Z@oKoXii>|ENPi$ zJD9@hspP(jcx}H z?~VxgANiAdVsfyeQ78v&mzhpXd1re6>7LSVR6-Yt2<+7SS%O5Hep>9`P$YZD=UZ}! z88M;L9m~;_&Pm5GS)=*~*e`S1`lZX_^EB8M`JUfg$BX}9ywaUkH`&#cuiM%{9=sIb zjU$2ZbLcI_nX8^F+OX&Q~EqhGk&bY+AYhepL$yMi`A|% zdl%OaI@I-ns~35g2Ws)kCngAg=f!0s*{8h>$b8XgrPH05zG%pjk~=X4Gr4=V!ogZn zk5dUtLEXZ`IVlZxhH;GI(=k|xnVLm&aMgppjLKExM(_5&nIACB2Kou&K5Y_16Ok`% z^HH>(I1lU(@s4Xdy7MB)h93Tt)C98J1ovh9vsjA6=N3g7?{XNB69OI$9#%=(6FI@V zoETMbBbronHX^>W_(Lzi3%Aiesvhs_*j+B)L--cTHktTa+vZ<4rq@O|`}U-r)Gb~$ z6K62r`4)3J6Lj09Kcy$k>frb;v{GQsJ&fi=tXFn?L}`6c>q2?I+5kX)6FR!)-K!tz zLC#y^7_oY4SC&KG5*P*ETFJl;r@z{WI8lgWoWL|-Jta}*S=!K1zu{O0gWQ@U7=OBQ zRyn&jvmsQ5tgS#HqVCj$yz^j+6>2ZMv-I%rt9N3>D_u0?pd)JG$E0bvxL4O=PoYo^ z*ypG7tWaqa4dpZ#+?eEzcstDKd9%IlhTv3@kL}c;we8IVnHhcIjxZi1O zSGgRuP5tzbMi&RxD8DdOtT_-PPx2b<t^1#_V-?D>MIw8F0=_vF7TDx4<^-XywU z$vw(7Qk*oKyvqDGwd(s?mUZLY)&TX(%Ec_j=Qi=I%~eag$jyTZ)+hN&*+oYlwkv|1 zXQuV$$jQ6OM3(Y%YrS^>O3Wu*?ha?_!TIZsuhai+`sq)t@*i%^z^E&sv)~rn9^FPI$S_&z1ikgN^(xi}I5ES=?>cga!g!7kiTGJsA~x znG0ohwtq(o-;3=Ob6e;!tS+j3oRRFl@1?HG zP(`xv!0KF~4h9e{iOYB0*d6ywFFT27^URQx{jN%%dx&eicF6x@^H5;;TAB1sZY}a% z@{TjzMPSwd1J{w&!UhNZ&S~eT%~KTpt8h&ioMVg7A2WA+KzQdseGrzCPBHS z`xN1)^(3qnik4Kb$eZcbm{!N8-Bg*-5vw8mrX8r#k|&+N@AsxHw|$tS8r}KAvx!i) zYEUP6veZuAQPAwnz5h}TJSLMJ?Xy%z@&Uxfx$VB5?#_^a6&Wp90KdOUK*rWMBSN!4 z7U&+@=gvLB%HGOv;Eu8*;+Q8sPT0U#LiJ8hCcMfV|CHwDkXj{oN_EYJfzms0C3*nkJ=J*4xU_XW8kfM&5LiG)R% z5Ii{_d_37}^tv=|z%ti<@s0Vp4x@krL0!u=&in2IF=|h9!;XxwMHE$o8VSgk@$w)% z-^B&YokfQrp3D(Py6QI}Y-(eCjNw6T_y=+C8A}A$t-pzu3N-$@<+YlEj1^33acHGm z1{+3>kQ^0zWUNv&aJ;3B(bJ(JXjTQ2q0b!#NZ|zQDp|P}8{qk?L>ZE>Jf4yYW&x_N z#pFTDvXCczu_2wO>;4|ejxSz`;O^h8m=vxgE!HtTg^CY7NPC1N-QD;+Pc7-zV4YZZ z#S@`B1v?Fyqbk#!@{u5JcW7IXYTcMFFZxgw02b1#WN%(lhdwkN2n zNxA~An%AAb4VjzHDBN>lTEE1wR-}jeF_sgiSQ^1|O!q;%88>N7?cJk^Y!p#7Fb^N@ zVL}278AvpucfcDg;7z=LmZ{Bdmx!VUrm0?=oNX|AH-k4Lwp7f ztNZdM{^n^P&L8>Z0~0?dd}6;E$S0DW&C~`B~LhAv8XQ1))rgB4TyN-r}$8LgwoDP|I_}`%_v}-g_gX|H4U>J zNQ(Y6PUss-^T36r3vDSw#95kW=ik@$F@hD;f7ToD7neCWl|0Jzj#qqQ(X74zouY6r zQgK#y8?BBJ|4^~y;yp820j2k4-+UT$2Vyv=FeSOOJ!Jo9|9HPqm?;z^^m`~azJNIT zz$D(S=)FF`0H2I};#hpDKI8#$h3rh${z`n@3F z{OK(>+e3Zrv3Aglp1|M%W~!jymgT$G(0Gi7dHf*Nr7>vJ2Lo;Pbu3V>#f~q0U7gm+ zUKW&TYq68^iso%vXD0*gLeFTy;MB?mfIO(PzBZqjTNG5!$aUn{clY$D_VriSZOaA; zmMbi-qwA~{qnfQ&IvgylJ{H9pL3<`TA&#w-Wvd6ONT6?gAi*~sthV@oqjS;}(~;o; zPOmiIL8}`sI^R#0I>09pKi6Ih-ZQieSD&W9b*%1MtTSH}*c)k4#}jECZSs~e9%GHl ztZUajnHXeM=i$*99(Crf6Z-A;;KZ6N;da--+p(3*BeyZ1_cNeM!O=6(b^)t@4oDtMD8+8PhBLd_QMJ}=r5VHR zO+DvD2HxFKq?6|5X?&_^(fuBfvKTCS{7ig}oYk3Kn_lirXBNV6aLZH2f{W6zYxY&T z;w%qe^Oz+qE8$0j#)*^_T~0V|Cvsf&hf`1%8-4zPuQ4e7TRG1+lNW^Qe@d=wODWI0 z_4G3hc$yQ(mYI-IUM66FB9|y+6hMXhVP8>sex8o4%6p~utfB!>Z1qc&C7OnuBb{0G zHa#1mN`u4T6kN_v`@_8Bh|_Q6QHHBptg`(~8y60Uq}6UW|AXs2+ZzWk^#-Q(M-Xnu z@X(|Wdv*ymsux<7=%~)@>FL1mMSI#?u^QMfZ*5 zm3=1K5D97Ex;Xli*mi%Jl%D=SXGM{l+HaLwcxLZnHF}*W=zm0uHsM%{9 zSKa5G0wtLI%AJFVGu_br!c2tQxA?`%u~iA@T_!;(w+7mTVVNU)=+w0tE!n{#c4^Wu zgOUzTraV%4!V4z47=qa-5#*$1cK5Sq;P$d0#QWVmb!g#x(4jFIoqdpt z4Ofp-%>o%2`-tGkE__!`6yT_zY3Z)M6Ey4Y&owo9X2u^{gF1pY|K;@G0!P}5)?Gy^eZN?*ZLYdic2IHGJgx1A~U>;ZrurEMVi9xH(U z$!G7aCmc86V-#Yi#i7ywEMkTE(4X3LNnFgzh_^p=}!H-sqanPX5Dp1CqQTxHn zK}gQ%{4`vPgA2w^^J7D5w|f*Cu0vs##7JRvu2>lA0n?cN+05$h1Eeig3Q@+ zjFDqhOIEiBhxGLU3Ytfs^nuCcElIVXg+C2LjP_xI1690pf`Km$c*T}Hcm#U`%MH_s`&DgWW(Lw_|9|)vvFcH!iVNt?Q?uyz3_UFFxds*X+poOrIZc@V=ycAfX zSdt`v?`u4h0UlrPx~B+X@~^W&dJeRN(6RqkG3R zRp1K}hz#<8)On;9kyTNY6dP>JCR;!2AAHYnq&5@nmCGPjHIthR>%V#AH&Cp*3e0ci zyu5k%>Ic*@B-92R+|k2ArrSmWHNC!Qk^RfpOed^hAz$MyKZwe~?sC=sugfK028X-` zB|*uCF1Ubn&Ki<)o1XO!5?R4XY{vj8qoW~?7V|h>ht#`!A7@PBPuZ%?5}5a+-)>iS z!_Ooqw^x8llT0CM-?>n@Zm92&&8#YDFP=3})z4}s_mq$I=4fxbLDVKZ2B+f=u|5F> zxqAo??|B;54Vc*#NJ6dy=GAEmjP`@aH;S|^=cL@`sR3q!Kj+E~Pc(3$sUKc0{q^nC zt2QymCGNiX+&8KiLAqD=l0i9 zZdK^c4g*Lj#wL^EAA3pz@6-N%Vn!Zs%~k)`qG5-t6|(LF65wp)T4ZLx&DdI2HrdR7 zk-~nwYfh2ABKw}a)9~&XtcbJDv%7lS}$%2lujIsL;nXQvf-gA$h1eKeMq^z|$H#L0iDF?rj^&<07PeZ+v}^$8F6B)UgU9 zGEZHe$8r}JTd8d&WV%->)bW<}>Q+HtyW)|LN#G}$;z~S!;yYTD!*tNU+iyF*{nAcr zL(#*%xe@15&-4-@AR?TUwj*8zPLKT3~T9xCn z^`EXJQ$#rjG4YC*nNG1e>l}~8uk}7u1pCJDR)e+WW8+F(R}_ZcQ@GfOH-ce9P#itw z)3(;ocS*wnE&t~9sw%y}tkp;$&cv<2Dy!1izrX)5ZdDjz$2%o>{t!8c)A87zt&MrM zP=E7-A(m|j#^|Jq0K_(qhkrx@;#AU%9-Ie(Jye2O)Ys7Ph9iV-Np7dLty-Q3_Tc*u z@vX3X?2!z1SQw&AOg;X(Io>R*hF*pcnX2=HHdPZgSj0_@A7E~@sbTNo{yv;k zH2?F3O{&-YR6wy|1L@D$8wrOR_lQ#c8rorcV9$h^@HwG1Y`?pVy4vapmpC!Xwx|Go zO!aVcM&f<4_wRQ_KF5Q&q3AiR2sXpEWPcmXO?ZjB$;>9JY;pcke1J1n*YNwV6XBeN zQ|I)e$I_31HtD~?n=tZ&`-kO)gS+n%0yXPxR;pY@fgd&zl3=>>iE9B=;z2!{29j%^ zXici(9#gspR6obzrcy9PU|m0cKXHei!%OBXnOSQ_r+WJ~i_q!v-uJ-*ijs0}|7OlO zNm)?99EUi82fQO*c-5O0XAXX#ee{y})T7)u|`=zMRRA?Y?+2* z!z~yZByko$98(k)2IJjkqJ7AfpRO&bg+E-SYzqol5;5ZkXI$;6fN|BsREmc(`=^W` zYXKaQOA1O@3Zda6qK%Z!BHI6%vVQ#~=sx^;D)=B`8HU)IV|MrBP$ znk``D9}~uQ1Rj57Ei={fP4H;d%`ME=BisKl5%~^UzM1E`rcRz)R z$h=Y>t6f#}7_R1joqSIFQZrG)&$ml~twXk`!U8Ye5!bzB`b!S6-DD#F57f)Afk?&r zp^6*+h;MEXms9q&7#|mCRdWtA~EkVw8I5F#lC9;;6RKp zvZ9?jJ63lJEsL}cr8!;SGE_p&d3woXo2Uy77NXBAF%?`3==AGJPFxS9^!YFKe58e+ z*>0pR2lrMeIQsQq+{p8fNteqj&@X0bUDClVB30|uh-dW2N^Iz5u?$JK)s+Z{&zi5} z5$xv%^GiH0HRPkp#!rddjL&im8Jz7J5>u}hSJ?S^lAbSue09DGmLC?mMk9S;n8A~` z-H6-EMEU9ylcsC;s;Dp!aAs&rog*cZwlO#Tmpxoi0x(Tts8iWAplbAfF|v7v@Q^ z_jF-M(Z;wI$B6K|&K&`L=Dkmo5;&P8+jt6#Sz#R-gP>M8TiYGDC7MDio2bk00Xn}Z zn+|(nzSxWx1478iC?6<=+;9wyn!-;45}mqzYK$84D+o($x-A@DjP23>6Qd!cQVNRZ zgpfg4Qi9md=o}{xE1g_QED>!5m?{@h2*e!9t22;8xXo1}IPaZa>FD=k^@f3gRpmec z_uNby*@&@UyaRY(P}$kpo6EI%L&WX$ze7TfA7;zg!|txW7E_(VFDG{H*)LeB;suoE z#Zq9^2Ly%p|3E%Z8RQLvlE~eagLuj#T1@R$Kb+BzVb(SX20<^&9leS)&kaR3xej*7 zXSyA-J=(jmE?~C^|KbFm)oi=3){xGA859$l` zQsNC{w;^~XW1UF#e8U65*cUw+p)&zx0Rh;X;!|UC+x=@h7M7=u%&R-D+e2Va`wQW9 z$LSB1T!$ZrPI!`-=eDS%p2+E+{=Rj=qU=weX%+cYrhWYC^N@~bn0AlN$?AchdD{KP z#*!O}9Sz+#;;%u;@&GnnkfYnzcOO61v#sdZxZm(mD43VCpdaSgusGaz*gtgouq`^P z5X85g+T%u4Te~iDw!UCy%>e81VROoohJzHM5Og}F;_J zZ}+Yd#cIo{-FLNGv@X&dlDc&cp3lm5PAjp^_ge1cH(l>N4YcivWLq;Z2u*uoii52 zQjl)1vhdrVLyB6~%~w$WmENgH!uvPvE^gp_ zrR7gHMos@)$w>J41+R>x-VaA|<-zVh4sdpR#y@+q)qAy7VStyd`P{!!Ua3##IUpEZ z@OVj1&Z@WT{N%76>AS^wI@;+O$bHjtou>aSc!L_V$ONO6pIcBfrRukeno0zvETci# z*m3yj%;WtJ)kKoTX8SoEYO_uguXixB2u*Ii#2_o@W?Hm()axI^P4F{cdJV8~|Dd$U z-kU05vbZ#$#63ffxJ!1%Ol^6+|4l>pse;LCp9gYY>m_kac6RBO>3|jmLC5T1=VJx6 z@86P%Ma2^EHI99f`2XnJ9q{JDGQbBr^%5aEmoRstrgluKgnc3q*Dnf)1G9qN2?93~&vp09n$ew4M zb?5g%KY#e^bMN=_yr1=YUeB}fnquiSMNm2PO+Sz`^f-egx+bBEp8#-lf;*hM|5f|GPCo~A{wTw6#xItrXhANljfEOFxpqDOXy-df*` z)Sr4Wu3c=_cp-9QNqVR)M204D&#E@`;V^34^&|PfZ$OA!EtXrY|4<4ubdf_lCW}4qicHT5e^blTZcm<36_A$Q?(Z%k3+Qepn1T60WuP1h1tz zWK3w~C&avmB>8&oMZME|68h+LrP3o zA-_X9Nto4QZ>>?y?%m_@ClSkulx7zv6?J5QOrOn7`#-9hPY+g;nL@M(rrQ~`ymbEG zxSULci#^cOvPR$ZU&82FVPkQXvgnyudS_)AKnmVD!l=4 z$-B2lnoqtYRF9mv2JGq<*TY>BB8fY=8_MSwG%hj@%bMVNM_<3=4xJONy=|qYm_41h z6)_*k75kIqas_iu%612o3z!;}#^I1Zg?tO~cQRUqIG7u)&|f}Ek=Y5Axy?jExrS?T zF55`jMDg3nem4~?-yE}St~&`a9FqbZaRGj@TQSDw4HB%47XJQB@$ zES<0uHyCDlbCp~jrN=(vv?br#eZZs0MpMYWEgD@sxx0^-6W`o2izMCZ>;#=wWxCJMr6FuuSaQIMM#wqb`!90=Q9ZlKi~i zwn5|tl~K79ZlRh{?}N#U-VuPKX|%5&;tCPEf~rIcb6sb~@iH3EBE;P@{w32|Ub%`! zWmh`h1SreNS$tXqN7nmL4W&jW&aA2j+v|G|&a|l5rZj_V9|g`;%ZR#fHZh{yl&&0f zx4}xjE*gIT)T)7Oefa)*1H1fTAG$jauC6rq#vKTFsCcx@PK;2W>25D`PDxe%yAtnk z5L)_p_{Q()n8-(xv>cd~qjm2S-n4+!0bsn;F?$?+Ve5j0p;aKam;Z7~PvC`$tpr2^ zXUDRw$n2Gj!22t8TLT$C$nC4hIXdG_uM}scUWcR}9e4trg$hjs@xZM~<(SXC_a-bd zjO!Cw-IwFu7i~Mef_*O>3ZVKls@FsAT=%`lf$ijhZOeM&r!xz27sV5s!Ch!$kp104 z_92Iu_Y!-CL%1yo1s2vhvm}^WjF;-X#-9)sxw_(p==YMxTM-ES5HiyQe|pbyr9TQs{{2Zo|-XdsV99jcuvf_Nv52?B&+y{DP-J zvCw2c992x@0^941b7-yx8W`Y)t6v()^7~NV6YM;yIkLsRi1|(v^N|!-)M1~b{;X}Y zIuO^unUxpmFEJO|TGeeV641NpTv*^~r>+iIdra}>K*@=`Hgs3yb9o(4b42Xd1vezW zeZ-ye?CjD`vo+h|`K=SGQDW)6`u7l#pqs5i$uhZ*&GGwst!aA;6{fSVbPzrluFCI@ z%j8%U!78ZUlB`~Q!i6P#-B-|YS!<3_m9y1`P0#x{ceUY&v~==P?>ZvG7O1>V^ngHW zNxIV859Kb_RduHL*KGI&r3O#+T!k$YZm*2+l#*$G=`TBJNF1cQY!$utyTM_TuaRX+ zdVx;CU#=~IvdCSo7Q2MaTtSO3=h=>kp|L{-+KxvTnkRyDzreEX!~9&%)5Lu#Onmv6 zjN>!)DTnN}g3BALFb@Ny1``0gdP9bmC3UlsLM48vrYhQ4WZ^3lu_k`3rdYytkhYOn z?t5|12u}pdn9ob)?I4|%09QlR024OrG=>tiFR!#v8*e@-^KjbN9 z(zvVCXFLWSh_By5T7Il+Jka0*`UX7CleYV*_=b)hIWu2=5B*4OLbY--$-_Y__I;;s zlTQVOAXtmYPVZ+%rtkOWvDBF*;P0u4?&Nn500S;1cpx^#zGryQYW{D#LP^v=?Mf3hL2pLx%42NY2r-@&I?l{;xq zGtQhgmt`PFo2pwW_$NJ)<&Jb4T`=!0WuMh}Vif|wrUJ`d?+E5vcQmTrgwyD;5yb`14a_If3&%w3`UM+BJ?=UX_sw)NTVN(@|Ym!(S%%=fHGp~C(j3Jzs>|uHeJ^=03?5^xjfitDj(idx#`V%;XSikFz z4KJ{~dZyOeStE_7-%mGslCzg|x4ttm0DfCK4K2GVXVLgbGgZ#Jd9v8|8Ze6GJS?BO zxTZdjpga&g>~;(a1~w z=o-qo$AEosLZ@aeam1`=YCRB>OH+;xG;y|#5&!5x!^{oW8PAOja4f3t0c4r{i`}b@ zN!f_>A%2itgVMc~z4lx{*!Zo!uhFAD$+m^1rSTWcK{p^;TU+ zY7Hu_Lh!%~e;01;;saS0%qpeh>}uzB6!~Lp|9eD%<*Fd}8W&1QeygghJ2o*k!W%AG zy1m(|(T6WoZl@95xB5lPETGH1xdMxz7WVoiNV3Y^J zr5o%$8>l(JRQ)-wyUEG<-RA0H5UTdpYGtN4u^qA8oi85UDYduQeGSx!o2?;~1B@)v zh42vTrMEfP74rwk-dA%(NPhmB6e&+kjV!(=IL&|wfmc*2CjbBSeuF6-KJB1mLh*v8 zt0+Zsdv?X|R#jksq4EbVh{%lmcE2#Q69lNCRhpxNj0t~SRba1u$tL&xOX*#js}%xm zLNDjuk%9-c1-|?#XGzR=dNNaC{MBFOEL{FiHRSTcBAEOuU^PE? zz0PndPm}FP7PDq8lM6|7+R5nAwL-^}&$IJZu_P!N;CV5`uyP%!~k?_cE4>^wPq^G9V#+Y#LPENwl(TR9TCji=I=54$366A zZm#Q6xi4ooNgHN@S)}LHvnGdVe72JvkNGN0toY`vzWyHE(FEp9e}#tDhn}?wRohX> zB8%6^MK@d*JwrjqKEzjf|y%W`Okb+)6&n=ogJvla%l{ zEx=ThsRn=X2RfMnw6|bvJLJmU^wSz+T7H@TD3HyY)Wz$>;lvr<2J01`JIyhw{K`Id zv58O|(GAw42{|=4U9v1T;448)lq~(Ymb$*-yn>YdP!1`-aq$*wipZQa4rQ7mkfjpy zQ5*1)>#Q_)JIn|>_AW}5VANLqNTS^tsAa$#UH@I6qeuMF=YWOnAA9bl>($RM@E_H) zW5p`0`u2aD2b}B#^G?;WX@(|o@8S>_By z5TbEQlSB&V28eS7ee>skY$Ra-29vg<7Y@71(I&rZSD*8Rx+3+^RK><}Ay4F$xh>Z2 zml+g6La4tPfveDBJ6fvwD}>)UG&>w-J+I z!MysjT$D16KypQn7k#n^p$ zG1YQrmA7UjNfG*LrWIw%pOPFtt_ghB!pd3bDVaUJJ9sE8oQ4{57Xu@wa4S?$bwE4y{@mhgTH44(?<^Ba+I#oiY#)C{!S+9yscL_-Hw#+5YV!d1oouO+4NIkhpgHrG=sz& z2pQ*ji5ednQ|W+d5Awkw`jfPF;SYW!-|M(HqUK}(JUMDRE64kp7S&lQs~PqT=7&Hy zAZkhqPXzsBklR}`A$#d3xY`Y7^n}z`>fc~(f8$tdwWFharHUw?qPy@>vd>VB!*;AN zB47EKVpJwBVx=ejAZEQV#@xNl&QX=Z|8091CyqFKl+Vw-tpQ$<*8~Zo3xr7v` zSVzU21?9ypY7Fj$PY7BWN#iT?y8MeICccuWf-g5cE-BID_=bH@cLM-(-@%1S zzT6F?gum61``o=WPoEez92fPKXB5edAk5qjA8;Z_6Q1z=VcF^O7~xGxUUtAI;Gy1z zDpKD9`&WPW;0R|S5nJx5>6*=v`g!MljxIWj+o`Yo}JcT*$PF7J4zL~hAxLMFF3e}YtwA?^t=kngf*^KtwvS0 z&vx5OI=A!?vc16I=_p+fpd_Z)1BmqRqvLe^tDL5Ifzj0K+0svz4+9ay4bKfPBW@+` z%3Q22EJ$0<*Gs?PE&Q`*MILr!@Mw}m;Vgt=D~0?Ph`^g>VMo!jyfU~4=78|j&vTY#hkVML$LI;BYKNUHqG zN_~v(nZEYM)8LJ%FPMz-WJfm?q$|xN^VaKXHZc4+_2QG{Q8&6HUL&i@lHAkg zuWq#Rz^h7h$9bz#4hZJ2tU>yd!wc(^DT0RAsl1>dG?uMf9OVppsLd7YHUDxo5_^NYXCy@hm**6W|IT5qKfska-;FrtkZlO!n9@Q>6jE4x1k}YF|T6 z1pnnW_#kz+^Et&&@(0C4X`C~t3I`ASiI3k^_uQ<`(+vE++|PnPnz2AAhX`)jNsB~A ze*2sA2Vmo;TeL^uR5rP6ijpQPzSKz2iDNV#QyX9E^z!pm-F$t;Tw;sZkVC}^hvv=L zlXieFD{9r@_=B$qqu1HWw{MV$$x7CcJ1$()v znroU`Z?Ik`INi0k>&1Fxfb$Y;m7wiS*OoVHMp;Mx)R1qvrKNCTkTk0M02?4~|Ct*Vn!{LTr@q?X_qK(6`!6$>`1}4xtf$6IF#KQeU zl^-z+d`tfJCRd7Nmm)IgIU*(n%&+mDJ?vNN&cs6dvMU-I)@Fgj-^TNY%tQRinMM-h z0IkNd0FfzbY%~-vB2}ZWKSlk5=9r7W;)@OgmzoO0T;}o(OP(kCtGEg~hg<0ZYoEuf zy^2gcnVK7k3q&GxOyR*L?bZjJoE+FKwhC)G6_UAmT)*T$b9!I$t{4k1Lp+TURMZk+ zU&Z}=B$pI}p!OELN7Un+hBJ-_jMiRBZY2Aa+3(C4H9nWIxJkR650*=VqdDOzzA*B( zN#O{|d{8X4R_*=vE|y^zLgXKZ6V#9NuhIc{jE3}U=S>}*EjQm6ge&}U8PW6 zu(}$w!cWWC>?67{HYYJetY&cB`4+6rS8y-zxO13W=PnzWus=b9IN{_O6#nFSL-oG+@E3Y)(bMoD{I^UYZHPIv0j90-qo ziF)OU7ZU7|*O?Cf9;%he)$x^iTK@tvrP$lTR)Tyn3Kr5g)JxM^BW~gOyd8ORi36^) z^YNj@Eqgc3aZV2B7yL;-y&zs!b;Cq3BAuM&%A9G%D;==*$l9*F0YOpYbrFPLPVu)E z=2>~0+Z*q@90#hs34K;$7w$sL?F%YQ@A$QS(sLYsf7Dke8zCo^4p>o?L>jU5!L0VD zBz!FXsS!qOwq%G^pWQ38`5|w;s%_A$xVjx(D}#fsr^0kw*UbeFG?Dz!usSIbC!QH+ z>v=W>78hM!8>#Q{^r7cqo+0p=J}pt>@k2$V1CnXEr2i$x|Y;47~iJm|iJ9T*@>J)A(`-nO`n%D`wX@N3K|JF=0%(rwTRY0-mCL41^Zn*KK|0XD6Tc3WU>g`dAa)*cwQTS%uOAYmmpz zd18fW=&k1>fx3LlQQuPTIu46AnFdjmKATyU;g7RPyV^VGDvoH+v&3y=w;6wa9_aV)pO9crJMPB!a1_gZ-OE!)z)-d8))~vFnO6bwIbjBp+OXgzY+l7;I7)ml7ON} zEqG~$aWxg;!e#64TG7|I0O{qB#uxif{yirR_?kS*Nx4vN{~J8rff=2L9Q^TEd1)gz zJ2RMD>-$t!$II<&5QT>N35_IZ9W_Tsb-*ll+?fF5(vp}ValUugAx!@DwX&%pnCyG$ z4yJf!iO1zd4|Rsq4z^iO8@@zOup{3(jsqbz;0L_G)hIIye*UKd@>B)r5oEAx2>&It z$ctF1y@44vsK1zhJ&VA&f2}vP)Q;%@?>KTax4m=`Ap>!fhWxZWqgLpeKc0*692}5U z=9Ar1Eb1?-{I;^6Hbni|wm|QR!vaw!M-)2ns6&faAPJar4;QiY2Uh9;Fhit6h29>c zXK6;v8`_)xrJiTYzA{0B%$(jFaZLpkk}TCfY6H~R81C7?O1_uE;l4w3ZRZd}&7ykomnM;8<#EsgaHxVDcxr5x&$jL+eiI))B>-0$el(*u8p37cz?OVv@M-9MZ1HR(~z|2_{toKYMOhapdRs=eA5BQJxBjzj%I6_;h_NQ+k)~y?4AC zM4u^V(7WhxFq`{*k2L<}!bowCw3im;hO?yeJVG4)%Oj=4d;Qy^vsFtf_nRJJJO6qvY_n@YW9-TCK>{(Ffl2qlB`8}l!|xbT^3Pap z1j)a6RRM9i5uh08`a(W@Z*9zZC`BYLl=43}0)l(7%pi7>xV!H})@5W!NR9;v92n*j$Yab}fyJJrTKhFQgOg zmh%AFr4w|E7ThF6+&C)c5l&fZggVt6ugX3_5K`tZ;NU>5yPm zBNlOXM!)_qP&!gRP6IEty(P7&V7)WQSXG!s-9CSL>b6r;Nn1`ICtB-t_h3HR zYNcutcBfXZHO~<$>gD_HT0QWfQ$0^){VE`;9gnqEnVmV{Rk%b>M(hWHli*?|ue8Sx zkVWq+3gw=E7|ZREZ9n}>S_J?5ed6>nR1WAL7Cg&crxpC`E@ot~jX2^JYv)aNzKFN! z<^iiEt!X%AQOo04ALppK0Hk9uiqj`DZ0ds#9vwp1tk1E#B{8aTPJP;^fcBmE_)Z=^ z7O3oZG^XJHsV!i5zgh(wQi_qcrDAba)hd=btI(gIb*`pjP%kBbVHR=Cze6Zp%k$iV z_8K6N{Udp*cYHjS3{%pr3xr2bh`K2&)d`4BQ4B(vezxXNUk#+C9sBFSXpYMfiC_*2 zL{0@2gx>^WnSdL!zpa~7UVVn_kf%k>;X(DQUAa&>=RQ<<9Xwq_ayG#cchfO`A_xxz z$y>#+CkIZ3ZOHls`Rzp)j}_H_S*JrP1#!#E1@z`I7H`zp-cG9p1Pw2&5(#``D9}uo z!tDHY92UEsT1gBNwWL>xVe!f=vH{4=T5*ivc}cKmezM~UvDa-g`s-jJ-*O# zfXtI9I(WJM*I8<8nCLG(kJ*oHC17TEWOL;Dad{I%xa z_nvg@Pu47hBSJrpO*V@ggWZc*QU_YYVD}*2|DxEdtk5fdffDCUky`%=*u4qfS65g6 z+pm7oyKu0>FsK5tay#gP=E4Sxa)vz8$@OorOpW@Y(2k8Rb<7+X2CmKFCBe<{vn7=QNO^b+X`@akR8ab+eu~ejMi#jZIGI4Vb z3R}j@w$ru;K$!Y~HPTg*56ZAHAZ~@BJr1I#+Ia3DJN_Ufu(2L5&)(%fob%%7CVkk( z&n4-5a7kw8ROo>4!Uha8FV_gc0$??$0Pk@1cvpBi8K zrycFhm0CB;K@@ENe>Myx=EeEJbCr?C*H5m|Zlt{g#+jXrv*w_fPF-6(Hd!QJ5J_om zh<4ekX!Knp%`)2_94}64u2*RI8YQ_LIV^=&pK;;zd@sOWL_hgs!xcAKS;_eI1`G6F z60Uf+#u}|cqEN?LT~dpCYDF+6QYiLuKKGZ$(fcF_apuG>BVUSB&WfK`LwfC-$0gt% zZbaGgZkA`u3KBL-=kxaCn>E zxcRBXiV%Z*hQzjdAsVgWBXIr+XOc7`viG$IHNmJKt)dKn08`L4E4dp{scipZ+w_$4 zq18#FyaF{ymzWPr_W<;OpWjAcdL(hu0IVR7FMS*5^T@Gt{o`LhNbIWOytzpAwVBMI zF(k3ldR%inI5a+7Uwl*M$yV<&>}i-_@G_^y4IJo=4_6XauUn>3xQX1;x#Hflza(~4 zD75iuI04mp(^wker@WmJL*wNUef}E#hakSN;YMHj09cz1prUA^rLnD0fannC*A5Sr zJt{lRVGVK<&aWktBY~F!v@-NJB*ba15!k_L+|>b?%RYgmDX0-1cMIc#dQ;Bx*{n^kW2UMpwEY%Vp+K|%4b zvx(%!?lNw63*J7m z$R=_@^OXdOl`Dlj!Ci7apReJveEjaGUHo7jXfdCm%f`7K2~K&v=(d)E;xb@)g?bj& z=9!Oglx0c88JVVEb^9yK1)x&@ri4OoO?Sw)Q0hShsy4p|==!E)HtJKCVc+!ua0>Vk;|C>yjmA-_ z-Cj9vFwi9fw_rt*D zv2?~5en`hx=bpz(@c%>a0|3bVnA>F!wiBDZfzvQ;_wa?kR+w6xexWl1HDNoL3?Sbb{*18H7 z*67hQ&s(^bUkL8!$6x%jSKf=Cu$N_ggVA#zWu{ivpYQyMtsDbZQc z6)DtX;;UT|h3CuC()X_Jp%bdvo^%IjOi+3ouYZr!^ORN7kFr&l_Jo`AnC(S*!EzDc zFqrk}819w@_okJ~-)~FATAmSP=cx?72d1(DaGC5gPNl^lm<$6A$z%Zp*(FmgnK2=*4&ec^sN~revnGdi(9|r8s7evXf_0*@H@35(jUjwrq8Mq*0Ky$%?F}5zT;+XZ~ zzMKxBwLF*$7`nLi&)JIJfr&;HvTJeP~?n4TI6h7*J9LFdaC zYRg8T*OkXF4g}sVVJ`W4666QSeQ%h)jVy=eJ|Zn9_x$#;BHAfD>|ewUw}ABVM;ZvX zeig1x&EipM{tspI5t|VsW z{983+LGn7^pVDUe2~(tDg{k1yrSy19-%9YA@5=k4k+oFA$P7$TOx=~66a*z~R;GSetwS3h&5q|ey>|XR_&-qy zO7w}UVDsn@0)eWXj56F@nB1f*w~6&N>08$CZ^9?P%|Br*S*n z0VR)a*xGPm`pXMOul(nO3atp-vldywzUj0k?wkL0zm~ z9mHFzDX;M{cqQ9sI) z$OE7kA8jhTrrcN=I$YTJE`Ja7&T_h<;MfQvW16vgar2&dt}`k?^m_U4$544H=5jL1 zuSxp_bw9xu8Wq&${N~RZu5J+bVT1kTGmVn+QN!B~J+bIYNFa0xY*yyF`F;E#Iu*Ih z*@OM+Qso~{+oK%fL#$)FN0iEa^zjm)slgC@j)+X8G$kumkKn8C@@Sw6=y{dHsci`c z&!cnRqf!tH|2AUf3154ZknbM#2$1}7-dRf%bi+$TN6*^`sY7h5d8tK&(J;%aALm%Y z@UoDlRoo9X>*t$i9RoF&;Y3&R*(l&qyp(}Ou8I>bC*LTdZV3{p(=2=uIH3t01;rqV zF+|GcKQL^d(HrAKAfiuSTLdNa-vFabTkFyeT#~(S%?r}P{w{2}8(-;+? z^Tg`wPZCWI_b`_{RA#9J=z51_tHwtFw2-!LB5imkSHWpwb*hiFt!LAJt-;t*>~OHi z^Ry!=NJFcu@SAKwKl|iC5ulqO`O1jfqw&Ubiz6q!OiCRcL#ozJ+kQlaFpiD?b2zWR z%RE^fC*nI$iP<*@&?2oXV$Zb*OW`5!tYOz;Te24=YBhak+yc0U1WDT8dv%whZ(T)R+LWHM zgMERcKrp=_27n8-?ABfnV>e7vcFB&`%-jm(Ot^W|-J7Dg&(M$%O4T>#3D#Hf>6i4F;Pabn^( z%qBMpemnXmT~#5((;rd?VI^@zRp|xL-_sNX7C^l8!K%4&O_34o$rU3vo}`vRom)XS zW!5Lp>+oGJ`<0EQ?|+4Gw3{t88Kt||hqFV+g=GRBO-eA=Z4Rs&hCQzm_kn(K;>ZqC zQ{k()^8%4}9Mpp?(-Fw_C>^`m8UF<1X`E#*qhrt{ihGlfTH$9rZMbP`zqut05IiKx zI4qfa6!6a8lq$jd7~ajP-gz;8`sFwsS@H?j>gw_vQdc^Y@j(|NYGm~`MV(X0Oz9#` zIe#j{E0-YJpg_HPo;ef&)AWE_{3!u@eS6C3-4^}APKS%TSP_#ar`{$i9*V+6)EOsV zIaJl-Ea>=q^VTl~oZyBc9L@jB{_l7q5%`k(s0g|tH9dQ>CiyFZJ%{biGj+#7ca0NV z&|v24>dj=!WLs?t8lem=yj;P-99l;wB-Q`cU2o0Yfsb5#S)EN!J!n8_i7r#3uz_pN zRKnI2m%}b-r&qex%NyknmW5nL&*2-4U^_Pu2T1+aXG%aijjma2e?5{BhbM`>L#vLm zgAwTt3Fm18MM5}rn$4nL6qQ!&o>XB7K)Y=$23+@|;Q>Hc<-Y56b$;xwu5OhDbAsw* z_x3RSle0ZkCy8r^tdx|1*Gpv@Z@x|vk^aUv|6%tv?rgb@rOuDrBG7Rd5xjKuV;T@| z;(Z}`=St{JnSM=3*Py=2se8gk>$TFE5p8%)hlQM;Te9t*h;rR&8MGx>-#GIDZYhh6S)a8?4A zC}qTv?+lD6Y1^jvbU0b!aO{m35BtMw)d$rovF+`Jd063_-_~XLijD8fnKEeDw zDiwN(4)R%DxGBx(8@ji_u{p&_G(Wh3Ux+(x2{IhRwYBg``3r5axa z40x2dRpeD!-ek_6<+9z`s%=GP%r12ZrfdeDV1+s_%8a}W{prg09}Me{Pp{z^ zboel^Iesale-1U#Yb+bbK@)gU8s@47SCI;#=#!PAigj|tTkyn29a#qy)zj7W?6n~; z*I@g1YLH1V@uUv2#b4-;pocOOFwlUJ_8^Sj=m}c+ui?op>2iM5vL&&WsE|@8RiKrB z*52T7k568-xZHY`dn2?F@ynNf^kHyKqPZMR_HvTz2z+vjnBm9h1^$AINWRFGmzs)I zATZ$-ze_~*?0|=STz*|iZd@0ms&%-H?Gs5HeJncPvA=dguLxgE0B9Dua~M1&DgM?8 z&ys~UbVeCYRfUznOTZXT(t~%6Of=HnPfs0Vz6TX7gH7Ghn^t`n@@D>CvOY6r84~q2 zM^*!31Fdt*Nmqv^s$vnBcuPuj_#yb?sNK%>8qz9KAh z@yxq10k=U&D4hayB4S}e(2p`9Zt`8P&))INrFKo|i#ov#S2+i-S9I(fW)@uj1CM}P z_(t>+PNQRV@42MxS>nisDwtlAv{58QJfUJDV^*ANT2XHii)`TN99- zBfU$WvZNaK8sD0f=}}>|c7d=!ZV8RUUuK904D=J1BifriF|1_m?<_#1BpU>Q@@6vN*=yF)Qp# z)?DEZ!!x&tx<^p?{Qp|}bwQ5GDxXNC4CJ)Q2Mm)w^fzw&NOpEI*@tnIsBmQpt%5M4l0vT|u z0P}tZasKe&3FZoiYB1o0ejet}Tc=kN+iI(*O8Ct>mu6I{dM1e>63|frr@(83Fbj*_ zgA0SqHjDyZa9$?GJ;yI*`1>n$hIh_K=}dn!jTjYFZAoTy-!a>Rg|FTAju`16f)InG ztb<3IoaOct4+LA%v&_E8ELb0IE5ea16(E}X&e|`0K|9lp5ql2HMinOOABrKjw!c1Qph1r}wB*0-msWiGF2W4~MT*$Wpz&W)WG@(&UZ%W3|0nXIjLCos5D z+di^Fca!E#Tbdod@L?J!X66kCNrZGgUbB^rpEW(y3yykHH>fl)7)o~n^2tvb_Vc`sYp7inoed_#3dymj5Zb_yXW!17nZj(6VLa3AAl5! z7?ASni;uxCV=r|tEsXj`YSQ^L6SihR=b`pt)C$q)w20AJzT(iN!*k?n(45GeQUrUx zMPvo1&JfqQfWaB+`K7ui!|r9Sz|Z-P%NyUb2gA=&nc5o}mkr5It_?^xwYucr2`3j# zcJA#<`?7qv$=Q7BEh%sxqln}xhiydFuG+fm#RYOVp zM0)gjKaI0qYHUOFo1jVQ*G=pDOOQ6w*xL`I4MJ6_m*Et?c1=Wcj_-aMaFmHiYSC=q z)7glBG0d9)>$)AN0W?l{C>*tMzWNS3m%LkU{)M{yJOOBk&?rhV`GJl74yWrlCkfF1 z{({(E)bVdB92}*|G#@mrW%bAWmo{gfKOsPWB~U5kK)YCo+ws>Q|;6&grKy zm=x#g9WYg^hker!mpV>}j1%%QA1Dbo@>XkoxaEEG^6PPCX(luC&y;uz z1|u|fEu*vv0W2L$9S{dtOI<=Cw_DZXONxw0&}76d9B&JdPKrGsS5COW)36Qd_K?)dq)~9O=qe1M( zt>OLi9S5ZtypzuP@lQ&|@6omEdDB#4={*oH3Nxmk|Lm4)6mYhq(+cNL{je|K zJ1P&^n z!*c^pFY2(Etx(5iThO=(fU2oTvP~*>?861&uRDC8?}+J8ySmftT;0iYd8}VimC=XH z7ylhXnk8PNWzC8g_LDp2iPu$y3 z!9()HZ#Iw)JvXuDx%d3O)ZgehSClrPvnFq0hPqx>i|LUd0;5x{w@nV1-Xty0g!Tc6 zyMH9mX7~^H>oDiR5nZMhGfE3|A%VJHw!f}1Ayf66jXF$*kF1-G781;1tg$9$-L}Es zynmwhHwH}NH_ zRkf~{=JG5kc|EM@sl;xp>%}X7*qj0IGB2V^Z{6x$jnAwyy*oc6B```8-bWXSHJxy-t=>mCO}Hb<{>-Z5hw{0VpzR;N zhuf5CFK2)T0cc2X=3**w6`=^;hK8Nq-Lj`1&}#YDFWVZ4eED0Vf_UWCHIIcPH4K}Q$jGwacny@>*KX_V?0G0fFUPN2WS~m`?E&WCIj?jTB2^omRBKE8+VYZl6u}FrPYU~8EL=W)|8?LblIV~7dW}rY zUc%S4SGJhsQ66Ua6UK7b_yL(;PmT#eG-f-$Xj%_`;AU4TDz`5K{KhEFyMy>#oM1MqEiZI+wMkHhg^W4b1;+Mf`F z6VE|6KJ&H*CQZR*pLg;`$b53z^{oe9FQ^Y87+;+qd2i z3{c0ToM^pNjt+(vJ83M48iPoMTqiaOj}Agl6^jI49VbXto(c%&4~BTC<5XPbD6_%a z5MJ)YAFn@}oH07A{}Re~>pNbW(+NjK8dPJ5t-qfI^HN4l$h}txqa@BMk@Y-06uMw0 zcVZE|t4`eeJh!g`(qn|!MBqyRz0UG)? zyqBPn8hY(Xb3xZj!7a9@N10Y(cG1*MH`m}K43pCke`Oc(0vS$ghmG?xho)hQ3qBl+ zwsN@X=?PJypU+N_mRM)d)7=VAr-H7C-9 zqd1Wwt$|JpW*Vh$wga6)G<{4p&!I#XtAZa}%BZsi^|QwnijUiyy|Pc=uN`D}>1QwI z(cv{;e0q#gc%F_(u3YAO!q;QzEzZ2S2amU)D=Y~N-1cc~9;38KI`H7MbiBU0ob6K} zEu@U%r2826)Do*wwpn++gw^5F|7G^~hBtCL2#|^K^;*aw4H99$Mg9|)<*^z5S7Q*? zPj3VLj^2BEtT(55h&r?%XC>}@7GdU>V#Sayyt9Q9W@H#Hr-2s8M+>y8`2fob7pc={S= zf$=1I>ea?UrV<$)A$`hKE>I+Bg6__3hq!EJe{gj=P~yNyd4$jgA*gkMPRcwMM}@zL zFMtZjmSH1X;FMI5PW(GJBW;ku2n>5#Lu}8>Zr^S8!N(YMin21dq(2Yq7ps8a*d7Wo zP?Ew(wsWWewQ;H+wl!&eqv%$e@fnl(Lo-}kzWVr=&Yw%G#ep-o31r$2|RS|~Xi0c@ypi_D4-t=LmgSb9B`-8^olRX!cY(;qfXgS-bJP!1Oa5}On&OZ zP<#zxAfCMIZ{J{vpyTN}T9vlv?mm*2v zP-X5=W+BT2*~GWtmImQbc5-G1p?LcHV0yJFZUbkQgSL=z`sY{kQPM0lV!?lK$8=rmD_1_zEtMt4u2y0Im_t zR%Y|X_c^h`*ohOQaRcP=U0TOz_avcM$A;4tW(O0~`=-M6Y9r~yUpwodskF<(Y*Yri zlP%>Jbca0Qi9PV6{z}lNEas#I$d*_Vu3Tf_TV&OEWwmx%gPxh08rDJ3KB0YEsI>_8 ztqIzwUkBJl%*LyOBb0#Wn3N-`u+e5JqP(#r}^Vg zW~V&Sf%d@LVJdENl<9jvZEIT(z+d2YVO#c(!nAGt_6XO6Y!LNK9t=q7kKMG`M?2;e zfV0fA5{`o6%Wxlbemi-0!55jR`S}bi&qQrX_efQzcNvE~ayhUrFw@tUQmiMjd|bBl z6-yv@{UL#f(P5wNcg)Oz%p_BEBV51eY~ZD1;b|2&hs%j`f9}W)?WsQ5=LtPW3IY#+ zD&cao^Oj#C*jv%l&xPG5Y*pwJ5(-mPVk>KQm8;!xI2TbN9JG_9#Kda4*(LLYJs>#|i;@=}pThr=@ ztKnRx1*dD4Il-oNFEKth)&^PAK(WT@X})KDzMVdAqua94_hXxW-7}uI`Dsy?@DWb^ zT5y0i^VjQz+jSh65aH^x>1pm6tefH`);!G8cN#g`**k<5=&RNwGrXHtHv=r;$JBC* zqgk9D-H^N{pR(lecct_qF7h2*^*j5{eySYxY{{vq*zRJNVEZU>u^FFB?-P!dB26^fpLc--{)KF$KJw zignP<&p-BDNtS2)K}K8Ly1W-kl@~sr8d_i>sPe5bi(9OPcM$!+sM?p9qF=g}XU-8@ zymfa)OFmv@9KpF~whfmY)QO^wnwJSvjCQ$KZJ>#9`18<(5ylzN+Xww+jJyJlbqMcu z0Jae!Z52f{!MG_fkFd(s(MsKR1*ok4nr+F!`Jbi|N7z}|6_KAywj(B!@o;<|=&dc1 zv!ZHd{=y`M)k|GlFqt>%GsNX&c_;iPNHG&Xo!x3 z%9y2(GudEx76tTElwVl^6^sj~DE~MFSl=I4B*=ea^UF0H)EkQv+(!>#A1jv;yU>Oo z;s=e>kHb)IDXp%P>^aw>54E8$c-i<2ss*vQ^>sk1ka%DNJs2F9oal8QWlRBiBsS8L zW@b#XbKLiE<#>1cMkXX6@$jD`ak3aEX=Z;}__2KyKx<1nWQ0=Y!FDki8ECSNK|ozF zL$U(R%>_cN;3Otu2X$%;BU$w>=k9%SGCJ-;TBNXJd(82>16qTXm1gTwI7&-e1BHoL zFpntw`Q^{Ub2@!cq9uMuNcluWmseBcvH}_6AY<;y5@s)L^w&oi^(Kfhc>)PmnWi*e2Q@Gv2m~#&}li z4gBaChpO!QEjhxUjOlLl$jZTIBSp*(1kncl_WMK#^Ri11c54Os?=i6E%(PU+OWHzz z-HA+C4L{owiSrjMKmozrR`MZBT2@%Df)&TM^q`Hro@&?}5+0=J5>4%EQYv>z4~M#AzbWWq;pL&4zTa7dTKyfX2=gZ4av7F>diEe9h;NF#Dg z^WSg0<^jgd;&@K3*W9v%214&Urb8l||DOIN&~H7LG?|aaRSP>S3lHCO42im*xG^WD zo3gjnI2!w8J6TMf-mOdr;HqK`{!_TSV$K(zrU4c@xqAJWhaz`>_LhQaI=Xu??xNPT z-a4bJorhF}6@8a%){;Q)zKil6A8<-o!S-MKB%^OVn>M|Do6SFW?2ZpGXYBP=&{zGO z4%Z8<4jmiNQ~FTot^gI?1D)Iu)PPIZiDnO96ZBxJM^(i92KFD_$Jz91Q=($aKG)E3 zf$Hf)imcPT#s1Pos(OL@N#VGs$(PjPM??3obd7pu{2VX$QUVkXWXq>|M>6^B-z-l( zFz`aX3}tw;6Wn-b)DS~SD)-`lI#D>^_~uxmTD`-l^~9Z@j?%H(;TWHaeBq;mq)N6t z$(WP*wT3D$qF?qVTAtj&^<^&Z#ul?f719_e$+JvlICXq7K8>j3(7hV0L=bjpZ;{!G zrU^>RQjF&04oxFFo0SV<1M$^1wR0cmCLwj2P%jTy=1k8l1hO}wYX0DDlUME#Ffch6 z64}pdW1 zZFaefG~zaHYBuob7tnXCBq`QN-K$mqrY7?0Pms3ntQnbE3r^K49DhuxRish5>WZSY zYU^tui=PvNw~|+Cc;%~BI)SpWRzAutJGpU z^5ci|MR;W0Un!;F`d6!zTtLpTphlDj$XTc!wv0;g7cN-$c>y&}ydv-p$P=X9WMnOh zt`i1|bw^PoxA+}U0OMR5?QNdF+Fus-&a|ktr_oCb=wGz?^uxEEA9?QD;_+K6qh38) zBGT@~>;u7I9`dKb`3a+K#BKCCOzF~-Hof2fqF;8hUH^+~c~4uuZfE&}=ZhEP$A0`# ze9u@4oY(WSuvY%?y#DVPbHA>^9R2Sz4g+(YMX&3m%Y&cwD+5gme`BzS(Z#Q|9OY9P zx9#qw#U<(Y;i*9#$iLxN#OQXsrm$_y&dhF*6KZH2`uJ@Ljjbs=QEs9q{Y_#i z>$^dE1Z!6NO6`A&PZ zdJJf;h7*Ug_*?z)Co90aC9w2{=vvp{3GM$8`Yv~=y~&gG$2lMn#QpGw-Ezv%RaKUI zQl{$=KSKGUrmJ03x$1F%q9O9HCZqMqtmf~@89$v}$5n@8g?1EOwK%Qsh($ delta 11335 zcmXw9cOcaN8^6KbS?469>|ORq+4CF8s${Pd$|w%uvOag5(GZ<4lB{nivNE!{P!UD; z-XoiI_V^w8`O|$q@Aora&-1*V=lL{7P=Ah~#+8CI&jNulam59D>W8~OB#WwXkxd(X z@+>TV7rRTB#$}i+o1xhw^C=zerNwQHDORj^{U2THsuGivHxYxzH%g|mw5qs^ra#v0 zzJBxeS-*RVOF;l&!-lVD{UNR_r@R)R#=TKdkhBvt8^EYS*j*c0B^MUt3h5CA^;G}k zs<<3%APLNbbFEz`cDu_TGE|&nM^q*gdn(_{En~)?O{=^%oyJg}C1%=@B+d)wo1Tvf z^N|)M8IeF}I|6)YymyXfHC{RGcEzwlvkD{#GRPB}Ge-F7uN5Wc_UZ}&D~vgh;tk@_ znW@YQqZ}icLsT4(FEwM=8NS$XRp#7EoiPY-b8t{y53R!-Iuf#GnlJdazkJkD!`S3X zLNyN~yXLgI1O)e#g4rkE;_CE*_qm^m4%|IFk?FUUFOpx6<=%yLAFwcZ5iG&v(MHl% zw0MbsfD02?N=XyaJU zpL^y0u@p;`vU-uKk=`V+93b?wfvO5^kT|JKZld1&O2zI4uOUAydq2B^1M9>Up{JrO zh9+FnT>T=!6EFmGMlkXQwZjF16gW+Pte(5rK2%_+6=g;-$Sp6$aa(vLyfE{L{8=3c z5A<*ZZuHB|bds4+Np32HGUH454q3Gd&RS+oMuA@y3R27u<3s|{jCr^IC}1Qm$wT_U zx|-ixN#}&3MUNpO`oy3TdhM1!wSu_n;cpo&cQw_L@d%I<)cP`s`zpf)7TXOx=_ZNa zMLj)iV&(ezWSoqKGNH@iTR~RKg_8q>;Wb22vukFnkYQU5^Jmgf-Ui*LD1FhauCA%d zwVk)slAb^fyn?e?gM9Jx(-T~ZvYfm_i0+(%d*t?pKLUYaWbB0;r);F)z^e?d2G5Pv z)_o<#FE?9Q8BcI))AQ(8W4t+D)Qtvr^Kb^Y& zY<8ag>-#6K-14GWp7UgA2obcaB^E`T&J9u>=zYGP6CStL90A8T=I zo&wt2ANUQ7jO**5AMDjs8Kh~q5z?L_7T+0iGDi!7cX|b_S$h3_)H_X=q|-Z=4Ue&| zS8L#VV!maFNgDnwKYb4VDPM?yZA!mh@UTilAsDjnbS9$~c<8F{yc@~4MNKsQZmnTM zJ0XN9*V+?gFDYsR_d#T!Php>MW{9WX5*=&V&_9Prz0%Ho`yR!xjym<0u_HN$v5)+) ze~&MW$BAKuO!M>zo1iKDXKk6;}ly$YB+ zKjK9U^QgGVFn`4(RhN2(e!3`>ux1TS!v+w$2%UIC`alvP?rzh$?DsC1DZ4vARijPP zBO%3Vw=ds-cjsX*+Q8(;LW?pV4rBxD-afbxlripS{d~=3n9HFI1}4pus|FFE8?HA$ z_Lo#S)h{Tc8vTLj_|ZnnJ`+1e)j&OGSWh$wYNzKO&es%kcYKcYR{5eO=foTUoq#i< zinH3xY-BVxE)i?P?Zev~FwJkc`V7@sCp~c?q?`_{murdHf4#;ae8uVR6vxeZbm~|E92~P#*@^(Y_;^;R^P=_3Vj-luSwPU;rP2&8y zrg7#((ZNz(Vz6IhANqFc9_~Ia_DJj8yl^7&&*CVh;ey@8pMn zHTNXV%h`|zE(uZ_THkXJZIVl0Pr8*&Ih1(&782X18Na41p|{YHpWN6vf)_8fv(=cA z(u37R z{-e4!UsOFk=RYm*npQ3)wu)SpzJ%jLfOxCyVX&ay2uq)F3?1zvM;e_xqc~3+)=z(;=O~!jx)|u)PXA)U@ zd+TaO(_&8^jwetMmuvB$MDKD3Pr}mIoX?C6n)YBJvzr%s-uPL;^;$n5pp}p#P z-D7KI8Yzs&XFl`LmDKhV zGjzf!2`ckRLNe$dgvh7TMss@(sCW&<`UY<^bVK8uzP&w&T6*G%^nhz%^`3bTw0 zF4|o_wjj|Az>viBSRS+)jOR_O7!YPl9PTW`7hioO%&Loop%WnXgy5m;?4=OrI%99S zsy7+S)$e(Jf4q-0fG*(lZfxDq1gZYq9 zB-JkXDNahu(Ily1Q_BRd)$Z@*2C70q8v00pCE5)a0x0PWCT>Y+DBmcq~FDbA`XsdtCzvS3!Qy-U^{-xeC4wib$50PJJeWVb->N; z=3@oA72!3D>DRYY5(HhM$ z!eC;cq`zVls7nfmwc2ffl1yU*>2n8pJ>XvS1S##-dlRE`aX=(GZa{u$5t^8t1Tx5Px+;=L@WzQ$zfb^k!Q$tS~O;mIGN+Q+_*^yS$}n~SbYAl=V#JXwQo?P~KO%^k+W;LaMlOGiws-y?^oVk^148HJ&< z+2^E#|0xC80iUEv1eA_G5(c}qqyzmX%(N{SGLwC7p2ZnqP&#&v5S|Rsx5M% zHvPyMl~7YJT&g)D#k-}421~<=Me=vb9C5C1HD5EVyQHg2!(W0`kkhzeUVnXAkVmfd z_sD!5_IOUY`XBXgAJDGBnjXZdK0o0bzycS=55!xZg^ZPQaT~*l>0|0<_UdTirm0Sm zdm`4#d5>pTwJT7~8ruv`AH%<-WO%8&a3bZycvF$$kmr!>Pj7;&yfQwuIJAWAlyeRs zGs#JxMk=z8y`Xn>g1d%T`lHe@*yTMOrio=6OpB1&NZ&+7ErPcia6`ZM@_?$G*kJm8 z1}jFY?1xe&8(@?OsM3k-G1bJ_%egJNX7bXHj_~Jgg8>M{3)1^X^L91vV4`dldXEkJ zflO?SSY_!imsUlJ7a5-z>pw5*Lcx5w>{S}Wu8aq27%AyGa*7kU~J@*ig5A9_PKX(KUUX9NsT# z4w~HXOEvuilTI-0E)rrCF{uzzQ_e}n+tJY`*)0cq41DEw`%HrAK->~ z7cvrarijY>4Z4ksCr|Mmb;a4yK^6sWw}^)SRv~lK{?Tn7D0~~;2z{lqcT_uT?`GPr z1l?lmD5y*h4@1<4ojao5lU%H++d)N*>7@nL7r7tnM7(WNKvC*Hw-LHxAS~CC^qJH` zx`LqhBxQHx3VjxCW3D^|-637{b-^hVD;1dC3-ZU3GL`qAg>Ib6Qi-a9jNo987vs zaKK{N+J{Snnv#Z4$-HeaZ?{)Unb{)o->4#XBN8R66xw^-wjCnQaK4j_q1nS zU8)!-9Z|(3KawUXLN8c_=TI$UZIMzAj%{#UE-zTcKtht#D%sscG%U6cUu{dcD059x zMX3{(0LVC-YGTGhNz3@Z**%_`MK;Zvi{-qBEFW7m(mXY4_#XwEexS8#5641^s3u!R zc#NcKRSy<_pEEJO;mt(QEfy9QFM=3@=B9WzB)?VQLH$UGL8xaCzT*Si5U^ zVvygII+xSOuAeuEx@-w^;J`XUGDtkNtAGTnN5hl&!nYbD?Mel7mgAAJ!Qe?>(&r98 zx$cMlQbVQ^W67J9`_>C9Vdhd1(MDn47y0(2ouu$s#_k`HOJ7i%VM`ZL=W%|Bsq~ef zD_>O}N*YwNG$6(yQB&32tXFuTOEfh!>t9yv1Do7Q>zJ?eMOdKu0b{r3_Lb?Ca6rbV z>S*9tL_wA`3R`eyZN#!e_v;aRQeh#WLK4xdDUjcW?C|nZMx$wFt!Ym=9*^?CztXQN zC_I3cav~<`GY-VjLG9Dc5_nKkT{u}a02vMSQ8E00pn38!nwq6F3P=*GF;kdd?dx zli6QCjW7x8vg^qX2Qy=#zvzM_N#sJ(!B?hoN%#JS%qv_|HT&ff?~FVnSdroV+DF^0 zcGqKgB#J!QYp92hbfd;_Sdo_17FjfR(@qzOsEz)2ut3dh;B+Ta0%&HikO z{=r-6FkD)jKCgr@!JS9chu$>bY$Km!>Rf{i3Q@~XuG1R61ZRW{K|EpGW1v2J&6jYD zidV-ic8>8t5-Z8Qr>Jj+VE&C=nbAwNxsJ{$!;hD+xgTh4PyI2p?fH$3{a5#rl-On4 zL93c+%V?l!$ac#hFSIHNtTCr-~-99AtP~r;`Lctiu+L7NMRzqKToS>V?04Wkx&9R-_N zKRTD294M^Ihpc4r=D}lNYwRsJe*xl=^Y1g5i{c#g(bRd*Pk5~BGNnx3YKb=fD7{TD zEd`CVF~ruE47wvc$%dQ1g3qxZigH@#z8)!Y()51DF?;1ka2i9Lc26k4P5)4|NTJfp za^t9h(6e7Twm&9#6hzx(;xIkQ-F6cvLl@Um8C~6oqfl^qShv>HW(U^W+vJo!QcqX6v zetb>S$P+sIK^k}zHhqw-Fw?+#b7f-{t_9~ zSSIwv`y(TZF+yexd@F+*!=4w`f z83qUYsx0~=(6K!G*lzCk8M2|rN< z_EZR*}l~_O$kyvQI}piM_pxvmbq#pknf}b1%N3u@Om!Gp{jI}q=(FNg*DNJ zhM-*|{!MrMGRS+aU8_J5IPTfqap3tITP$b~!YhzAeu63Fh;bXxeyrQ}!_j`cpl2U3 z_>q8BX>#WcJX3neBwNBa%Udo-5Wu%d5?VjJN8oH?PA4-V)M1;~xLes;CGFKYN5ip_-G}1yr~TN_u3)5kp~7;{ zEF`RzON)5>-BgtQIo)SdQBuzYkW0BC;vf7ty?Pbys62nUCE6D-xk+y74YXcn3|WNDM&C?S zf8NQm@PDYZ6q|V`Nh2?WnpA79CIq zemj49nA@Rs(EYot6NHBPq?7Y+%~MF$?aNb9VfdW9e#||-HO`h8z;y|fmsY2C1?pJ9 z+t#*K!V$HnTfvNVVx5@U*<=t};U0g1X#Xy}^si^y=_!g%-?%h7s}@BYULQ(}Q#j3i zG_N#gf3#D@o&jO?c4MqoM0HMn=Tu4frLrtC_@nq*zzO*Egv@PMK*Zh$^}OORNoq;e z)QU&S_W>^65-Pjeh_%9%5D$VgD1)Rvx10aYzIVj^gvkiTKcQ5`+AlMNJ{-k)CEhI` zkxfoVqczUyYO2ANBHkyM6J&{l+T~n3Ms|1@zWr)H>pRFH%fyOW$3w-5k>A2L)jgy} z{c&4#B5ZOkiBLb+#Ww!(C8wvD2cUHlDw*(q)?DFf{H?|F3gvB(uT zLfT2#!N`?((i{u=#!#fw{Va_Pfds*M8%)55>}WIP(tBu;aR7l{EuDyP+n$^uWHB@e z@Z0<|r#*2M{DXsj&XB*9?Wp>8UCLt)vYyB2M@zyY+b1s{ng?7xz0Cg5S6zep_n3_& zT`f*k@Sso}a{5%%7<~&vV*>T|X7Aejc=KPvci0&n`S-akq)3H4q2qpFR5x;fMn?LwzAUP+e#gb z6=HCKG=A}m?wHd{RVbJWXf}_so*93XZjXCYC}>k(wY%OFqr1Jx(IHivY#vB3@x$Bu zm1_B4Sl1x-kiu~4ZK005P5eReWj}5JceHVOf@1Fy13BJ7-OK`(uUKyPZV)~TF`SH$ zDFc_9FU(Th$MFpOD4%ngyxJJ`A(cJyOw4?4U8;q>vCVDcXN^(te9KASR*xn%a?{k} z2>+ zrfdeGRLd_Fr%}lAUE+Kucad6~r=HQ3^ZLM&^2L~Zcxo74Ll|0V;N2D|SAf%S@EbP8@DsBaTkdvE;SBS(Widj3IJb*UU0f#L(70sSbK!lgl*2FE9d}{D#5t~ z!S>I#k_IlVk2!Fl$m-NpTa?KTITmyUT-rE~+UOrsnsytP!0oIx^$JH=BS^w~OK1|o{$LI&g%ABZC+UjVdl`w%;x49_q#k9!j4N#WnUlXV z={}%O2JJKN&Rqe{M$o^85fJ6y`NVBXx>fI8@N!2h6un~zN%XX*G*8oLgAc_g8Vcs; zQ#gp~^!WyB()xVY)8_(qSo#k~xxQbS_nwJ_h>@nF`JB?TxFY09j8#=SP_KUsHVcGE zimH1Iy#}y|%(sl{#uhdjWA@;NCn2XN&Ri@6Si*?EucU65z0A9w4;iJ(29@xO(-kpe zF04(I?oUQetbhzP5Ex6?kD$;Z^i2D3q=hPv5j}>fL!{y8hj36K!T!Cz_G5blCYZo+ zkNJ6Xy<9|q1A zZHbOVr{qXiMeG@iGw83NH;zhYk!u@CYYz~W#GoVFpYkHTbR0SPx2*=lpyxl2-+Lc$cdynQmO8;>rKF9kLyThMpN)Nl&}0< zpj)GBEaRe9SDdtO?${y z2A`Sc?y_uS&=ypR^p19T{^aaVRQ&EwW-YpU4QuAajKR&V=l*l}L^n9(6GYE#gLUJf1wK&t* zB=zdYtg`l+)z*ZBrP81D$;8s*0HBpgu(;|yB?WmMBIK~Uuuv$h0^v+nQ{BT(?p}Rf zkr3sX`Bj2;X-HNv;*o0d$-G}M2k<$5^QZbitDi14U*dhE}`Zv-dLp`fZeI1bR{laPF~DIXFu2^Om? zQ=ggx^Z*ZChOi$ku!y(#PJIia-vJZf7y4#eFP#r%XSWvh5Q!Ta<)=z~+ z=#1Q2I%#zU^;#+01<`+S&hsCtNOcSGd+{;auW(|x^UdFJvr`T_@cNZ5|Ij`Us2XDp zU6LbTQ|H~2ouJ-gaVYF6@tX+T2Z~D1h^<4A=jU5h)7&1g@Ehzab(?DM%QlUXfd5J| z=2@epwAn#R;L2c}C}lv<-pEItUvSda>RFi_cl|T>IK9|gMvFGw(be`$tiC;R2^R9G zyO3&_!k_C6|NaNJeNP$0*Mrt|NxDiGT;L(_;5tSDJ25YX)5tboyB&gF7#4>+7fbvkU@z6E`nkR3QHKlzU&ov8 zSH_)+U`k6#TH)t(RlwW6yMH9dL&Gucf(=CALsKppU5FTie94xdv%RWNBJQAk=>zLR z9nCri$?Sbi614|T8mv=mv3s(+7SxNU^sBe=&jq-d#%a+9f3i5&E*F8tKH9lL59dU; z>wlQ-B-nL5CtX6%{R!{GeZ_wk3>=oM$J=nMvAFDOw+Nh4Qd88iIOmOl{Tl>NNFB_NIK(Q4SBGTK_fuNCBo}YaUT_ z0xCV0PvF8*R(AcRAs#g<@rqX+W-BT@XQ7vlShmk%7^ig_UxugjT}eUOfW#wm`J{h` z6Pr#_55+F|ZouFLmnR*6V8f+1`^c2#5l>gD`;)YjVYXn7tn*2$!5ef@b>|}IrWrSx z$$QK&jq}CuOT*K<-yeTNaaJvkQ`Y3S=edJ3Yg9Mre5=_6PA|BXMd1)R&BA8jWT81< zDb`+&uHE5T)$^wwag~_BnFF_8M1KeC$8B5_5VwE4 z_hEnU4oK})YJGQC&R<>uJDz=LR0t`WaU}xnrBIv%9{BXj^7FORns|Hucw&Laoa;cY zw@Ul27A%S&ak=`PBJ~F5;M3N|l?90fgyKnj?T|!}X>3yQF5hZCPv~F{%Aa}`l$aoV zyep;*$7g6Lq}A0{=FNFlLogCN$Y;Z_Tp!jpC5@)3DVK0UQX4@pgGX`0_t0&xWg|}G zW})Z!`iyfuMZZ+WozmU1uJErOZTt!ucX0{I`gi_R2hnKg1ov5 zKVx^qoAPl&s98w)r%v@x8FT@{)u-14yrQ%}{H0u=N*dBASIrJ5VIzHZ3pKcL)OJq3 zXbpl8f%K%Dt%a@!c5E-obMT*9Cx@M)L9JC@#L{Py-aMUU)E4+CqKFSzqe0);9UUoJ zx@NJOU!cDAoSd_AzPWX_Tp351EKeY50v=1`s=8>J}xThnmAh3vu6VeNBgJHB$gUIG40sZ zk}Z0$;})VS!4uZYSt^NNx}4G{ulgE!-?&-bxQmCFI{S2E^<` zvg-Pg=pg*9NKE64fqixVjYu3~2_%=hu^M-ZCmBjc4|w~%YwBru+2=&FdHWtx=}K*b zn*Uaoh8PNMdGz-iG2-p>lzK6G(bks3jn2JQyl~aY*8{)`sCt<8&l!z^eldziKxsLV zfBj{#f73n3{E3tXXwoBgIko~L~mg}YTQC5h#aKG6SR zU4ZNNzxsVLC4*d0>cIz;?n{-4B@!>b<1R{#|=JgDgIw_fSxFQpzd1|!vT zb*G_A4A8nj*^-L6pF>Xk{L}Ix)*6v?QG;O(()2Wa!SC0Wr^^ugWE#%6;1Bqo#>kGX zy$H-jiLN20lZ_Qr4sHhr;~hwK^E+Ay-NtwGs=rw%SOzG{b~_$>{JJ}{G;IadLS0Ht zZ!w(Uj{jtP>4>L0<#sSFWbb`yHu4xe)hyGSk}=8WSMP%kMyVjB zo=E7J&AMG)#K$+h&#C?3mxV2T_ZXu#_&8w(;Z^PatAmEhkUfyKmIcI1^7aT=U<|Mc zJ{<&6w#>~dX)8H<8u;L$?BIbU57|~(1 zAtP3m)#_g6s;S5^UfcH72vTxSKpVfao;}GIIPM2WKpIQC1H{;OS8+?y#z_ywl%O zjQ*3|K*g}`T^@u60yzN6L;F$K^x|UE&(#Jwz0j2K0<|mO&@RDy4sns z99M*H?CFynrM4O~TClD&dlmFomP};nG9q8m#g_Pb?hQHWA@6>GxAy54fKsB)Ikg*@ zPaUcqrLw2b%x4xZ<0hR?vkkFoR_#Bl$j`Mz#|ojNR21Lv?jfc9J%+Jhjtb|Ro9#!- zfS@u`U8$N!XPm>SG?`k8<2_2^b%~rlP`X7r*I=9elGAT~h?xxv$3L~{#e{p5#rEDy zUH+-?e-VQu&c7HI&nG)a$?uR$mqGdZ8D(6oRae9QucIzS^R|c0fj7AUa&S6%C9`fO zcXIBppn~~2pI-@l0f8V7ju-8lCi72*5&3gM+QZLlO2DN?`ipjv2@=#gBf#Si7~dLrFdO=z+^f$?)U9wMXyh#mE(|l`lOiheZ0|lYjCN zGe`L-vz_k1Cbd{qdUl2-+WVjynu(j^uy;vdz6AOI%5Q3d2f;7a=-Ep>wvRq-aS0WE S3CDvde|lGq{wdHxhyD*hr~`EX diff --git a/docs/articles/EDA_files/figure-html/unnamed-chunk-19-2.png b/docs/articles/EDA_files/figure-html/unnamed-chunk-19-2.png index 54445198da115e9dc019dda058468a396d3c4952..0c5ab54a44edaf7a4cfc29c920128e31266f2f80 100644 GIT binary patch delta 7352 zcmb7pd03Ozws%^N*H#3M#|jEU+S^k(EizOLLoi@VdpI6sP#|FtBBD|fAR>l97+xwB z+9F^}1tko&iaNZ`;zSA(dSP8 z`M|~z691*hJ;#|mcI2jW;fw!#mh=2!$~(Tu@3M2=y#KFy*3I|vn}7PtKR*AQgaI>m zRJu!V|Fwd81EXsTVhP>3$qF5~l@3(NUzJODHkv!P?34pPXEDkDa8(1Ho?{k#GB4E8 zizT8?RA1Jm_W#TlfnX5H`KvlLuT9=Vlnx>G{RgbRa*6Iz`D#zPYzPnOCmg|!!FxK zGbpNu{~Y%Qy`~%xu9!K0+t+qu^Ii5vxipU&L+z3JB03t)u|WZ<#ru3CSW80C3e$UE zRJM-aQf)pLUg5^sxnTle#IF(Yb*twPT8dd-A=_%TyH;$wD@@eO0Sp zq$n|Pg6gUtdNZpv>tgMkk1POmpW71Mb${{oEnc#+Weag3MSP&f^*9>P(lRBbAf(3(7pg;P62ty7{=*Vs?qg2C!H-|K*BfX+OB zQy!KTKe@6g>3cUFVdA{r!XE@naH0;ib}iO4MmZc3W8L_P2nK`Qdv}jxS0|zWl~Yvx zlQ{AAXz_KY1ciQGn>69So@W> zqoY{2pI2v_PwpfYPmV!XTP8R^^P*bFL!nF@A3DF8LiD`~KXB}J- z$*aM5eTaWOox2q>MV&GuZsu4il9FSJ@EtREm3(Q7RND~MiFSuLg<2Va`%LQ?EDR2y z^$5Y#c8ZPbY^S-NPClt@6?%A*^42bXOS7Phq=zwc*m zT^X1QoM~29OIt@Z7!ltmVGFQ@`w9dS2jOk7S&QgKYdL1uGZ4>c-au zv+6p-bxFkb2&=9?uITYpeVJIQNYy)oULh7CSeAL&MtvUI2eVZtCp}zs#GO~!2pOrT zDgQHcfd4yo8vf1kUbUjGli)bLI4Q+$KFcf-k4aY9AXYBo4AFNUsJEpxR9D93wfa1` zsX?(zRw-z!B1MG$gm58A5S`eU*TzGcw*$B=$GOd0AZ>FEMR-vSmPot7y<5+8HshD~ ztO#iy%*($V>VSdcZsl33*JkjAlFDFIZCf(2C$Q?Uj1kbf@h#Wda&wzd2#HwfE|G`i zHx@SR->UU&Xf*el+qYH0IU+>EXN zU@meCBHMXRcZTo?z?@0^jnr`Byv?la!LjreG$*0Dm@&Ucz)0}H-VjD7$-Tj7@VS?eA_uAEB1{`?U_x;S>mKHTA zy_0yQ6^Lm13JS+bhZR$9Ck5%4lY}^VCeNw!+TlD69qqEa?>bTG0V>cD)O1X5Fo|ZG z_yoZ#lzuO@^J^lg1~$k=A45QhJDlgurzWZR|6CX}5es{9NBJJ~e>xc$00?xcKNin7 zH|Zi1(?GY|KCG_dOd z=9|(XFh_pQs*qVt0JRpf)zV?)A!ys&(7vdPk&`Vk>+XIwc50*8_|^?k|NZra4;|9F zoYIgB&$Qa#A~1;e2L?8IQo25>H!?7}idM~K4bgh~r2}ST_km$*!g`}WlwG@^3=vwI zwIm~H$;vfqb##XKNM2;tn4C}WSkQXdgH1SQQmV4p@zlai_Vah~vZY>h6>Swmdswz) z1?5zcw9T@RB^s8d0N7Z#d%wX_Xa5FWOIBvY(kx4L;7rLv$t<8Q@daKz<|lY)pXl-9 z0DHBgK^~Eb>wT7s#g0CxKQ@G{D;Z*%GG;@>-x1f&v6azmWs9`lvMM4nSj@vqP|5|5 zVHanJJCAMz8yKM!wOsDM#Hl8aZ!iLa6_&D*=)-3CqgfA-S!#BX!+>Mu+U3>VN~Kj)Z(M3v=88~S?dysHHWPftrl)8MR+CT=Byg~W!LAt_oYvzniDkr+E2$~O zE;||9v5fem?mncTt)W)oq6@HImXp^xWgo`9mZVHdKJ}_xw=>O6BnCv2hz4Z)G$;8U;rz$WOgg6ZywzDR{dP6 zmOGv9qfB3%mL==O6pZzn(V#u57D-QP`9=M&mLy@jKW9FjNl7{z`q5%MvnSTyF)E`U z!u!Et*0R2le8yzB4l0RZUF77V%^%DoyN#U?_T)MD%x+|ZOjYJltG=9|8(3Q$OrTYl z1{Xy!E(4GrHTCH(Y0TjQ_~g#rW3*b~Pf&Cguv=pu+v+=>r14^FY<+~ji-}poP@c}7 zdSp!1xTcj1M?O~Q{;uS+O;0on;P1eeg3N1rw-5QZXKByt7O%w1Aja1y$ybysQuQ83 z7R@wL_Gc*ZgbEirPolOvEio%AVC!CgAfU6OBQqUxg2dv^3%aF^j2NW{-ug6DDaa;W zz0PMc+I$kcqPN#evM!M?4dWnp;%G*t&m`N%G!NG6JiFAlE=GC~8`Q;p+bbG&!jXWl zGpDvf9BcVj3s8MRk1z(;2{&}k_-&Cv`c|$U9T|*zYN}nIOqm}nLILYLh-S`Yur4k^ zH$Hj!Pf+@<(fKKtB(hQbcK7ZU|IR0TTl5^gGJJ2=(|#}8C?{G??hnse$z^MuU>C8(7ki~k2l0~I(sY^^tEZs}U?U%xn{`Gn zsTL91vnW6s;k*xuxm`a&IjSCW+q-~7U7bbDCSB)n-6aQ!Ge)?KXk{g?4%vZhQInOW zh*KT@Y3Kw_O34{WY4_?OTWvm1-3rf0viEF2s{f948zfd>C{$O$$SMNJo4gi32tV&@#_(sE z)~?=VtA3nV*e!=1gr}};V9QD1v$|%dO?P(v$s=4@1HRY{YCLM_z1Z*R8l9AuoNJBfj3cjpNc&+Qgj?kq2vT+@riog=in zp!Tcl#RWYlIqudv6Rt>igjl5)a4)}IUs&MHS)NzV^ADXx0@n}A8=noA6~Y}uCr&{m zEoqQ6!F>{;)){!x#Cu!>sknlEttT?ER`l^`zCKfS z-5`?$iL5UyS7x^@h!H>svyV5Fh|R>Sdtzu+G|#XpfN=g#b3bj9f-QuquJDY_HBXY{ z7Koxbj^*kbeYg-rVJ!#tIKpKAny?*9O(f1q*TDec$PdJ|W$6Py@LfbF8L9FbLrmeO zw4}M%7N)vD(qo4cnkjaYEt&+XHAxQ(tj7-n_7Eq?|7HA59!}H4&ZIZ)P@Ak%*JFms zUnFoZAvawK#_XEb~?{no8Xr5CPaigdd**1qEx^O9rY6pr?>0y1&EaLE9Z@}0~p zZ~&D|U*ud8aN{%{kZXqSz^buQx*<5pk><5Fw+O(jeu{C!wz;Q=`%sLYB z*Z53~5(8D}X|AZNq0|D$y6U}ty-`6k9Aqctl_5%g8E|?~zxn7rsL#&k$gbMFZv<;T z*LwhT1##cWTyh%{*ws%oRgMLU*V8k9*;`GHP`}qkqG$ zr!*%C_0iGQw75l*e}Ky}=myc%TR;GT>-$IwO8|gi~W{A^-o^rc|@I26Ade z=Bu^Ef`GD0?ab`3!Sv~QH!ZTKT6&|-C9qt^Mu5oK^5$s{`Q^rMCbYj8inqX z{fNUTwMf~VB5R4#JeJ!W(o7qwWhk(^42bBO>~99^_-_Nj%EsdLRWqE%N|rF!V5?~I zW9#m-SG~clkSdy}M(Fl8h@AdBH*7B~o86#95Cu$2YzV4xp)zdBD>Ac=KP6nzfgg-^ zFAAoMrH|}l%?+Jti6L|fekjIbc{-@#69#WFY%shJDL=JWQCGK#zkVota0OT(Rzq@T@N>q^?pB`fa47ztMj$#Le#K`CD}fK2aH}K-=b%qzv|z!+gSR z@rtCUx^+1~FBMf)5Irvv(zS)soJM~`L6!b_cYj;6?oEDTb4>J3wb*SZgWVcU$I&hM z3yT)m6!n49jw{iJfoz`f|p0yYUAC_ME9>i62EBV_;qwX^PQ3ZV`* z@a@e~B7W-AMR?0o{OSN-^qF^N)?t3^sqG&hdahXWqJV9SyvQBA)j~ny@<)3 z$2`aM=Rpp0YpwUcxmrOsj5>v~vMPqDdXr_3j?Jpi)dxq+x#t_=V%O5ZAQCq4qCR<) zh3>^*FIe&q5`LLxNRMDq+Fw?m*hkQsL-HI3?K!ykqkP#~Yd!eu(I7 z19InBtAn5`&aIQ|lK_MzP^#iCK#VW?g+Us8x_oclEMBOhg@~Ozx5j)6+cHSvfP~Nt z@q(ilX|&MD)9a+CbTGmpJ+xFg%RbYuhWr}QNt-;MSmjwojk8x@0^kRTj5iQxwdVD}_9|<7`9*HE5N$tbuN$ZS$2WbStm>Q3 zv}%}b@&j{`a&!ebGC@}nPR?Kla$1_a$o9pCAw;9WZkDn+G~zfX{iF3<^;Dlpu3}D8 zH_vbKqLPD&SC+|>kDkv|*lPWhl+paT@R@jMTUY1j-9Ufa$*~F=zb*dC!CqPKTpA(v zCc*VoCRvMBK4RG?kMz^<)I7liDWckN@-ELWy8Fq*FTv@NX_4LilZ8B`xHO`rn?d~T zl~W~0`*8$|@t8K!dvJ^VpAh-Qs@;=GV?um+svNtrmXjo%sz?EzUYRMpcXXli$ul4g zTWM1?O^Jr6vonhgYFXEgv{Ui9#y49h?^L9??o<~f^Z1dhIyrP$ecFp2 zA003J)n$~Gmj^2C`98q5(#d@QNF+QqxXq^Dz9<1>Fj=e!fivWYrRj}MS3>K?-0WD3 zD?F*ML}Q&KIbtFXqSByNZD-(DCuUrz;AatC(lZnN(`ru}1-Zvzc$Qg$Xb9O{f``9+ZcyRg-zD zn1I$dZ-xhu9Il%A`l*I44&b+X<50ew;OhzlA|E7)05)l-2t3ewOmT{1;O3kjECyik{&o940CMR zzS|KC4@)Mn$qsg`%xV%zE@o}G=W4QNL%5^R&sQ49xXCZ7ns1-J3!b`KW&^0CB*4f z-MUfgAd61w_(}kr*^J$t7~dbJie7`!?MH5;45GOHZI>D6A&b-xpM!>z8XgdrO_cxS zIyN;MzV3BSdyTT z%lG%mTNRYP3}2RN3~d7R12i8)=>qz7W&QKNqxs*E)R{Ey&S+puel?i&M$?A4--519UGpRMs`XbZV)mG}UKG5$Niwu=u)jc}(|gP?MPoJhx3Ss`qYvTqCou#D1MK{(NqxVm&5 zevxzmd(OCK2>J2uk{&0jAq4-{*=$~UgNK`0y%V>skz4VP?>viN-_=FnGC91p37tZM140YLVjXCa2sp+k-D{mHi?DFgS{^Qi>qT3e! zMOzmpIz&;U#m3O{f`JdL1TT8k#~U&CiW1j%xQhdg^=_GNQ=@2C!@C3w<{ESAfw@Cv z348d$Z22wQv%T1J;tyyPs0@b`JQJ#t#6_nQmowhTd*vB{_P_=ANTtSiw@ioDDW96M zSNLb)}=nF5lk@YB8EZ~1r;Wi*LU_tIwEzy#Llnn=IpRaw#;W4}bdm5diL*ekQ) z<4F%$oWv(=qxBXCH4OIl#WP=g7Q9QZxf5ALy+sl}`>kN#OoKV}UV~!Gd`k6B(AWjS z?KtYogY@rL>%&t|n~<2R-%qa8SvpXNpESPgvU(d@e?Zm4?R=LfrLB}{1HUt0`hUUv I{Nm030>X3wJpcdz delta 7350 zcma)hd0dls)^9AMycL1YSOwWKzP%&Ui-46Pn~+*-9ZC@pNFXdBqM$*DfME%QhiZkk zvb+`r*{g^^7Q$lKNx*0*vQ2>}>h_3GC1CRHGF7eOqciWeRggE%Orjs&xzmwh z6RMhOVcbttK~Or3bW0gqmhdX;$ek;;(vdJ8Zze=EEhbyXmhVaa*<82 zGHY?mb}Xr?vpCm(b9zzsOksb$y|TN?;kXTax2j+$nIPH`+}#HRBKWR;u(W>I0b@!_ zHX3>0J@aMyCV^E$ohkwu6-KmYCE))$l()kV_y9eG#h1APP{9j*dCg%qwg z1uI6OYWm3uPw4L44im2r;-V$^Y9N# zy&RURoBZQ(wcE#`dB`z~q@iy0>L`IRTC%nL*E5DLcwGpd=#b$@wlp2*MJJ-9)FNi2 zP2%$(<-dw;;3mabl>&VN96*=fG72kit|O7xo|#BHI-EpL#l3m!t&DcFS7}$OQKe<- z=O1P(*p;%}sA)(3wUItl=}M2D){Wo4KPiI_!a~2y(bveaB)t@7PCQHbllT|$l8IZR z!ma^37@Y*MD%*CwBT+3f3kQeI7T#2d50Rcj8$?Rp(jFYtn(+}Zqiw(DOA<-`44WE~ z-Q2zyD_V|{4bd$9h4d|4XlE8Ze~X+Zmx%@I@_PqOA<+w7d$2~1yngx}^nw>jr{#Vg z*h`UndpR=aUIktOUJa85{C2Qq&%?^nT*h3MH~~Iq-_ejS@RhL9dYKrMA6Jj|2{nq4 zdWoUo*k$*J#s`bcPmM}?$j`F{YAmbMxuK|>t!Ql}uWg&UvBXC~9>7iir|gFQExnhN z>LSQ9yJz{*KXs#IRRobG#`>^b{FkEedGP{|{B7PEhd>`>2yXayZjR`?L==34Km?rI zFR;HlqfLpwn7W}wx1(hBaIU`)BPt~*$#R*A5GxV*OHThIDjO(Aq;j-@YZNuYo4k?P zrevBzO+(J6z#k?}>^2H1EH66FsCehaTNoa6-8!>BG<|pQ1R8Rsobd;dk2V@`*45II zyyY*%i*N-^C*iYAs@N4Sgr}%X>7Z`PuO=WW5M7M;FcLOzcvByCUv8UbIJY=gl0EYx zYj)fnuD3Q{La%iIYV7DiKbLwuMTr9u;w8%Rc*p-9;e!UE+v@M z`_0+EC+*RmKu562IEVY~#OhG~lkt!M-VO<-&~Vf;m(HP9SYZ>d<}{qs(NcE3I?Xmk z&$(5Q6XZYU;|6W~%IReoSG-D4@3|=p`SV`e->IMyXIFL;c_c<4=@%PTEudJ#z57G8 z-_jp!-CL9$N_m&YEVMwj4gdJB*G^Z-9hVGeq^}lbvkxx#{h>=g$}87!@~k4|*9~Rw zzr8*(BDw~D*PhJ0-G(<5G&65D+%nR#54#fT>MCGCsxXo!D7icZz2JZT0u#p?Hl?>e zK!WT=AnMQ|XxAz-B`;3l3l~s1baj1Oo$6~+G;93wqvbuYIkkccVO%T7v)L;w6(JxHG}clb2ci+Reg2hB;glFB>8q~?gn*6*Ezh$*$Baf?1~7Y58t--W0+hQT5_ zzx~P|7FlVbs%FFrswdn@3#YdG>pDyn;ZsP-a`@PkLuvxKa|$#H?bA-A+Z3|V*?(}| z^!>xDOMw#F6h`+{;N|x5%f%TqT4~Cfwz<4Nv+#@fM|gyG-eDq9F(2&TSq1g#ObXBx zN}}8NVNevo(>(Yce9iNlDF;7GmL#tEm|>_32p&00>_wfLnMC|s?EJq&r}_1s=zqDb zkSQ3`f4gEzEwKMI!6^STD1;;w7eLg73)1))d1qgVhI#$B_Y%~d%#~*Nw+vO6g-{;9 zEojt(Eolq>UJu!c*YhZ;m>0iu49jO%so1VJ%A;t|gpMLG$G56y3{9LINGT26#mm=W zFMnca?;E@W%1q0398_ICQrN7%QkyNJbEkhcOw3F|U zGz0lDd)9h}b~w^J{K$$ACGNa++M`1&E-7}k47VoTl}0mN&s@yXqwNqUSBs9}AAudC z1o>RZwi6TY!L$(jv>PV~0#Fq3-_EDS!M6aru2(=}FY=&%<6y&qp<08aE1jF?8ZX3I zr9SEXpuVc_$$qFXe+iUr07~#CKZ{OvLqXC7LAEYA%s7Tem7jWgW}!a+h|W0P*UsqgQL$ zzSNPaUE%72KeOHb;4;wGJzUi5f3`E)>1_;LW0X4dR$qieTU+Z_Ee)iCQ(b9u{l|h( z>WI8U?N+fqavFSe=2aZj3?i29BRU~yj=f4(Fs=%Qr?)flsdFa`6ca%c;9UCdD}Pvu z=3t_!Dq9 zXoCQ;O{;IatiswiT}AMzeN-O)H2GX3Z_Z|<(IXLZ0-yvDb|^rrfQS6MM<(KW&$RC^ zC9h}5&Sw(nhAXTabzVt}!LIKtSS#5thDYafvPGeFAmrnFw@rV^aR(LIN?d9 zyW`?@do_XNmq)1>WVl@n!Ej~vJIOOEQpwUMk%b=v+kLp#wk{%sGE3t4QhsTh8lE23 zy&$~Vn>#()Vx5UoNi(5R$&jgp4OcbW(zmny_4m_W)AI<6OX7cuXY9)YERp`jNOW;7 z&44Crg_}%}p&n93^K^1kArRO&!WNV=~&?a-H?#Wa80-A;D% zg&0#F3bx{#eNx6pV0h@!^mR64I1so*gJQO>{TK3T%;FgspUr&>TlUCZgcR{!Vf;*1 z`18=XK^``Be&hAa=HL~yt88ad#i16Au9ke$4N{nHuegf5_S>Njgzv~>MaYN|{m(AB z%+}jfFL-{)1`2}8$*a~ol5NAcvFr! zMO032ym?1noF0%)0M0jxZ=NA(jt#A~_HA?u>4KKYGxO+eojvK4SFbl5InS?+<>IKC zhOB6F5Z5vBwbd4(A)MK_B=`}{{7WEO)Z}zQl_daI`z_eciY{oe7n9#i1W=+YdKg13 zFD+v-(-K)a0Ih_1w$E3ZqescTy&q_qGjz<=gz zL_?L97((7b`Ld74n<1S17NG-g1DF=Eyj?Y4kD(fikhQaW)9r~$DcmG}M4H8o=IapC zmY_lfvy}m7h=&O4Js8VRz!A4)A~n(rR~|TE2r4}A_}U?RxB9lHWP-V}eo`eO4IXvK za#|=O@rh%r--&DCR?J45(kX+N7x1S@dZQP;(vB)+s2?Bh znN+dF>DbfCjCv7nbk$A{RTBsPejJ!e+xxpLJ~OZv)bLWql6rdO>iH*Le3D_c><*kl zs}!$_XT_#)F(E0bbd5flx_mqjM9~R6z#L2YvK5x{H8%AUX(O9`BW*d=gOL)bZ`A+y zX~qq4j@UnMEQJq0C?<%S#pjvT_!5#cxDb)<8fHd-WJXc=6zi;!u?MWxN^FbjYiS7P zE=~0(e-IY~lRnv`<)jKu-V&D?nIrGO^s5}Ap-3>awfG-SYv!S`T&d$dx1}b4~@fSHX@PhY^tKbxqoUICmIoX-mm2r?sL&1tqN` z)b*$qob~DJwiy7hhGhfj*7Z|XZeiJuzy966V!P{1*}%wMKu@%6obv;UtV~D76$I&UnT0;h|`^max=A4_= z4t-H6yY*lI+?HMpM$fS9;N ztq`@Dl%4EUa++-%z@4cM;L5090}ZQbC?AL`DLTEhvf`wm~0Tw!@`)w2+a zB>7|;(qBf}O5+Pc17;dkml)enyW9h?NH+z#)_q+<`7(O}tzfXdcW+vo2U-ei4JN%y zy+yRD+Zx}H&dR2KNI}VvP=zI-9gh>#tF@>^e0;WTdFT#S-z8Bq22_QBwh`A|=}n=2 zK|RhACZX>;2h=A0{3yS#DjbqL?a4Z8-O+ZKhYhGM)im>Z9v$Wc>*1((4EfJ71R0KMgbvrYts!w5G9e#u$uF~eXPZ_^ zvh7bpWEoPdymI|s-PR0@^Eag~%xpZw*YG(Y`aU;LA(0efCCJJLuxXTfkG;kv@1ij{ zzez7nPCtN{Mjv;jJ6Ef|idHN4A5$ko@@L|D*n^lho{@|3V#b~&DJGMvuo}6zZ*yud z0udpaTt61{*Ck193&#Al)U(~aTdym6rhY`!qm7r7%9TD-x20;g=I2A;l5ssj%5$~P zb_m9rQBL}4w-g}zmh5)5p`KNUrwb>X+#+1701(vaf>a66;T8C~&=$r5HL+vi!iE}tXJ=ao>Fa29mtY7Cpor!it#@Yc zLtYq^ixW~)*Tk+DsLfN>VkW$U$^#{+UlZ_e5H}S?17jn}KMGYRo`0O<&)WGAU}tAd5)*fqLWS`$PF1jPu0y znaw*}1vw(+I?T(cr`8jUi_3AT6N~4AcldYkJ8z-L;MCEANaI7`5Q3e3tH6Fai)-T| z4)V~8bjUI+V#{lJb0PYoJ6uOIX9E$JW{E*H#h6*NzFqYwPZD1#R^v171&#>fzX;j= zRV;v)sU8G1MXt2%chpARiBEtWbS-|G9UgpXXPT+2FTaB~E|FGcoZ?W$8)O@o@8-%W9v0!p_YnW*EV)5eYu z13M!c?HnYC6IR?DeGb+fN4a***sJ5mxMpf(>hfx|sIvGJhR8GsDGDOPHV9=v0WR&SsfH%gbj)NkXDh6InH?8`-v0U$zMO zpG{@~y6Q`E91T~aQ&4ojTg%)eY_Dz9a9#Xv1y~*ul&gTVT+vs!F2Z$A9n$w;GO$HK zs`^fokB-q^XuQDiK0})MgxwC-Ao8}!op#oSlJJNe8%^0D90NIuh&bQfSM)ib!yp8Z zhrXHDmpA8`9uRUCe7m!wDSq;5@lTUm&)n~|TX`vq#m!HRIGu@&TH|f+-wOdbyc5BC zaQK0z850RDxR!p%o>|>kltE*8Y<9o9Ewi@P0vjoew%rTLK4SAIa45BpHlIIlfa`q{ zYgUWoOh4C;VH~u~lr6pWnn;bd4|(8L*3xtE{S9VXMZJ+stO*Yp{M(DlR!I+ZDRX>!3IE!QJ(U(iUi+^@(1p|ZxQCjZvTy&F0D-0pJR#E!Jrgxv zKetPqxY^6;tclgm6rKu~*FW2t@T&YUgN&e^!bkXExQ>2?8#t0zUK1N2C}~6ng0<7* z9LL0eSxW*idc>9WrV6I3$j0b;C^jJR0$17fQuPj`VCtYFlqEIJpKsFVCcO(V#L;~- zL2dq;s|@#=NZ5#sEG=b)iOR>C)gJO6oF!Xu`3iXlwB$-uVdxIiIc*`-;6Jox)1l8^ z@l1I?nBZg8b1)LE2fK3}ccdAzta>$_910?c9(!%2+pAMq%_+tQ^Y8bhHmcq(zAT4E z18rNj9&|(^1LLLDD>zD1txGiNB&d0a#-@Jc_MIuVok9Cjb!BU%uLlD-SakAP1r|q))+oDo zN2u9MdLsKOA9CM}1Uo{Cpm2yf_ZG&t8{bSAaOHsN$hrsusBXw-wf4+57rK^izjEJU zbV`U`NBM}{;m+dg=5apRQf8|I+$$}Q{Ra>@Y@hZIh&z^GDRfDt)u8(H<@XDrFb??d z1N=sedwu%*7I4$|kDU&*d;gDR8tVT_^Z!FK+7_s7D){J!r;kU=4%!<4=xe}Q%^k^Xbd8qIYx5d08?volhnId_(6J@Z!x>-Vey-P9R?sU7Q2>4JB+(1 zGG~YPpV7`6EfLNu4EsqPu>1xBZ1Uu+Rm+jJ1o|Cwt*<&5hXokDDdGle%(E#$OM=*V z4z=6 yxusDZ9ehe#hDT)Seh?srALNB~8W>lLHM)e{56F@nB1f*w~6&N>08$CZ^9?P%|Br*S*n z0VR)a*xGPm`pXMOul(nO3atp-vldywzUj0k?wkL0zm~ z9mHFzDX;M{cqQ9sI) z$OE7kA8jhTrrcN=I$YTJE`Ja7&T_h<;MfQvW16vgar2&dt}`k?^m_U4$544H=5jL1 zuSxp_bw9xu8Wq&${N~RZu5J+bVT1kTGmVn+QN!B~J+bIYNFa0xY*yyF`F;E#Iu*Ih z*@OM+Qso~{+oK%fL#$)FN0iEa^zjm)slgC@j)+X8G$kumkKn8C@@Sw6=y{dHsci`c z&!cnRqf!tH|2AUf3154ZknbM#2$1}7-dRf%bi+$TN6*^`sY7h5d8tK&(J;%aALm%Y z@UoDlRoo9X>*t$i9RoF&;Y3&R*(l&qyp(}Ou8I>bC*LTdZV3{p(=2=uIH3t01;rqV zF+|GcKQL^d(HrAKAfiuSTLdNa-vFabTkFyeT#~(S%?r}P{w{2}8(-;+? z^Tg`wPZCWI_b`_{RA#9J=z51_tHwtFw2-!LB5imkSHWpwb*hiFt!LAJt-;t*>~OHi z^Ry!=NJFcu@SAKwKl|iC5ulqO`O1jfqw&Ubiz6q!OiCRcL#ozJ+kQlaFpiD?b2zWR z%RE^fC*nI$iP<*@&?2oXV$Zb*OW`5!tYOz;Te24=YBhak+yc0U1WDT8dv%whZ(T)R+LWHM zgMERcKrp=_27n8-?ABfnV>e7vcFB&`%-jm(Ot^W|-J7Dg&(M$%O4T>#3D#Hf>6i4F;Pabn^( z%qBMpemnXmT~#5((;rd?VI^@zRp|xL-_sNX7C^l8!K%4&O_34o$rU3vo}`vRom)XS zW!5Lp>+oGJ`<0EQ?|+4Gw3{t88Kt||hqFV+g=GRBO-eA=Z4Rs&hCQzm_kn(K;>ZqC zQ{k()^8%4}9Mpp?(-Fw_C>^`m8UF<1X`E#*qhrt{ihGlfTH$9rZMbP`zqut05IiKx zI4qfa6!6a8lq$jd7~ajP-gz;8`sFwsS@H?j>gw_vQdc^Y@j(|NYGm~`MV(X0Oz9#` zIe#j{E0-YJpg_HPo;ef&)AWE_{3!u@eS6C3-4^}APKS%TSP_#ar`{$i9*V+6)EOsV zIaJl-Ea>=q^VTl~oZyBc9L@jB{_l7q5%`k(s0g|tH9dQ>CiyFZJ%{biGj+#7ca0NV z&|v24>dj=!WLs?t8lem=yj;P-99l;wB-Q`cU2o0Yfsb5#S)EN!J!n8_i7r#3uz_pN zRKnI2m%}b-r&qex%NyknmW5nL&*2-4U^_Pu2T1+aXG%aijjma2e?5{BhbM`>L#vLm zgAwTt3Fm18MM5}rn$4nL6qQ!&o>XB7K)Y=$23+@|;Q>Hc<-Y56b$;xwu5OhDbAsw* z_x3RSle0ZkCy8r^tdx|1*Gpv@Z@x|vk^aUv|6%tv?rgb@rOuDrBG7Rd5xjKuV;T@| z;(Z}`=St{JnSM=3*Py=2se8gk>$TFE5p8%)hlQM;Te9t*h;rR&8MGx>-#GIDZYhh6S)a8?4A zC}qTv?+lD6Y1^jvbU0b!aO{m35BtMw)d$rovF+`Jd063_-_~XLijD8fnKEeDw zDiwN(4)R%DxGBx(8@ji_u{p&_G(Wh3Ux+(x2{IhRwYBg``3r5axa z40x2dRpeD!-ek_6<+9z`s%=GP%r12ZrfdeDV1+s_%8a}W{prg09}Me{Pp{z^ zboel^Iesale-1U#Yb+bbK@)gU8s@47SCI;#=#!PAigj|tTkyn29a#qy)zj7W?6n~; z*I@g1YLH1V@uUv2#b4-;pocOOFwlUJ_8^Sj=m}c+ui?op>2iM5vL&&WsE|@8RiKrB z*52T7k568-xZHY`dn2?F@ynNf^kHyKqPZMR_HvTz2z+vjnBm9h1^$AINWRFGmzs)I zATZ$-ze_~*?0|=STz*|iZd@0ms&%-H?Gs5HeJncPvA=dguLxgE0B9Dua~M1&DgM?8 z&ys~UbVeCYRfUznOTZXT(t~%6Of=HnPfs0Vz6TX7gH7Ghn^t`n@@D>CvOY6r84~q2 zM^*!31Fdt*Nmqv^s$vnBcuPuj_#yb?sNK%>8qz9KAh z@yxq10k=U&D4hayB4S}e(2p`9Zt`8P&))INrFKo|i#ov#S2+i-S9I(fW)@uj1CM}P z_(t>+PNQRV@42MxS>nisDwtlAv{58QJfUJDV^*ANT2XHii)`TN99- zBfU$WvZNaK8sD0f=}}>|c7d=!ZV8RUUuK904D=J1BifriF|1_m?<_#1BpU>Q@@6vN*=yF)Qp# z)?DEZ!!x&tx<^p?{Qp|}bwQ5GDxXNC4CJ)Q2Mm)w^fzw&NOpEI*@tnIsBmQpt%5M4l0vT|u z0P}tZasKe&3FZoiYB1o0ejet}Tc=kN+iI(*O8Ct>mu6I{dM1e>63|frr@(83Fbj*_ zgA0SqHjDyZa9$?GJ;yI*`1>n$hIh_K=}dn!jTjYFZAoTy-!a>Rg|FTAju`16f)InG ztb<3IoaOct4+LA%v&_E8ELb0IE5ea16(E}X&e|`0K|9lp5ql2HMinOOABrKjw!c1Qph1r}wB*0-msWiGF2W4~MT*$Wpz&W)WG@(&UZ%W3|0nXIjLCos5D z+di^Fca!E#Tbdod@L?J!X66kCNrZGgUbB^rpEW(y3yykHH>fl)7)o~n^2tvb_Vc`sYp7inoed_#3dymj5Zb_yXW!17nZj(6VLa3AAl5! z7?ASni;uxCV=r|tEsXj`YSQ^L6SihR=b`pt)C$q)w20AJzT(iN!*k?n(45GeQUrUx zMPvo1&JfqQfWaB+`K7ui!|r9Sz|Z-P%NyUb2gA=&nc5o}mkr5It_?^xwYucr2`3j# zcJA#<`?7qv$=Q7BEh%sxqln}xhiydFuG+fm#RYOVp zM0)gjKaI0qYHUOFo1jVQ*G=pDOOQ6w*xL`I4MJ6_m*Et?c1=Wcj_-aMaFmHiYSC=q z)7glBG0d9)>$)AN0W?l{C>*tMzWNS3m%LkU{)M{yJOOBk&?rhV`GJl74yWrlCkfF1 z{({(E)bVdB92}*|G#@mrW%bAWmo{gfKOsPWB~U5kK)YCo+ws>Q|;6&grKy zm=x#g9WYg^hker!mpV>}j1%%QA1Dbo@>XkoxaEEG^6PPCX(luC&y;uz z1|u|fEu*vv0W2L$9S{dtOI<=Cw_DZXONxw0&}76d9B&JdPKrGsS5COW)36Qd_K?)dq)~9O=qe1M( zt>OLi9S5ZtypzuP@lQ&|@6omEdDB#4={*oH3Nxmk|Lm4)6mYhq(+cNL{je|K zJ1P&^n z!*c^pFY2(Etx(5iThO=(fU2oTvP~*>?861&uRDC8?}+J8ySmftT;0iYd8}VimC=XH z7ylhXnk8PNWzC8g_LDp2iPu$y3 z!9()HZ#Iw)JvXuDx%d3O)ZgehSClrPvnFq0hPqx>i|LUd0;5x{w@nV1-Xty0g!Tc6 zyMH9mX7~^H>oDiR5nZMhGfE3|A%VJHw!f}1Ayf66jXF$*kF1-G781;1tg$9$-L}Es zynmwhHwH}NH_ zRkf~{=JG5kc|EM@sl;xp>%}X7*qj0IGB2V^Z{6x$jnAwyy*oc6B```8-bWXSHJxy-t=>mCO}Hb<{>-Z5hw{0VpzR;N zhuf5CFK2)T0cc2X=3**w6`=^;hK8Nq-Lj`1&}#YDFWVZ4eED0Vf_UWCHIIcPH4K}Q$jGwacny@>*KX_V?0G0fFUPN2WS~m`?E&WCIj?jTB2^omRBKE8+VYZl6u}FrPYU~8EL=W)|8?LblIV~7dW}rY zUc%S4SGJhsQ66Ua6UK7b_yL(;PmT#eG-f-$Xj%_`;AU4TDz`5K{KhEFyMy>#oM1MqEiZI+wMkHhg^W4b1;+Mf`F z6VE|6KJ&H*CQZR*pLg;`$b53z^{oe9FQ^Y87+;+qd2i z3{c0ToM^pNjt+(vJ83M48iPoMTqiaOj}Agl6^jI49VbXto(c%&4~BTC<5XPbD6_%a z5MJ)YAFn@}oH07A{}Re~>pNbW(+NjK8dPJ5t-qfI^HN4l$h}txqa@BMk@Y-06uMw0 zcVZE|t4`eeJh!g`(qn|!MBqyRz0UG)? zyqBPn8hY(Xb3xZj!7a9@N10Y(cG1*MH`m}K43pCke`Oc(0vS$ghmG?xho)hQ3qBl+ zwsN@X=?PJypU+N_mRM)d)7=VAr-H7C-9 zqd1Wwt$|JpW*Vh$wga6)G<{4p&!I#XtAZa}%BZsi^|QwnijUiyy|Pc=uN`D}>1QwI z(cv{;e0q#gc%F_(u3YAO!q;QzEzZ2S2amU)D=Y~N-1cc~9;38KI`H7MbiBU0ob6K} zEu@U%r2826)Do*wwpn++gw^5F|7G^~hBtCL2#|^K^;*aw4H99$Mg9|)<*^z5S7Q*? zPj3VLj^2BEtT(55h&r?%XC>}@7GdU>V#Sayyt9Q9W@H#Hr-2s8M+>y8`2fob7pc={S= zf$=1I>ea?UrV<$)A$`hKE>I+Bg6__3hq!EJe{gj=P~yNyd4$jgA*gkMPRcwMM}@zL zFMtZjmSH1X;FMI5PW(GJBW;ku2n>5#Lu}8>Zr^S8!N(YMin21dq(2Yq7ps8a*d7Wo zP?Ew(wsWWewQ;H+wl!&eqv%$e@fnl(Lo-}kzWVr=&Yw%G#ep-o31r$2|RS|~Xi0c@ypi_D4-t=LmgSb9B`-8^olRX!cY(;qfXgS-bJP!1Oa5}On&OZ zP<#zxAfCMIZ{J{vpyTN}T9vlv?mm*2v zP-X5=W+BT2*~GWtmImQbc5-G1p?LcHV0yJFZUbkQgSL=z`sY{kQPM0lV!?lK$8=rmD_1_zEtMt4u2y0Im_t zR%Y|X_c^h`*ohOQaRcP=U0TOz_avcM$A;4tW(O0~`=-M6Y9r~yUpwodskF<(Y*Yri zlP%>Jbca0Qi9PV6{z}lNEas#I$d*_Vu3Tf_TV&OEWwmx%gPxh08rDJ3KB0YEsI>_8 ztqIzwUkBJl%*LyOBb0#Wn3N-`u+e5JqP(#r}^Vg zW~V&Sf%d@LVJdENl<9jvZEIT(z+d2YVO#c(!nAGt_6XO6Y!LNK9t=q7kKMG`M?2;e zfV0fA5{`o6%Wxlbemi-0!55jR`S}bi&qQrX_efQzcNvE~ayhUrFw@tUQmiMjd|bBl z6-yv@{UL#f(P5wNcg)Oz%p_BEBV51eY~ZD1;b|2&hs%j`f9}W)?WsQ5=LtPW3IY#+ zD&cao^Oj#C*jv%l&xPG5Y*pwJ5(-mPVk>KQm8;!xI2TbN9JG_9#Kda4*(LLYJs>#|i;@=}pThr=@ ztKnRx1*dD4Il-oNFEKth)&^PAK(WT@X})KDzMVdAqua94_hXxW-7}uI`Dsy?@DWb^ zT5y0i^VjQz+jSh65aH^x>1pm6tefH`);!G8cN#g`**k<5=&RNwGrXHtHv=r;$JBC* zqgk9D-H^N{pR(lecct_qF7h2*^*j5{eySYxY{{vq*zRJNVEZU>u^FFB?-P!dB26^fpLc--{)KF$KJw zignP<&p-BDNtS2)K}K8Ly1W-kl@~sr8d_i>sPe5bi(9OPcM$!+sM?p9qF=g}XU-8@ zymfa)OFmv@9KpF~whfmY)QO^wnwJSvjCQ$KZJ>#9`18<(5ylzN+Xww+jJyJlbqMcu z0Jae!Z52f{!MG_fkFd(s(MsKR1*ok4nr+F!`Jbi|N7z}|6_KAywj(B!@o;<|=&dc1 zv!ZHd{=y`M)k|GlFqt>%GsNX&c_;iPNHG&Xo!x3 z%9y2(GudEx76tTElwVl^6^sj~DE~MFSl=I4B*=ea^UF0H)EkQv+(!>#A1jv;yU>Oo z;s=e>kHb)IDXp%P>^aw>54E8$c-i<2ss*vQ^>sk1ka%DNJs2F9oal8QWlRBiBsS8L zW@b#XbKLiE<#>1cMkXX6@$jD`ak3aEX=Z;}__2KyKx<1nWQ0=Y!FDki8ECSNK|ozF zL$U(R%>_cN;3Otu2X$%;BU$w>=k9%SGCJ-;TBNXJd(82>16qTXm1gTwI7&-e1BHoL zFpntw`Q^{Ub2@!cq9uMuNcluWmseBcvH}_6AY<;y5@s)L^w&oi^(Kfhc>)PmnWi*e2Q@Gv2m~#&}li z4gBaChpO!QEjhxUjOlLl$jZTIBSp*(1kncl_WMK#^Ri11c54Os?=i6E%(PU+OWHzz z-HA+C4L{owiSrjMKmozrR`MZBT2@%Df)&TM^q`Hro@&?}5+0=J5>4%EQYv>z4~M#AzbWWq;pL&4zTa7dTKyfX2=gZ4av7F>diEe9h;NF#Dg z^WSg0<^jgd;&@K3*W9v%214&Urb8l||DOIN&~H7LG?|aaRSP>S3lHCO42im*xG^WD zo3gjnI2!w8J6TMf-mOdr;HqK`{!_TSV$K(zrU4c@xqAJWhaz`>_LhQaI=Xu??xNPT z-a4bJorhF}6@8a%){;Q)zKil6A8<-o!S-MKB%^OVn>M|Do6SFW?2ZpGXYBP=&{zGO z4%Z8<4jmiNQ~FTot^gI?1D)Iu)PPIZiDnO96ZBxJM^(i92KFD_$Jz91Q=($aKG)E3 zf$Hf)imcPT#s1Pos(OL@N#VGs$(PjPM??3obd7pu{2VX$QUVkXWXq>|M>6^B-z-l( zFz`aX3}tw;6Wn-b)DS~SD)-`lI#D>^_~uxmTD`-l^~9Z@j?%H(;TWHaeBq;mq)N6t z$(WP*wT3D$qF?qVTAtj&^<^&Z#ul?f719_e$+JvlICXq7K8>j3(7hV0L=bjpZ;{!G zrU^>RQjF&04oxFFo0SV<1M$^1wR0cmCLwj2P%jTy=1k8l1hO}wYX0DDlUME#Ffch6 z64}pdW1 zZFaefG~zaHYBuob7tnXCBq`QN-K$mqrY7?0Pms3ntQnbE3r^K49DhuxRish5>WZSY zYU^tui=PvNw~|+Cc;%~BI)SpWRzAutJGpU z^5ci|MR;W0Un!;F`d6!zTtLpTphlDj$XTc!wv0;g7cN-$c>y&}ydv-p$P=X9WMnOh zt`i1|bw^PoxA+}U0OMR5?QNdF+Fus-&a|ktr_oCb=wGz?^uxEEA9?QD;_+K6qh38) zBGT@~>;u7I9`dKb`3a+K#BKCCOzF~-Hof2fqF;8hUH^+~c~4uuZfE&}=ZhEP$A0`# ze9u@4oY(WSuvY%?y#DVPbHA>^9R2Sz4g+(YMX&3m%Y&cwD+5gme`BzS(Z#Q|9OY9P zx9#qw#U<(Y;i*9#$iLxN#OQXsrm$_y&dhF*6KZH2`uJ@Ljjbs=QEs9q{Y_#i z>$^dE1Z!6NO6`A&PZ zdJJf;h7*Ug_*?z)Co90aC9w2{=vvp{3GM$8`Yv~=y~&gG$2lMn#QpGw-Ezv%RaKUI zQl{$=KSKGUrmJ03x$1F%q9O9HCZqMqtmf~@89$v}$5n@8g?1EOwK%Qsh($ delta 11335 zcmXw9cOcaN8^6KbS?469>|ORq+4CF8s${Pd$|w%uvOag5(GZ<4lB{nivNE!{P!UD; z-XoiI_V^w8`O|$q@Aora&-1*V=lL{7P=Ah~#+8CI&jNulam59D>W8~OB#WwXkxd(X z@+>TV7rRTB#$}i+o1xhw^C=zerNwQHDORj^{U2THsuGivHxYxzH%g|mw5qs^ra#v0 zzJBxeS-*RVOF;l&!-lVD{UNR_r@R)R#=TKdkhBvt8^EYS*j*c0B^MUt3h5CA^;G}k zs<<3%APLNbbFEz`cDu_TGE|&nM^q*gdn(_{En~)?O{=^%oyJg}C1%=@B+d)wo1Tvf z^N|)M8IeF}I|6)YymyXfHC{RGcEzwlvkD{#GRPB}Ge-F7uN5Wc_UZ}&D~vgh;tk@_ znW@YQqZ}icLsT4(FEwM=8NS$XRp#7EoiPY-b8t{y53R!-Iuf#GnlJdazkJkD!`S3X zLNyN~yXLgI1O)e#g4rkE;_CE*_qm^m4%|IFk?FUUFOpx6<=%yLAFwcZ5iG&v(MHl% zw0MbsfD02?N=XyaJU zpL^y0u@p;`vU-uKk=`V+93b?wfvO5^kT|JKZld1&O2zI4uOUAydq2B^1M9>Up{JrO zh9+FnT>T=!6EFmGMlkXQwZjF16gW+Pte(5rK2%_+6=g;-$Sp6$aa(vLyfE{L{8=3c z5A<*ZZuHB|bds4+Np32HGUH454q3Gd&RS+oMuA@y3R27u<3s|{jCr^IC}1Qm$wT_U zx|-ixN#}&3MUNpO`oy3TdhM1!wSu_n;cpo&cQw_L@d%I<)cP`s`zpf)7TXOx=_ZNa zMLj)iV&(ezWSoqKGNH@iTR~RKg_8q>;Wb22vukFnkYQU5^Jmgf-Ui*LD1FhauCA%d zwVk)slAb^fyn?e?gM9Jx(-T~ZvYfm_i0+(%d*t?pKLUYaWbB0;r);F)z^e?d2G5Pv z)_o<#FE?9Q8BcI))AQ(8W4t+D)Qtvr^Kb^Y& zY<8ag>-#6K-14GWp7UgA2obcaB^E`T&J9u>=zYGP6CStL90A8T=I zo&wt2ANUQ7jO**5AMDjs8Kh~q5z?L_7T+0iGDi!7cX|b_S$h3_)H_X=q|-Z=4Ue&| zS8L#VV!maFNgDnwKYb4VDPM?yZA!mh@UTilAsDjnbS9$~c<8F{yc@~4MNKsQZmnTM zJ0XN9*V+?gFDYsR_d#T!Php>MW{9WX5*=&V&_9Prz0%Ho`yR!xjym<0u_HN$v5)+) ze~&MW$BAKuO!M>zo1iKDXKk6;}ly$YB+ zKjK9U^QgGVFn`4(RhN2(e!3`>ux1TS!v+w$2%UIC`alvP?rzh$?DsC1DZ4vARijPP zBO%3Vw=ds-cjsX*+Q8(;LW?pV4rBxD-afbxlripS{d~=3n9HFI1}4pus|FFE8?HA$ z_Lo#S)h{Tc8vTLj_|ZnnJ`+1e)j&OGSWh$wYNzKO&es%kcYKcYR{5eO=foTUoq#i< zinH3xY-BVxE)i?P?Zev~FwJkc`V7@sCp~c?q?`_{murdHf4#;ae8uVR6vxeZbm~|E92~P#*@^(Y_;^;R^P=_3Vj-luSwPU;rP2&8y zrg7#((ZNz(Vz6IhANqFc9_~Ia_DJj8yl^7&&*CVh;ey@8pMn zHTNXV%h`|zE(uZ_THkXJZIVl0Pr8*&Ih1(&782X18Na41p|{YHpWN6vf)_8fv(=cA z(u37R z{-e4!UsOFk=RYm*npQ3)wu)SpzJ%jLfOxCyVX&ay2uq)F3?1zvM;e_xqc~3+)=z(;=O~!jx)|u)PXA)U@ zd+TaO(_&8^jwetMmuvB$MDKD3Pr}mIoX?C6n)YBJvzr%s-uPL;^;$n5pp}p#P z-D7KI8Yzs&XFl`LmDKhV zGjzf!2`ckRLNe$dgvh7TMss@(sCW&<`UY<^bVK8uzP&w&T6*G%^nhz%^`3bTw0 zF4|o_wjj|Az>viBSRS+)jOR_O7!YPl9PTW`7hioO%&Loop%WnXgy5m;?4=OrI%99S zsy7+S)$e(Jf4q-0fG*(lZfxDq1gZYq9 zB-JkXDNahu(Ily1Q_BRd)$Z@*2C70q8v00pCE5)a0x0PWCT>Y+DBmcq~FDbA`XsdtCzvS3!Qy-U^{-xeC4wib$50PJJeWVb->N; z=3@oA72!3D>DRYY5(HhM$ z!eC;cq`zVls7nfmwc2ffl1yU*>2n8pJ>XvS1S##-dlRE`aX=(GZa{u$5t^8t1Tx5Px+;=L@WzQ$zfb^k!Q$tS~O;mIGN+Q+_*^yS$}n~SbYAl=V#JXwQo?P~KO%^k+W;LaMlOGiws-y?^oVk^148HJ&< z+2^E#|0xC80iUEv1eA_G5(c}qqyzmX%(N{SGLwC7p2ZnqP&#&v5S|Rsx5M% zHvPyMl~7YJT&g)D#k-}421~<=Me=vb9C5C1HD5EVyQHg2!(W0`kkhzeUVnXAkVmfd z_sD!5_IOUY`XBXgAJDGBnjXZdK0o0bzycS=55!xZg^ZPQaT~*l>0|0<_UdTirm0Sm zdm`4#d5>pTwJT7~8ruv`AH%<-WO%8&a3bZycvF$$kmr!>Pj7;&yfQwuIJAWAlyeRs zGs#JxMk=z8y`Xn>g1d%T`lHe@*yTMOrio=6OpB1&NZ&+7ErPcia6`ZM@_?$G*kJm8 z1}jFY?1xe&8(@?OsM3k-G1bJ_%egJNX7bXHj_~Jgg8>M{3)1^X^L91vV4`dldXEkJ zflO?SSY_!imsUlJ7a5-z>pw5*Lcx5w>{S}Wu8aq27%AyGa*7kU~J@*ig5A9_PKX(KUUX9NsT# z4w~HXOEvuilTI-0E)rrCF{uzzQ_e}n+tJY`*)0cq41DEw`%HrAK->~ z7cvrarijY>4Z4ksCr|Mmb;a4yK^6sWw}^)SRv~lK{?Tn7D0~~;2z{lqcT_uT?`GPr z1l?lmD5y*h4@1<4ojao5lU%H++d)N*>7@nL7r7tnM7(WNKvC*Hw-LHxAS~CC^qJH` zx`LqhBxQHx3VjxCW3D^|-637{b-^hVD;1dC3-ZU3GL`qAg>Ib6Qi-a9jNo987vs zaKK{N+J{Snnv#Z4$-HeaZ?{)Unb{)o->4#XBN8R66xw^-wjCnQaK4j_q1nS zU8)!-9Z|(3KawUXLN8c_=TI$UZIMzAj%{#UE-zTcKtht#D%sscG%U6cUu{dcD059x zMX3{(0LVC-YGTGhNz3@Z**%_`MK;Zvi{-qBEFW7m(mXY4_#XwEexS8#5641^s3u!R zc#NcKRSy<_pEEJO;mt(QEfy9QFM=3@=B9WzB)?VQLH$UGL8xaCzT*Si5U^ zVvygII+xSOuAeuEx@-w^;J`XUGDtkNtAGTnN5hl&!nYbD?Mel7mgAAJ!Qe?>(&r98 zx$cMlQbVQ^W67J9`_>C9Vdhd1(MDn47y0(2ouu$s#_k`HOJ7i%VM`ZL=W%|Bsq~ef zD_>O}N*YwNG$6(yQB&32tXFuTOEfh!>t9yv1Do7Q>zJ?eMOdKu0b{r3_Lb?Ca6rbV z>S*9tL_wA`3R`eyZN#!e_v;aRQeh#WLK4xdDUjcW?C|nZMx$wFt!Ym=9*^?CztXQN zC_I3cav~<`GY-VjLG9Dc5_nKkT{u}a02vMSQ8E00pn38!nwq6F3P=*GF;kdd?dx zli6QCjW7x8vg^qX2Qy=#zvzM_N#sJ(!B?hoN%#JS%qv_|HT&ff?~FVnSdroV+DF^0 zcGqKgB#J!QYp92hbfd;_Sdo_17FjfR(@qzOsEz)2ut3dh;B+Ta0%&HikO z{=r-6FkD)jKCgr@!JS9chu$>bY$Km!>Rf{i3Q@~XuG1R61ZRW{K|EpGW1v2J&6jYD zidV-ic8>8t5-Z8Qr>Jj+VE&C=nbAwNxsJ{$!;hD+xgTh4PyI2p?fH$3{a5#rl-On4 zL93c+%V?l!$ac#hFSIHNtTCr-~-99AtP~r;`Lctiu+L7NMRzqKToS>V?04Wkx&9R-_N zKRTD294M^Ihpc4r=D}lNYwRsJe*xl=^Y1g5i{c#g(bRd*Pk5~BGNnx3YKb=fD7{TD zEd`CVF~ruE47wvc$%dQ1g3qxZigH@#z8)!Y()51DF?;1ka2i9Lc26k4P5)4|NTJfp za^t9h(6e7Twm&9#6hzx(;xIkQ-F6cvLl@Um8C~6oqfl^qShv>HW(U^W+vJo!QcqX6v zetb>S$P+sIK^k}zHhqw-Fw?+#b7f-{t_9~ zSSIwv`y(TZF+yexd@F+*!=4w`f z83qUYsx0~=(6K!G*lzCk8M2|rN< z_EZR*}l~_O$kyvQI}piM_pxvmbq#pknf}b1%N3u@Om!Gp{jI}q=(FNg*DNJ zhM-*|{!MrMGRS+aU8_J5IPTfqap3tITP$b~!YhzAeu63Fh;bXxeyrQ}!_j`cpl2U3 z_>q8BX>#WcJX3neBwNBa%Udo-5Wu%d5?VjJN8oH?PA4-V)M1;~xLes;CGFKYN5ip_-G}1yr~TN_u3)5kp~7;{ zEF`RzON)5>-BgtQIo)SdQBuzYkW0BC;vf7ty?Pbys62nUCE6D-xk+y74YXcn3|WNDM&C?S zf8NQm@PDYZ6q|V`Nh2?WnpA79CIq zemj49nA@Rs(EYot6NHBPq?7Y+%~MF$?aNb9VfdW9e#||-HO`h8z;y|fmsY2C1?pJ9 z+t#*K!V$HnTfvNVVx5@U*<=t};U0g1X#Xy}^si^y=_!g%-?%h7s}@BYULQ(}Q#j3i zG_N#gf3#D@o&jO?c4MqoM0HMn=Tu4frLrtC_@nq*zzO*Egv@PMK*Zh$^}OORNoq;e z)QU&S_W>^65-Pjeh_%9%5D$VgD1)Rvx10aYzIVj^gvkiTKcQ5`+AlMNJ{-k)CEhI` zkxfoVqczUyYO2ANBHkyM6J&{l+T~n3Ms|1@zWr)H>pRFH%fyOW$3w-5k>A2L)jgy} z{c&4#B5ZOkiBLb+#Ww!(C8wvD2cUHlDw*(q)?DFf{H?|F3gvB(uT zLfT2#!N`?((i{u=#!#fw{Va_Pfds*M8%)55>}WIP(tBu;aR7l{EuDyP+n$^uWHB@e z@Z0<|r#*2M{DXsj&XB*9?Wp>8UCLt)vYyB2M@zyY+b1s{ng?7xz0Cg5S6zep_n3_& zT`f*k@Sso}a{5%%7<~&vV*>T|X7Aejc=KPvci0&n`S-akq)3H4q2qpFR5x;fMn?LwzAUP+e#gb z6=HCKG=A}m?wHd{RVbJWXf}_so*93XZjXCYC}>k(wY%OFqr1Jx(IHivY#vB3@x$Bu zm1_B4Sl1x-kiu~4ZK005P5eReWj}5JceHVOf@1Fy13BJ7-OK`(uUKyPZV)~TF`SH$ zDFc_9FU(Th$MFpOD4%ngyxJJ`A(cJyOw4?4U8;q>vCVDcXN^(te9KASR*xn%a?{k} z2>+ zrfdeGRLd_Fr%}lAUE+Kucad6~r=HQ3^ZLM&^2L~Zcxo74Ll|0V;N2D|SAf%S@EbP8@DsBaTkdvE;SBS(Widj3IJb*UU0f#L(70sSbK!lgl*2FE9d}{D#5t~ z!S>I#k_IlVk2!Fl$m-NpTa?KTITmyUT-rE~+UOrsnsytP!0oIx^$JH=BS^w~OK1|o{$LI&g%ABZC+UjVdl`w%;x49_q#k9!j4N#WnUlXV z={}%O2JJKN&Rqe{M$o^85fJ6y`NVBXx>fI8@N!2h6un~zN%XX*G*8oLgAc_g8Vcs; zQ#gp~^!WyB()xVY)8_(qSo#k~xxQbS_nwJ_h>@nF`JB?TxFY09j8#=SP_KUsHVcGE zimH1Iy#}y|%(sl{#uhdjWA@;NCn2XN&Ri@6Si*?EucU65z0A9w4;iJ(29@xO(-kpe zF04(I?oUQetbhzP5Ex6?kD$;Z^i2D3q=hPv5j}>fL!{y8hj36K!T!Cz_G5blCYZo+ zkNJ6Xy<9|q1A zZHbOVr{qXiMeG@iGw83NH;zhYk!u@CYYz~W#GoVFpYkHTbR0SPx2*=lpyxl2-+Lc$cdynQmO8;>rKF9kLyThMpN)Nl&}0< zpj)GBEaRe9SDdtO?${y z2A`Sc?y_uS&=ypR^p19T{^aaVRQ&EwW-YpU4QuAajKR&V=l*l}L^n9(6GYE#gLUJf1wK&t* zB=zdYtg`l+)z*ZBrP81D$;8s*0HBpgu(;|yB?WmMBIK~Uuuv$h0^v+nQ{BT(?p}Rf zkr3sX`Bj2;X-HNv;*o0d$-G}M2k<$5^QZbitDi14U*dhE}`Zv-dLp`fZeI1bR{laPF~DIXFu2^Om? zQ=ggx^Z*ZChOi$ku!y(#PJIia-vJZf7y4#eFP#r%XSWvh5Q!Ta<)=z~+ z=#1Q2I%#zU^;#+01<`+S&hsCtNOcSGd+{;auW(|x^UdFJvr`T_@cNZ5|Ij`Us2XDp zU6LbTQ|H~2ouJ-gaVYF6@tX+T2Z~D1h^<4A=jU5h)7&1g@Ehzab(?DM%QlUXfd5J| z=2@epwAn#R;L2c}C}lv<-pEItUvSda>RFi_cl|T>IK9|gMvFGw(be`$tiC;R2^R9G zyO3&_!k_C6|NaNJeNP$0*Mrt|NxDiGT;L(_;5tSDJ25YX)5tboyB&gF7#4>+7fbvkU@z6E`nkR3QHKlzU&ov8 zSH_)+U`k6#TH)t(RlwW6yMH9dL&Gucf(=CALsKppU5FTie94xdv%RWNBJQAk=>zLR z9nCri$?Sbi614|T8mv=mv3s(+7SxNU^sBe=&jq-d#%a+9f3i5&E*F8tKH9lL59dU; z>wlQ-B-nL5CtX6%{R!{GeZ_wk3>=oM$J=nMvAFDOw+Nh4Qd88iIOmOl{Tl>NNFB_NIK(Q4SBGTK_fuNCBo}YaUT_ z0xCV0PvF8*R(AcRAs#g<@rqX+W-BT@XQ7vlShmk%7^ig_UxugjT}eUOfW#wm`J{h` z6Pr#_55+F|ZouFLmnR*6V8f+1`^c2#5l>gD`;)YjVYXn7tn*2$!5ef@b>|}IrWrSx z$$QK&jq}CuOT*K<-yeTNaaJvkQ`Y3S=edJ3Yg9Mre5=_6PA|BXMd1)R&BA8jWT81< zDb`+&uHE5T)$^wwag~_BnFF_8M1KeC$8B5_5VwE4 z_hEnU4oK})YJGQC&R<>uJDz=LR0t`WaU}xnrBIv%9{BXj^7FORns|Hucw&Laoa;cY zw@Ul27A%S&ak=`PBJ~F5;M3N|l?90fgyKnj?T|!}X>3yQF5hZCPv~F{%Aa}`l$aoV zyep;*$7g6Lq}A0{=FNFlLogCN$Y;Z_Tp!jpC5@)3DVK0UQX4@pgGX`0_t0&xWg|}G zW})Z!`iyfuMZZ+WozmU1uJErOZTt!ucX0{I`gi_R2hnKg1ov5 zKVx^qoAPl&s98w)r%v@x8FT@{)u-14yrQ%}{H0u=N*dBASIrJ5VIzHZ3pKcL)OJq3 zXbpl8f%K%Dt%a@!c5E-obMT*9Cx@M)L9JC@#L{Py-aMUU)E4+CqKFSzqe0);9UUoJ zx@NJOU!cDAoSd_AzPWX_Tp351EKeY50v=1`s=8>J}xThnmAh3vu6VeNBgJHB$gUIG40sZ zk}Z0$;})VS!4uZYSt^NNx}4G{ulgE!-?&-bxQmCFI{S2E^<` zvg-Pg=pg*9NKE64fqixVjYu3~2_%=hu^M-ZCmBjc4|w~%YwBru+2=&FdHWtx=}K*b zn*Uaoh8PNMdGz-iG2-p>lzK6G(bks3jn2JQyl~aY*8{)`sCt<8&l!z^eldziKxsLV zfBj{#f73n3{E3tXXwoBgIko~L~mg}YTQC5h#aKG6SR zU4ZNNzxsVLC4*d0>cIz;?n{-4B@!>b<1R{#|=JgDgIw_fSxFQpzd1|!vT zb*G_A4A8nj*^-L6pF>Xk{L}Ix)*6v?QG;O(()2Wa!SC0Wr^^ugWE#%6;1Bqo#>kGX zy$H-jiLN20lZ_Qr4sHhr;~hwK^E+Ay-NtwGs=rw%SOzG{b~_$>{JJ}{G;IadLS0Ht zZ!w(Uj{jtP>4>L0<#sSFWbb`yHu4xe)hyGSk}=8WSMP%kMyVjB zo=E7J&AMG)#K$+h&#C?3mxV2T_ZXu#_&8w(;Z^PatAmEhkUfyKmIcI1^7aT=U<|Mc zJ{<&6w#>~dX)8H<8u;L$?BIbU57|~(1 zAtP3m)#_g6s;S5^UfcH72vTxSKpVfao;}GIIPM2WKpIQC1H{;OS8+?y#z_ywl%O zjQ*3|K*g}`T^@u60yzN6L;F$K^x|UE&(#Jwz0j2K0<|mO&@RDy4sns z99M*H?CFynrM4O~TClD&dlmFomP};nG9q8m#g_Pb?hQHWA@6>GxAy54fKsB)Ikg*@ zPaUcqrLw2b%x4xZ<0hR?vkkFoR_#Bl$j`Mz#|ojNR21Lv?jfc9J%+Jhjtb|Ro9#!- zfS@u`U8$N!XPm>SG?`k8<2_2^b%~rlP`X7r*I=9elGAT~h?xxv$3L~{#e{p5#rEDy zUH+-?e-VQu&c7HI&nG)a$?uR$mqGdZ8D(6oRae9QucIzS^R|c0fj7AUa&S6%C9`fO zcXIBppn~~2pI-@l0f8V7ju-8lCi72*5&3gM+QZLlO2DN?`ipjv2@=#gBf#Si7~dLrFdO=z+^f$?)U9wMXyh#mE(|l`lOiheZ0|lYjCN zGe`L-vz_k1Cbd{qdUl2-+WVjynu(j^uy;vdz6AOI%5Q3d2f;7a=-Ep>wvRq-aS0WE S3CDvde|lGq{wdHxhyD*hr~`EX diff --git a/docs/articles/EDA_files/figure-html/unnamed-chunk-25-1.png b/docs/articles/EDA_files/figure-html/unnamed-chunk-25-1.png index 5b5c6781e2ea401201a67a2b7bb90a64b068c0fb..36d631c88ee4de0af4c133ac137525d633fef5da 100644 GIT binary patch delta 19003 zcmZ^Lby!s07w*t1CHhI1fFRvn`T+t`3eq)zfOIqD954W-B%}unLO?o(4v{YDE@>DB zB!-522K|1|bD!tl^9O%8bM{_)?X}+Zt{9Jd3C?>7g359H>40nZs}`Jjjf@i~Gb)Yl zy?s_tP+?!7DvI+O@|Lb^MY~qRc=Pd3dnHw7=9@o1>Q3cV7{%Z}%^%G&%J*um;l3}O zTzza zh`8Rh9U?W=)x{Dee9h@D@q}zfGmMdv!pu+;jxoP8E&lM!H@)VOiwE$AiDbg6W2PxV z3_w7+NY-2XT3Am8=KP>>#a|N`_ozRXe%$SPPCHKvG}?@N=RPYYevlqoGf zQ}fGqa}Q~j#wBui-gH8XNvF6xe}&v*>RU3nO>yB84(0$D~)h@nS@3rBWi zMMYvRsPbdDm+#YmeqVFuP|{_ELv-MCZgyE^U0Rt`N^U{TRDteF5>GEc(cji2%tEk4EyFERbdN04FTqb{Em@aUK&$zy#GoG!64mQOi z%Wh_HzL7tn+L1D7yc9tNDrN`bte38E*NW3sE4pv(zY#~*u^@~fXN2RlWq@r@;H@2p z7W<&YV20lF8u1qKZF(t}$x%sC9v19VnmiDsZ?t^$mN#+i`Q&Y$Nc-SBWJJfytlpiP zLhJ4koxD_3r&+f9hUSKYv2M8V;T*dI9p(Cp7j!|!-g6G&@7ij9y$eac)IV-Qx#)=u zBc2Wz9KNU12?_{(J3^2J7*5nr(NEBS#ktnQL4pu>3LiBJ=}(>HrD1`c+^KTaz@t#Y8k7Ft0 z56&y;2Q@|JKd7UKZxXsGWRoVOHP9Z>J&@wRc%0y_N_CrWW(#=qiX&*|%UQN`z^|Q# z&3wfEQQcX1hEWn4Vbs!HU%Bf$wdF0LDT^QNKTjO23Jry9|B@@uE_O5#V=Tnjy}iH9 zH7`2v;A?TA@oGD{WckFt|HZc{VUkzU!MwrMBY2Ogo(rd{@Ui{kE8}hk~cbgOJU{EQdK?@)kZ^)ZU#6Fj>?mo0ZF>_165SRf`UOb7wNn*u~?k zl|134@Q%pN*W|HOLtmDzQ%kRbk91>58~+rM;^)@ce7^ObZ7Woeeqd!Opi? zrm=`5afifrAvNJFtJ_VpO+z!gfr`pYx7Stf5Zj;#pFv899{%=HMqrvlHgf(U^=(BA zL8hx+73P@#cxOz{`dx?8hkAyH$NC@m3H*dDcDx1lX2i-5@myaXmc?n-u+YgLh!)Xe zB7tkQ1VK>Cd8>`u_GYC^l$~VJ-WZJY7gX>oPjq7d`zlCIV`HPm^h z=^KUaCKvc}>*#3h4TBvcx)9=w9B(kyG4QrL7`W#&bIdm=n#44C<{to~lfDF|2VpAG z9Jj7SI5rt1Gqd~9TtJ3LO1FK`DsI?0{k0-pf?t-lqor!DP1k{_C?MosoS*bK2wlMiIm+n)WyA`Q29k6&^j6Z_B;jLd|b zNu59geYC9?F5j9qOPw@uS2;1QVW$o8<(XxCG81_&Kh8s?MHIkJYa>h8lhyuiW8)RK zzPBRfpRFB#QjiXE(MiKTD8p%Q(!k*&ZsY%CNYrgldYPHiXLFFyS*#pFe4Q_*>Pm)I zU;&mC6rEx%=|rx?WKPCk0&h1VR?BW~HcmS&oz-|Odj3)p=7XFH^HuF;bMeLXaq2|zY)nH`A3IAb4J_X=ss3lALNMnDK#+BZPHL>O zszDAl#qX8VBG{xc^2R#HhI_K3t)_XU2a+=FL}D#t zqU#{tF{-io|66dNvGH z+Qt|eLQqx$Z40zJorHjD^sC^7(wP(R-$(7Lrb?zup6MPJF;@-EcT->D6pEgyxAfx| z;?26RLc)*LL_VE;r&p$oDeUW+`BfG)(iGMeQZpA>vsvi8$;E&LuRw405hMw0jw6h( zL+@MjVbA#BbP>e$40S*X!&ym)R~#X*rh*6uqsjE2b0>xYSin`Od_h#yVZ)rq#kA#m z=O&%^(_+VU-GsEM{dHO`vKbci9h3PT;*?92K3m(!=n`9Tn4{Puv7U=h3uVCpPzvWU z=}~A2KjuAyfP7clP_R>Q^fgq~22K`nX@V`>G?}K1gfYY9$;kof7T3l2I(gr?T-0~{ zAjYR1j5+{0zdx_>F_saCaZEOI4@!cfs8Frm4n2fbl`iYrNjPsTJCMV0cq9Y8BnmN! zP*$Vanl^r>5;dYncVc>O0xj;kbY)(_%uKMt*W^sYVoa=(T&@S z*`t=zxQ;QJKUS^fKZQA>vq`A;cVdyZh-lNUspBycn2D@fcw{_3dMZkgMKDHAeHKtz zCV?S<0-EGVJ z)G1>$M3I?nxab$h6=biZxE?b?oO3Hhk_VQ^oR@6xeYlE?DhXKS=wsRvYAqe{>RPMp z`mHAukO9%{!C4Zuu3N=UWmHcTGpz`mT_E@mryF?#1yKY+r*wv4SVLuDi4~>YdFN@t zNnS}H;Dh9?b>&S4B4&Jug6a~2c;uRRSb9fGG4sm^nZ$uc zPZ3B0T_mlVd-$Ec!k5mH+iUmeAmQh@J)Z29tDIVB40EQ7GwQ7TDO;R+HcR5||49iRk8_ z`Y`h$uIbM~Qy<`&#qjZo@!?HR_i5^q%9mE0c#ae=2DvlexL(xZ_kbdXObo>NY{hsO zecN_$fh&Bf-v0;=<^kW|9ecraMS9>u4B4}ut0oW+xSo!|$s&FGAB>&2j}_VNc+oz? z{Y;2iv`Bbh9#A+WOFw|DctX%g_=-IINd-_DrNqF z5x;-IIb@5jY)x6h+zGuiM_`p>`n_s;g%Y6XwFbb z_Bz|j#ocNJ1RK1wLuy%eecf9Y6lMu#d%ej1cmpOIYe>K1xcz=~e*vBf%89)D75FmY z74_#cQGt>(m!<=Y*_8Uvp2+QadIHo9N`*5i#*2F-ay3(Jy`~?!{cm0^LqQRP`GQ?& zK*Zw5Loh$sZuWLa-sBVZp^;fI0OskM#6Len3b%N=#+nLb$tC(K{Yg6%*-rQ0i^lMM zwEOvpf4ODjto83%eX*@&s;kLX@IsZ{=^HnDx}Ff+B0Tfx-Cv<+dG8oJ=#Brr zuUM)s?V}_m*;rSn|9qOzlPH5>$;Hrl)ueW1NYs0_=T1{3NJxQqdK?$m0)%(hY+&zt ze#R~Qx4oDS7UeoyedP$pX?%D9lgfbc$(9+dvNGF%n=7Z+n`-9?o{sF?mg4z(W#!-> zPYF_RLqS;2Oc#y}hL}eZnOngqZ9C~tm?+lxuDdMtZ$_o4=nnGcm_Ah35C-3yXjbjp z_<6AU)JtYJVTg@#jnxF`6MvuTY+-Q8lJaF>%l-$X-&lyocGA`=Z|)CY^%&Wa6Yz2y z{r8>cQ&!3zDUmRzYi$qG5WyllTq}o)b{SG$^Yc_5h^K#4l6eIyHY-fzUg9=X&U<8m z;X;fg;Q@?k0|sLpTY63<86?G{R@YAFF%<&kzdw+A>H9}7Q|U69BzFNynt!e{Mtv=e zFh-My;!(H}UnAU=IjD!bu2i4%aWnfdT?OzKBIa)~Vq%{4I zt(!fItGDv%oj)RXzV-&a+0w=bA_@sHT>uTbd~{K_#oKE!03x0myA{D=s+7TyLWqMG zguL~17C9z3eXgi6kV}jwL8h{hW;h|Smk%&}(D|!HUaWsD;U=7uq3*R~A`^04Fq?fS zFj3Etc)mK0(t5x&-~U!nXM4RWlLe7BQ4OiO^ugx4#@vmcicu~$>bN}Y)E~Bd{vMr9 z0kj3pzP3KoJBF^fJ9k}8%KZ**W8vm(ch`(*?C8TQWON?TrL3IpGl;;OK7x(&%Br*r zhl%9BNUCPt5rr!0q}50c$wdcp1yuw5#uI-XKv)gOrV#1G$ zB}{c2?wjgf*!;6p53-12-oC)M5^hNd*~M2TtCZ^^FL%OwsV;i_i2g%`t8X0|( zcNGmYS&R9ibHPD`p~2h?A_G!&n&xQx4+RB)HKhq^Ff4?1tp1y%Vovf6Uz2{q0Jabk zQgqt7@-a|G8P@3NASI~(>y{jal#4S=hcYRXl!@Yl<5y*^SAo+99IM=HHOyZ3vb zklavPzL3wfn=}-Gd8A}D^CZo$g)i4Jt=>ff=!@pKgE%?K+0@LCUv+2zx`0g|oMM(X z&2)EHYcA!Izc?lKb%g2ZotXX%&ygL=oovhrjMZ>v<6s{$&8!){}W{3e+(JKxTV|a>V)fN z;e|pHIm-o945#&mXZ)7`l8^UKYZ7`BP8TzUE@qphw{)=3Ss&FUpSK7ciS8&cyA<&A z<7HP7kwXWb5)uVF5eMMQSh=?ULhfCNfShV$?GG9t-hy_Ecm@91ef#29aYpSFe{ej| zoCF=S7B}dezNE1{7X4DwntO*z>I_$)c;T&^j)O;>!SkW30!#!_f@BYY$D`4cpKiPD zm$FGJZ&@E{({G^Iy2SdJX``zA%7zi)|80WXl)@dlO+|Pi0x1cUcbgrS7Jrse$i;O1 z86I~F^T1r&v&In|K|rZA@3ULqU7rA|pHv1fkC!CK(4@TZsgGLtZ$fl&YwD;XQv{ z@nIoem}&ZD5NjfV#C!2<$oEJ3frj9ZNj z|3fC#zCidfHCf}ksXPVipT#6W>KOK5XqO*XHaO9#XJ22~Nexwrx(gL826D{JX1UeY z6-x_0TdYLckPr?A3znYDcRh2E&DU32Y@TbAsIt63v6g0N|G}T7G7uvu27_IO0+zQc zv-%&eJfhyld(Y%Dgl<-p3iEa4fl9#4&7WZ0*=2>JX-dD(IO8+VpHB4r4SuC^ptD^Q z^bJofa-6CJ_I-tD=JyGh)p?x{p)3ro<3vrpO!mfBbvK(9)V7!&|JgLt3;WWsnhrls ze$WN{ILuUNOU>zcax9o}KAc(?$>V^dRNB+)kCRkZ&Kqd4qk68l#rXGKHazUR*xK7( zEzaQEwQ2QJ+_C{k)Qoe8EjN&%GFmOlq;>24Z*d98G?=UO_;3*C{@GR0=tGAWgkqik zmqZ;~@ey0gqny01?JhcfX%~fq^|vir&FB9>HE=V2J`|LWs*Q9^(|LjBu%N%@Xk`=5 z08CE1q?$bOmbam`clrEjFWYJ06)#fr&}jD|JGoeQ`aDHg^Q&#(7yM~9;4*VoD?xq6 zJ9Yi9`;WG|Gdxg~iXMKw%iSYEZgAa8C}>pdB#_U8iE zgGvUGpr&*(8=)=X9ud-6tf5v_Jx5Qym7n3=R;&!dyW5{ z9Y%|zUQ$xW(7x14FL=@%1Ql)UkD9d+XUvgYb0hA$FD#1M1BWKDweCF z@n_xk@MexkDd%pOxva>$(4ZS$63O?_8K1`W+Ew{KvYJT`nR~S7dZ;(L6zJw|v91&s zeZL;&-aMaUf1?YX&qupI=*Y#*q7{jNVA=io7&tkv^&}@afstm?Q70@ zAOF(6dn`Tb->3{fp9u$s4_a9N$rK(S!(t_#83l!$q}G8i^xlv2d}5-;5hJbEx{0Y< zC*2Q<0P53?`0s-`Wf|q0G+^DI^4Q{{G1$~qzP9GYPp^W5XJVtKTYc4J6fo{MQ(8Ll{R`pHL>BZKZJ5eC{aw725zBKRHZqd|%kAa4MaxIQ z0OVryB3FzYU55iL)=xdzsmI}|ynN1jrOB|cjukK&r=VaiVGraez9HfMWDoxJlcLjsY!4c7&VRpST~>Spdfto``fjcAAB$+H20Reu`M0+g>>0^uT*hS+;9(LqG6bRKc$BI2aKsd_$loFOL{_?9x9o z^T&+BJmCqO5Ed3hFGvqIMzKX47$4;1+n49LlKPmA?);jK;#geI}r#iQeBby|Z`8Divs1=mXNtQbS~ zg?%5+16m{v;}4{7nosAgr%2|?qUzHpA8*=1+O~Xt;sL*0aENy1D9~K(XwRbqEEIg= zQHHVovDiT`5UyED8F^pLHkO}FzPNKZ>Y{`kK6cq%S(gYTbtMuQw6O2(2r+DoX1zQf z4t{0s7&^|72Nsjr)Ms$%A$2$XeSXD%)=4+cN2yNd=!^AndejlFDu%UtcOU-J<(%RM zBEGq#t!^Kb*R58t8vP|3PFRN1`8kGsltCrF25-CoONRXids1C7xMX6eVS)0vM}0+f zW;)OG5+mtbXg84E(L?8pKau6*a~9oqF7xE7ger0~reN*+H(~FZ<}`^GnkI2_>Z<$x z1#3NJVCmM(`iQs5MK7}jNOd6A3=Gf_{%ZmO>2~0WWAEAWBpqkn|AhnPPHRt_pHBI% z!+5e^U5f30*|_<!S}vaOzSgTLIieo3xX*ue(ZgS^imMBi4>;Y#NapJ2CT^@%%r(}@sI@| zl=Mi!&A-zC9l+J;35>VjOTAg~urpUvd|OH?7vI~%L4Lpfdx>!n8okgjZoMVEI&w&& zliQf$A+jUqoHJx~ECzNB=Du?BFc^TTZR>bT5kwqsX1dz#dCRvLCsPimi>!q1_DT0? zg|)Y#DMe>$RmR3+U>)Hq|BJZ3eF4VmUc zU@L+7OwU)|GM{h;Nw&83kFL5nW_!NB;B5lik!s7*L3B2@QYO4&-}1d;jO|JJ_*6nHd?ow{nk* zZj+0Pb~BxrCtw2aGQ4HW=gbwJba~Nn>?NL}gCC>>bnJT+F$o;`&ij5m)C<=+by2U3 zA-35LKNeuV45~ z{FpTv^ViZlYOr?=#C}>J-aKXhRrP84lXZB{`9FRo zWV8$RhmpS>jW@}H+PRH6O|+!(aE$u)dOOO$#~w~6ksHWqC?#V|{ntKbL1B0g>F>eQ zRQs_&N(hImwe>Ld{5>ekW@Z_=Ql=V>*O=*y9&l*ljz4}k`a6t0V}f_7J+M=1L0L7O)=YS@QuV-#Z62(b6$HXtt>X3! zI`wf_qRnTMB33GeSAO7JI_ogiLFgH3x26*sns{ka0j7Zcj*tmrd$8|rYVPC~7+94J ztcJz~*9TE~M|r1=Bvky(JC@4IU+F8>y#94^QVfP3l&EYXkI+%sLL+{kz#^_k>WyXq z1fbgA;4DR@-Gk)ZE+QLXs26~IV~)^F(mR@1Kws`A%;csQkMsAvh|!hR!mlJu&(IcG z`Ve`;o)PEuYo}8}Gj+zGg>|5^eCCPg#_g!f%q(OB$VB;x=7g=fD>k_p>(;{qPejkJ zpNT;4{K#P^B6A!v`b#8s4Y7d&F`K-%;h)`-o!ZnewmVuz2&?^F)4Ja#@neBnIONCr z57;A~B(LxBIIkF;`$-s&<`eQ&3uLRlRnHcdjcer`%Sp|@S2O9 z%1q-nGQ04;{kh==>d`;jPD#f( zn|&_;a9G0Ip1$GE4{zA=S&fT2AD6?BAVI->+%PI3YtK!$S?IQEGX3%z9gazL z;p8rXhxg;w-&;+LgwbFjRY&aZs_cWiE3bm5gzdhjnIjWhK0VMele!ERD|)dqveP|8 zXWJJ&!{;FRrE1*n!uWY_qcY);0y$i6Jxm8MciE%;kDdv6To3$jm_QSxYL3|fmTs_L zvr}K~z|^3a{VCz#}#P2w&y&AwDvPwIj(@+FfN zRL70q$p2>Db#KD8N~tcN7pR%UjP|Z{d3WNGSIUCR1 zc!kS->NAMz+K#XADbaOq5hS8nkM1{j@PxT|`76V}w;&d^40hnknHsad!KR0|93yV! z99x+3&Jq9@)P_E~U@fyi4wYZ_Vz$0^th)(~CduRE%6BNp`89h|u$JI=eVpA}+Wqm< z_4BP5EEh9{N{7MhyIZC;UB2aqBeWx^=bEZl`(`-1r3((q0*%E>EinDYefQ1&g|_RH z-#0BTtXT=IIY`5gfF%5gVG^*O|9I)RaRTZcU}4!kF8+T~qyL*3`E{gp*szF}oJ~E= zn+kV6%eJmcC7i`iz?;HrQHV|l`&5n7VA`7&()*Kc@01B2MaDCU9hVYX&y}lLVihkW zy4IuRT*O0G1o43qRc7(GkwJEn?gI1rxR;Ow9EYGpw|r6_Mg!Al-j4nxFdT0_p9M>g zTGBNI)E*b@276>cG5WzYDRj7{%rDyUtMnV)`U_2P1|)K!l@|Rse0s`CeSY{{_UmnK-9>iqzhS`bm4lOfgvS;w?3>;9oj`>>VF4~ud3nG3Lv*@&0$?OWvnq8OVgMyV znp}w5CEJo(qP-S#$cQS86IRNc8ZAl?gwqIBEv1&8%a%ZS=tSt$N-v_;MU}x7?r&|B zk$G=%sm}MF%NrN74FO7t7M8xRFVbcd6=rrtHTFdzu%NNxdF42eX4l11aI%Hqt=rIcsYjtH9yA0d?Xn^K_IHJC^>Iv-_6}34tT|oA)KYhI?j^nYlBi&zU7%p?>Zb z6TXb&I1(dO^*Bp-fx#UM524R=hRd}o!0s6K{=vsI0b5cxdET7$0QQkjFdOrkbgQeE zPTEP%hbAcXyr+m}6pr_kM_`W}r_T5OM2Or;xe0vS%rK9L#PIo%b+50ZGYB5v4@UH4 z#Hy7u$hFIw$?#@-TppVbnn_OPVS~holJy6WAk_Y}I!<^xEn4W zIA1(c-SuCDN(D#r!aObDtv}%uX^?N%zxdSA%o=G~PM6DP<#%0@1aN4&ak*-YzH(;s z07eCS93L2;SRUf`2prk^uNaU^+YWt0{-j_?u7N$;Wq|N{ip% zK0Y$s=l?>w4{1Y@M2xWNdKej&czid5*|2wl#!1$G0ze`c1rB~aWrc|0`N zS2wf?nMO?+z8mGEbcvh077%s{ze7Gu+LM_BHWGZ35IFN~3|q;z&Z?^AM+n6d=|p6m zC`;JZT|JCr-ix$)+Lz*jjlnAm=(3W~&|!MPHDCbK!+doIpd;FWnCEF>(?Aroc=jbW0xSjoWnJ9-nLZT+u{%8z@#Y2tbx{6-#qC3;LAh>zp)Z6CJW8%uv z)q71;!BpOlw>^#hSAtjWx@bI|cw=#Md-JHGN$r99-f^Xx8`|5d1I+3hq_Wn4_|-}O zz(4sPMU2)ESk^a9rVwN5n%|U#!AxZ;! z@2pTFjK7ab_`Ean7}fuL#{F1P44zHMoQoTe)G>xm7|&`ZOJc4~}&5=S>wvwUEDR{{vX7y4FLQ|x(>{cVcUL+vq( zXXT$Ez_75TAgosyP!k<0ugqhd8tvCc#cWPOlfC=|gDB2Khbq9H`RCc9-e$?`22Lx9 zgvSG3-k1n2M&^~51&^aB=8t?#S3nz`V@Mj4C^h=z`>%sOF0~ta>Ji`B1%^P zj;>ZHp@f8%RI}lTQV!qru;`yGB-5*ZZl);}a2Z=QwjD{;l2bN|_Len$!nVpYhNJj= zC^Nrnn}|@#1R-8nIbvb2GZLnN_bW6gTOekp9TISm= zErYrW(QoFxnaL$21q(5wBrZ9+K+9?`DnkWd-gEWI&K9XLn)_6Xj7cg^Vml6|CPS}3nUnMQT)WmQ!AfuJ z-*RFf_`SGD(dH0Gy2itL_GofX*sz5^f1ImJt?`B_jc4)>HdQ7abG?kSYj*!n@ z$*|##hNeo?xzM+>PNQ-j@I&EMjuS{;umTv@ucbvTN4-bW^wQPQX`wx%_HMd5`)9N8 z3sTeqCDlqK0+_8TIs9K+8Z3%o2W4tpQNwcIiziuKdYbH}&rU(*+@FCN(3;C1fen*hMN1Tz z|4bzc65$}@{q4$ff+J!`)Yf43!QXhH z$i|ATuf<@j7IPX1pZNv;POfV>pc+b;Y?d`hNnEk6{pd{tu@YZ-_13lNJ6L^lzE0w* z=2An7%YO zYtTuXCyHVsti&t+{+lYSMfx_kw_Wjbp+2v+-jvqEdGALNA3#a0dGVG=cfmd}O@Y}t zUeNt8bSGTpKRD@U0;j}v_B!v#4t5VUzMbb`CP&2;(GWhAkwaIk{m#y#umx75Q+IbR z_ciHDJ?J?!-Km2Hz-s@+XJc1e%fzfh8==g28;j4Y8DEBXl|lmVnGJ8M&rgo}4d&}# z4nmD1ly@I#0q+DEZa({afF+MMBYuib(nj|kjN5w{vgHzo3`4XdJrfv1;k>>Q3R=TB zg-UQDN1I0K^6l_iAZPuY&O@HK!+h1YMLxJ}uWh7nv&nd45WMj4=FMOcw8E{$oL)nH zgfyiVy<8ti>^ksn?6wWd4VT#ctrsZDF@aOgnw@d2$4`sQ4)H=?)&E1}rh1WN2VAO~ z?vc%@k@n%ROl!8CvCMA<;lYB=2NsWXiPshw17?68Ej(``OX0p7?W40lKZ%dM$;t~c zwH%K&Hk;k(8+kjEAp88D2Wz9vGo2(NbVbkHTl(7r?l{i`>syk)13|zyV9V%gDZkeK-s)?vJBt7~XLio1 zhAcI7YyXuWlCg}|$2BgmLlDa0pWr_1_GkJfCnN};Z+SPA<$UDNge_~U)k6CW z>G8AUA9tm5Wa%R(t^+HmgWsowmk?*tlp0ej`3ATu8S7s<7Z$(=8Y4pUKWx))DXH*J zStvNDvRZ$;yiK>?>T_SP5>u?_AKS?c8kAsYQL+wAR8fI*B3(yp_H|Y=p*^Ogb|UB~ z)lt&|C;6|r)#&7l=Y{UR?rW6$PzSw214p2ZB1_|F(CS5hxGAWVEZ-ydE@Tfo{*9hDe*V*pwvL%y`9!P>QEKv{wRL? z?n72cpZ?^{l9tT85C+OtnHvE_1|h=N4=uqVO=|h?)i?&h6Ng_sPfDn`~d~jA4yfNf zRN?ZBEJ*A7(|12hRNb(mo9|!X>((@Accp^R$u1*`ZD$XId>=G++}8Jg@#L?eQgqUQ zXfV_XHkCxi)gCmi$=4HE4+6Ju$sf+?4=@Rta*IXTSN8rbbSUuWYwnRj>2 zv`$`~A%qOui)coAO9Xj~oM+aW3~#o>Wgut|C-np4mP|N|l z;y-*-PL!^6#a_>wUxA%YP1p9(!o7Sh?+8EMnmYkE$7vzaU%FHBLI5X)jP1_nH?tD7 za51h&wpE+E#-;A8be)MWv~cbL2uU`h`W2fUE4NzNLfVVxdGDl2f!>da(xHlOC#Mf! z^Q`1wEW=+lOT5Ahfct$f?s7dwi-Xfpz)9ITIQ8|#XP^QqkFQrtq+leC`>DmZ?v4$# zAydN%9WIEs9Y7xW_vbj^ELslelt$j8nagJ80Rd-zMNiRZ!@U5xh{VmNV6Cmydftf7 zdydnQ{J!oltcJPAaqqV|de@A7&dA9NIp=ILYYkK*M{Pb$yI=%oA+ykCvGVZ8IZ^;J zxt<(~J~zrg%it?xU}(BL{VDn1eNF^`1uTS7ci&`wpyltS`y1!Ha3o_`samxUr zm>IiOK*M)A?qq3y1buct#Q@H~qxLGW31i22&A9tHb~68JKq3 z_KDn?F!2HDVZCnAcjgt>c9^FlpajKeLkCPj+LmA4hrDYh>Ns}IpP*Ra8m3H8Cml?% zbMwyfab$2ZzYC1_KGO2#I8_zC`lXEDd|dGPnEs+`qOzGJHeL3Fiu{MTd|*i>Mw81_ z6h&D4SU8>RmctEHT20nw{()NmT3nxb*-t2w_@&eAxE=6CTFAkHYqkF*CbbuTH)t%F z){@ePQSGIOG{ue+ECf%sc`oXDRI;|giKny9e~#w~$L0ar@R6SdLvA}^&9fo$bOa=w zOu}2j%KRc4^cSQa8OLs>?<-v<2`akXV|-1yXjkc9wv#@P+o{d|x?Z=A7g}Ie>--}S zD1%+AIi^nwZn{LmRxP~84(glc=H`-uk?g(zef8KT!=i z;w482@A=90`}QrI$z{yd0WxvG?4EyLHNd;I`~AYo=G;D%h!6sSP%HdXw{!m>E$)yZ z4}mwxS?ejf9EG|}WpX;ApC9P-z!;NJZ!G1-%1EnfZ&YL@IOufAB8(0>IosL2>|^7X zR(c2yN;YIv z<789Y-6&QymD#=b33nwbj%Kp;&?ne*2F<}+o~YSpeEhbp6AYLv2fl8eb)BH6U2 zb}lyJ>#8>+!W#r=CF2e<%BIj}r(Kirs~?{C8*SF#JBB+HpQh}hFXkfj3VGK}tCz}h zB`Y!;fQ52Npsc{3m@whYK_g0|pzJiK-%u)+1_wN8TWR3{8RSbAdy;-B{FO;#YHQ}x`eKQ9Tk`UPty@f{ z?X~tEDkU>+H*x_rvUI}Mo)D|>h@A%9q3P&ngg1nmcPl-Vs^HSHbb8vp#%$cHt(8h% z8_llDnJb%P?yj>L0fd{G#x@*mkM@t1&AB(-S7P+A?`2fgPL-;Yj@UdoHtN2u%uI=0 zu<8@2C0dzNUS)RQz*wTx?7a6#Lqev0O4%w?m8zrN|ozS9JF87NWJ^th$;Qw+Ms`N#Jw5%91g#G*3TW;Sc!GC>MorQ9jmVF}M>L6?h%v5i_noCuraX@2vXR_P2aBe#iQRnvGj&g1zzp?wBOJWE{c zQ4GO#^1Nd+b7p8~jn<7WO+qU@(%tgyDlS<%om3?QRuRT?2F3Oh;TPRc3al@h2FH*_ zy~tP@$=tDN!1l0OT80N)256!l5}m|>ip0knJM`{_OfLJX7S4>;r<_d3W{$dVs#w#x z@JXEXHl{W1?j|NqHgI+B+2?pDY&XTauzTrh!x6EahSmGas$^!3Pm7X=?bEdo%B)#Ow@ zNON0&RZ27#BWvsZ);3kMhnM1JY|T7Z$gWF~)jPHB&V(2#@aM0~)Molx796DO4OP1} ze#$A_0Hjx_nF6uP3Xp&b{no72C!I6A8^s3mN;$Cwjr6QhOjQ3=b2_))-{Wa)vMSnM zgZAW=`()N3`e(86fdArm(^Bul7JKQqILu_Z5t2vBZ>2FOUTSgzToXbqiCuK^uq_?K zSPO89wzK>~Py-2Ne?@_3WR+p{!*2W2HLb=yKnD+Q;53D7WpR6Ob?8#-1)`$1yHnv3R z82#lo>N7lJ#rM;E2M%G5-+PUV-8)kqG=NxD)!3BO!KIuEo19p{&p;b9C2+EBS79~- z?Egka7#Uy}ef0VzRqVIZ+Boy^%yUfqZjLHub_eq$c2ljZbR~Gs%;codK>QsApuFuB zuBF16`0cW&rpgX^vGLN%X7;4xcf;h^*{>5k^QZR5&+XGcEcJcL_8m~tv6&U*3dU-i zn&O7pxXL*b;4&fGJKyKqHtF9T!9Do}VQaOgZw7bG-AawyXOsK_Orpxf#ZNIVyt7s_ zP!HV#FMEw@?}6du_7f8`aGjvv3eCh;>YzDVt40-xCi11ooxU#U?WZ$nfWZhawPNcZ za{{HV8{Zrr$=$;qO!{BpNt__3!^%6|Fty!DfUQEh_q5V_^_QJ6T6MRRO|`(|5g)_V zH&b3xwY~o&bo7fYPJ3@=FT1}k(D?B2231@p`_LmE`m67xVZUP}B&n+H-tCI<)7w7o zI9nRt_+p6twCy?pf5cslTyhs5NjnLDa#+!mmlRH7SOblUNu@t6UZ@O2jc3C*3di-Mvqtmw`y^{2afgY=yAd2kyHznUj z2W#CY9Ac%oJNMa6*$fk7GqP9IvR2OC4B1}##Oq*T5K=4}$gSs@r3X~uBsLr2a01kG zT`!1&27c~_LrPb2iCXInM_btR%80srl`tCJ6Hm?SS%)6Jgv z<}QaAZER?F2|E-hv#&qaR_pYq)J#4oiPuK@&3;I%&(ulfjzgs{rL$3qWbGXob@S_V z$4O_^WoGiJ2uXIPXzzu9YA~1mH}N{SM-%>M5NRcrPt<_J^>X7m)!hg-`9h7r_Rn8z z&G*)D4~L5a;YH2qg=Mj6>1?70_2JpQ#~lfMr=uU#$X<+1CoQR}7E;@frh5*=$1#rk z6dty{sa^UsBbWNzESAVYhs<2WdbH80UG2(Of-xgAA)XvjXaAeRSjwe#<+f^id^|UY*7@(>sa&wQ%u6L= z#*GZA&CGZnjZ%l9+zicvizck%n-;4mq)j8n`d0{iAT zmKRkY=j+IoS635^@k-wB%;507Z+Ziao1gZ%?nYU$s*X$b@$Q=oJCE(@grRhKFU+}W z!adcY&iqPFV(cQ0Auki%iV}pZ&+}KhoMzU6@Z-|C|M_C zC~xlG;fle&1GNI-`DG59DyM=xU7vRDv0d!2HoJ=-vp<`vQCo zBR6O(&68~F!!<+2m5(RxscLsCq{^k$jxiN!G4$CeQwKLew2XD|z z^dN(2yW$G2NH#S2`5b5MQ$0HN@oPy zA=~j{`e-JQJe;!shK*m--8g?Z+Iih}|J&?di)usik{#kxA>B%mNq~v{IX@tg-00rf zT_fzH5R0edF_a>zust<9Mhp^qNYjr+GPAaV+2B?twJzznGsmxX*`5{BKwRuBTW+U( zqDXkk=sYPx)j@BJDBb7Tkm!DNg-tZ+=HZ7yN$-W>>bbd%e#4UePP-96UC61$SYCbi zVE9Z(BRwsCJ@ZAsJ_tIheg)46ZGI3KD{p%#&_Bn!s(A06kp%T}9G z?K%lol$5GoOqU`7AJkLGWzTBSxPS&hkj7tI4@S}Bt|3fLhflDd79%)8 z?WQc{fqq`**I09QeX7)BcPs&&y5#kLI=1?lw5}*#W2{-7bR)P+zviJD^+}}C({O&#HcW!b)Yx(1T`g_p;DsX$a(-K`m@9gMd^KC%Hx4P|! zp`vVJa6OyBq#iX7;79yhgj&fkO^UH*^8D=PH)ZHLte+6gT|lrAB2hP1pb}~sTZ=OD zw@=m{e^%}dfnoYVQFCag)~Dmv*^Kv2}a*R zm3JOcD0171N*sC3vk;w3#`aNx))o&pVBvq)cbW7h`ocLq0Tq-!`2(q)oYdA}JeWK> zw2jnz)_i*EMrsp-7!Jt6B;nQ+eITHCj($-V#gf=N!^_%c@e#}J)4?r)o=|7<* z1h38sj4~p^WL9={HH!L0iwg-d%2S+HorpP~j*WZQ;oNG64;5Q?z9{Fa7+bP-?+ig* zN9?9-ywbjr6tzl3tsYCS-mkhv=wS|>kPE>9y*UXTF};P^4P|n*;`MZ2C0YoY1s?{{ z97=YX&h)zZ_mp{eyl>-2D4;^Fqv;x+V@mVoqLMwi9vM)+x#9#O3Z%n=>gmnw!&n~)}~&m z{@Us;0qmLP+h(>{Qe*3|IDx{C`Ooa&MCW;!)3?2vx-Y8lrVpSFW>oT<>4%mxo7MW0 zFiSBTZ=1{_ZY2Eo^Z6I^6`d5JpCpm%q>s<%HetTW!9END3zcrRCVA!a4p88h* z?w%I|GjgBE)ap~N?YDeH!&rXJU8(hamx)!6b3M<5lgPrFuuC&mMvQxPjPO=fh zS(^Mxzw;0v7@94p>f}4kg^`@$e}o25Q&8WqApI6j8!?2# z{T*pVtS2e}A3Aqr|6UAlnt&$be%xHCc(7NT4%SurPopQe!T#(U5k$%vyX1%D%N#aL z?EdI^NnJ4uTauhNipmVn=XT!|d5Lz9It~mHvP)J{&ouH8wNA|mwk!xLDY}$K4&q}V z>J+d*zGNXKX>u1vqWStI17+)_?}r)Ks2O%WD#VAJAo~0DFCKVI=;As{&sHzC3UfY) zw%yiu_HgOP113HbF(}pPlHziW<|b%<$POBMomu1VPNh+HnQland|nLvs3;~b#l2yR Y#OewAc)Y>iWLUUh{>kG5pYf#s18Tul2LJ#7 delta 18994 zcmZs@WmHw~^FDlNl@gIIgAk=V5BdR=5RmTfJaoebQ9??(L0Y=I4k94k-BQvWhkW)y zzrPp%^_&+hU+g{i?0aUenYm_`*L@g>J`A5q6b}kO;-PKZT(z0CwgoV45rdwmp=mj$ z5oLjT59JYWbYHe}QgyWrdXY*rIw~p(u0~anMgfuJ!zv5y{3;FA!iJCKQ3)Ocd*Nc1 z1i#QZ63|6T)|Zz0SCSFl#n9Sh&!Z-x`^UDE3;H780$P_%oK*}Ehb7as=Bz6m1%Y=z zAkc_DVhb|NomJqE?_7&+>%j6LZVzggLNnKlRSV@dKY#7eaDP2%XnKsd)}fq?>PC-o z!&9g_5FVt7=oqeS>(MDP`|k08@7q~qPU~xCwaKe7zWK%Vq!e?Xq}wto!&_B7_T9lo zX+FdDqcx0U%jWfCEMeaGmdr|=i4x3W;ItqBmL`SKfV$##o+$I(o3&;mtKgM)4z%Sg zQYoTt4{Lm))Ft$MZ?7fh_5*!q;$O8TX3XKQiVmgw{}7g)l0(`C9x%Lbu@S9uTh3wK zFX+a4OMt)Ztf0hwc*%BhMir+bP;e#YZuc0A)U!2L>A19eQ<);)Y2BXF1W2069)UGo z?KK{kr1)^@w`ODcINrP15AX=~?@GtB?? zYl`_#CvkVR`Y{AeFB;$tb^TAZ7be9|=2UYO4c$bXs0S%@u)ON54Eh<+u@g9k8k|ZNxW6BT2y=|SgX1Ev7P{vx3bZpb>$5m%=jr(G1&W@ zb&acO2sRKRhxxRoKH&c z^)&Af-d$22zW@i7!1vO z-Q1S7`C}L;+@7}%v%(vNpsx`I^rbZ`TQWai8`un=B27%nuZWeQeb-GQ`zmlGsKNIZ zP3Oy8SRo739MBDKHB}~wxwev$Hy3x(HwQXpbKGjqYwABEYLtWo#PNSW{(H#`#~CH$L)9neyz)JYI*OG9jLk30`8csx0UxzyBv$u znN-ng_D5^ao6`oGFh%@UL+bNqdK{Ba;exgJ1&l8#(n13YycC{wH#~ABI=9e?2bRA! znA$X@PjixQL23M3so>-A#!ZxL?1}^#T9QWxDsd>6A4QTTqHiuneY4NJ@_+SOevyI! zLBay)%hmy~>CMz-0cg>kd;f}+MAMmik){yw?#QQ`jB~k-rBHzS`Q=B6Qi##?Dw6=&*cKDoE-<90bR?}z)FgiSTVqh&O{w`8slTz~d% z^%V*cta_!pFD_E>RGN4s3Vk>FtPXghmi8`w+MR3bd_}Q_Lw!BCtwS>wk}Tpe@x{MB z_}Tg%d>*bicj#sGZiR3|f(YAm7f%UNhV|y4>Rrm|O~+;~9_2;3U@l6n!%|1{n`eK2 z2_vH8Mwx}>0x`uebuo_(et+H39~ZPX+rwH!-!o=NaTMp#pDxhhzS;r^oH_TMI!nUG z>5HXRV_LA)&}V>*#-})bk&%&UjWS1J`_c}NE(miT<9Xd!qzHL%@N6G24csKEa*Dj7Z};X{Jaj>dyc`TjD{5z zm7HC~MdzNwC+c0~C~<+=*tzJxN^3%Q7GvHEVLnu!A4=dk&nB9I=wki;6d-5vD&A3s z$NR!^>2R*a*Msp~_%->Y@7mI?Mo7c{BGyvv^mD7;(He)O(~%rJp;h(z5Vac*!LZ9ExlrfsQd0smCvh{djkYp zEW3=zeeUyz*2<4zspj}te5*fCxVVB!PaFqN(2jf8(jLq=MnH~|_hOrseAMCumCUfzH3&LOO#O`o5h~McW@CCDRI3FH6@%FLSpL5@h3HR%c z6zsmq#aq%``mh)FSDlcs+w$c|Db+EKK`-G6ex9*LFX=>|b`T1OBMj7Re8`$Km~YS> z-1YU|22g6-Ut~}?2Pp&%nRp9jHQz%g3UvSy&El_Lu!U2$d#8B3fqStU>^VYbVmtA}+pJ!IW0`5v30(R6PqdRyIBrZlfgX4h* zXXdN44n4(%xTN;{S9oh*Bagk=A3735(pwAJmgc&38F=}GW}B__mHODx=LqaIz>~A! ze@99Py3##&TbF5J70zpXypCCV`0IMbaV$`T^oFmL$A92miJj2f+t^t1AY%{5-!!EQ z_DEH{nOh~!Uc9=>?AzYbquIRUH$myKJ^jUFvqryQw5GQXzVr=# z#TtWKA(x=Qb-re0^5_oPx-fg3AR8LvI_!r&gTG&fWb%ACeAyq~c2MQO;~e5=^se4w zvP_n3Xi<9WvYt$?z2m&Gtm@3!k%wUFN3EuDTe7$f<%9P{01H#m$+~c_Hru2g=Hlh}ovE#58ifP_5V3xotYds^xEb)#l=}ucjHfh$=POwVt%u6?Iraa$2ZjmxOEG>_;?)p&Wdv!!E8oe|;E$_4 z#g!|KIdbE!_LC}hZ)|D5TZa56UO<#Dx=(%+cisV+Ewo-4xU5Wx397t>wrsfR2e z*tk7rwMq!ubSlyet3+b`8&%^o?PNLfp@pR{v8vfi=jL%mg0mQ_H2ASa(dWd=Obc%8pH6Bre zG8>=JWlOSn(H78*HjD8!ke@#IKmNSfCPz8DbOoWM7@D5fW{e{cUIKYqfcQCoOEBNKC@4gBkRc}jcP07~sl zl(m(0vCB+_7h%v{J~L8%Hi05$Gy;YTDf5~b&JUhsDzeUlRbLDSAjvLL(9qGOJkYAx zjgF4M)}yE7gmhM3{t#j-U6tJxLhoYxT;x^WKU5F{?NnbrQ8SNgsJST9AqVh`R5ucN zKrxxxreZApVR219&z@1evh|>Pa_{$z^+vEhD`Zx8;6J9jn29JH@=?vgmUb(p@@W;c zp89Or1sH92%s|A_!3!vF4?MttlsPEm2xsm!RwUH{Bv1AiZ*>ciqPe#0LLS?MYOlWph3OQVZ6smkPTp`fSeXrfRyTHfu#V^BNScylu1k6zAKN3M z#zAIEmmDY&#!62Hs`wZSUzKY-g>z*$K@%un1L5fUCB;@T2R2}X_MZz&5=ZHF ze=_>NiVuf;|BIttnH}TenzM7h#m|VMvD^ZG8mwqEc?nmyakMXij-_swv0QW+jmvD_ z_*Q;LGhqF21{Qb3%1qxIDl+u@2{+hI`~}xhso(K)3j}f`2wQc**1Z$~} zVmLXRH>b&W=5x^fstT@IqKJXWEqs~_ynWeXhrhi`B`?yE9;PV_J=Y-sLc8Q)}Muub9BVN*bh~ zz?`7x_+M1Ayz#3&dbC{XTBR57cV3|BVl`7|*Qb!>_(g4h%sZ*;ef8G~pFNw(4JZt9 zM3Es3@M10nY6+}d96V5e@A(T8&iF4|;^TD6EwF|t&KU6ExZ<8`M3ad8QB~QFUY`8l z`;o@et*?f=5XP$*5q7TzsXS%Bwm8+LIP^`+jZeB&sG#zm@A=;_YDAqs-w*wjnKVmg z=AVkg`tSAf&%<~+5wa}(M`dspcqXuPNYpk#wd)<3B7Ahswjc+YM_~=gf15n0|K@KI zA|{sA1~z-cL3M_^DtL=!x_Vu1GDRno{38q8wOI&dt<_Kc&ab@9F-9q-$+!$ z{-BM-8Zl={kZ{{CZHxL%`WxW>W$o&rw2m&N$@F?l(InNM`%I?2A@~)KWV5iz-S(2Hp07V`lfzW; z)%C>)@PE7T*iDes`|%|1>qWL!m6I#O1I`mfT|e{RFD-wHv{gcA!a=^S`VGwC^o!2S z1?gh{`|00G^_9j0dw_25_*B}9Lo#J8T^dY8UXpKt&o$-hv8HRq5GO zse2~1v3td4(W98UIO^O51VO}mWWr)F@yGgrrZ>3?&CYmdDXhco$;;c1Wm}Oq)&F8x z`FN_#oQ)0Q$_cg}mcngw;bS;LPV$gW6vkxER}`jRKz646mw$2b83f@JE%@PrZ_}U2 z=AkdgGTu80!n{gbQU1G+lCJOnLA&B-cb=Z3ic`vp;uIu-oYBZoD;=s>u1M1(n?2Tw$b$gvYL_TDOAd*s>5PBrJHm&`n62+p|`gx*a0aR!;wPu=sl_Z z_cjsV8@-AQbm?K`)!-53RhZbDc}+Z3)S0E(q(H)esVUBd0VkUX+2{9K20fSL21vO) zWpb>?#Es?9Wc03qm((f4n*@yi9Fs~0Oc5+UI!2*!e-ii}euq#){?p^tV|apbMRr68 z7IzEf_s8~D+43dU3ETVH)GL&&H#r^jxL?m>X*$8q?&>j6R1zZ+3nTdp3T20`2CK-^ zlx9=RlDyI76I0z_Ri3yVt6UipxsQJyPylwMACKy)k5h)!CK&9iQ4*^~4p+0)zcBps zpDwONqKyn>9S-k7R`o>3hBZJ_D}}VLuw0smL(3Kxu9rYmGifuH&%x{ANIM?Rf7Y~m z0MZ*^aoD)>?TvXr6681A718dv#sHEanM1JqGz|1Pza=05?x0mB9i=2N(3AdC&~ZEb z<>F8IP$v=_t6!Q2f1(>>Hk6o4dG}#kW%h5e+W!TMIU!Q|)~e#m!{JvM&jQ1_DzxpM zxoE!srTd6x_w*ax$@1oKl@>5*UIOMl+_pU4ZQhtrhf`dV-s_4JdHy~2>Ps9b8Tgl>7Of4&`Raq><{e5Haxn>&N_ibL%dEf430z=I76`!VVvz?b;T zq(F_W;cb)fKMSOxAEq zZyP{Cqlf@2Kpx&8aUMCu4|5Ft#xec)y+?ZH208~q9-Sjvrso6{R$Ly_&tB$G%3tVp zW)mTAZbJ*{FqGgQ0tncf7__kM=RyK^Jc5pL=E}-0KzM!eja-cgGw241ws?U6W27?J z2I99a3;H(06?$`j+S$sP9cW^DJ$u1X_-GQ%%)aI+H=6X8Ly`tE{AhXa*+Ay@l^4h@DTBhFOr%S7xL}#8I+-*vZF;X~}wO&7t?+Xm;g8Yh+&0j~A z&viq<7(b->s9)03ouv-=Q95J-br`*_&@JXS*neL4i|McDKUxv+30z49Z-k=54x+!P zOmYeTidHPy_?X5D6 zR)R&5Y2T(9>bWKXxDa$t)+EGVWyE;I&~yl%(!(T=Vyq{CSg0I5T5>bw zQy$$8_4}+$(o0A!!q3_=gan1pv+P>*Zv`J%DT{mwP~Q~S;~rdKrKq#a@yaXGy(S+- z^JLH5iZx~aCJ|fbhT_BDGd)a#NizW(*-igm@2gqLL0VW3Bl@3)wJo3%rx{JgD=8yV z+?FlZVTDj(^Ph~hX{d!Vi-dwNOgimqz*aiA_nI~Y&DXlmDri|Q;j&2aLC|CQjR7Be>Vc&yf7VL&oNj>AUtT{>z8%xNLf&+-pKc zc3hhmZ$#5};bxkjB92V=$Z0>a*QP;^Z-2(6+Hc2xLU2zI#WL^wdT&SqjJfD0$X;Xp z0W~OKq`b-d0X>K4u9$D!F*Bl8~&{@k69l7^IROJORskw1y;$N{c{CAF8AADR#tj~;C0U< z^u5taMQp0Z(4^lvYAM_yeg7LU!S%l}-T(5dv(QNAF%VY3-0AgrzdDKLPe)1FIq|+b z=dF5=?U}LA`J4ILX&RVh+Z>Wog`F31;k&@}t>;N{9>?f#tp*NzAW6aUoYL+2OsTxs_;JAzKAM7f_o#|Nw?$vlBD-0J!$S!JM zEZnvxxA0P=_m;Qx)vl>3KBcF%rEpBBlWLtqaT^-<=j_i^h}R9jFD^=9EjjXG*N-RN zgz0+N^HoZ|(Dw_N{OJzsrn__0sk=l2Qa%I(Po6-F5#2xx#aXrDB;~wQZ*kNNY+XTi)_Y3kyk#vWT1@c^rf$n|QRCeG!iURR zyevEw2PUT}Ip56#Hh+}sn$`YmYEs@H2?j9%G?!b2qZnojMH(SJwnyP-U2lt-ecRX} zKS!;%Cxhkc*9KdAz&6ze%U{qLXFr_jtrk#%WF1ONSL6N`p%S@SApi2rC*cege%)4m zjL~1d2A#>dRHN15HBf-p^H%Xp1@zAeCNjQXsm z`Q;%zXvEsGBG!FEF6m#(X5|Ay_cI@|a4ua0yY;3ezc=v2r=<$WXZ8~;K_lHB%Yk~r zAi+B#Q@`$R^4YU;I;8o~B?@I0Pzo`_DC=xb(-V%9oAq{8shY95K5sON7;)>Vn)Jfz z1o%f{zr4#`A#+B3{oYnr#r_|3TcO;kSS-9*d4}8Y;7OqMZo<*lrFCJm!A&x-V-O5O z$FVv@PL7-;23cO{&*FLB!znb2znlw6R5=l%n51&O@vCVIs384US!YR)fI4M~hl~AI z<@r;is@m0vUw~gz+*mPudP3&P^!z@^2IdVs!-6( z@FbJmlm<&{{;HcL9#BuiZD{yg^bu@aG2Qu5(vZvi zR8gMZ2B`}R2XC(drDskt{Hs>y3(V4NH$j}=R-Mp= z{0^X{g#A$FJ;D7WaJ&`Fe#G>SYd!3)D6V7Rv@jZQ{}uxhnD2BjXCq*RWsJr^BAeVGbD4dIclZyXV^7E`Y+c8rdX(QZY=syUX#}(Q2(rPPj(%8 zBwzESx}^S+?b|(5NQbrSAb|E8hKjYnK(K4kxodkqHkvV<`;F-LIP8Qh7t2wY z{pMRLucnQN&PHLPHKPdFe#Zu%7p^T9+pxaH&UgQ*mhk7dQc1 z^Me`WsgdHD)ZYcazHkyO_2|)L-3UwiOnYY zE))fRufKrGcJm^jA?<^rlDqWkM}WVk9&tt}??}HNC8MqRuVQ-g%Lzgd!7L9>Wk}oK z2$$kc(j@-Q`H|?G%c60Xu0Mw6&yuR3Ch#)^8wJPW6>?RFgQh2-ENaJUr}tzem6_@_*IG+sX>Lmz<}>W-VIPL-k7A`%SeO7 zD{5W6_qxe3k;2+oFrd8G`1&E0l5nY`6v(O+K-D>&78wUrNMcex+Sxd0B?*=5_oG;A zym;^+v7(}o*;)9~o zD)##B)!Xxn|6Fnwx6wR(*lDit7RmH1IsFZ+aI^BUv0BEeiLQ)&9?rN$p}vKpv-Mi$ zf@8<2_ZkYZXN2FnmKxe9HfshP^NJ3aJAI>DTkj?g?=OEl&buU*TrIu#_~&It*IbJL z5kc2rp!kUwq227@;b3|Dn)d@?mF*AOYNvgh8Lge*kbUPJ=_&6~9W%3A46ehpYju$m z7JON`=&{YWls6FOb%cqLyL?xJ4HJYZEyp+ERNLXtqOqO}${R{L?`X+^KZ1MPnBLyf z9lbQY^nXF+*;aN1zIc{2nb&#>FgJdz<&Hl2)c?%El+0HIw(Fuyg6qbaWXYhgk!RzH zvK|x-GDjEiNSBGCJm^(4iSO_ifBsINGp7p6cg)F0ulsz4O*JmBkeRRSO9@1bx}}nl ztk0UHHwf)!E(hvL%_rbIlg;eqtI5H0OMMvBrb@@is)`gG(E@O<^|T z!=V^+Hh}O?0%+7ENmJOG{*1KE-L5h>C<^PB=_U_7EAU9YcZ`{uBw+ieC+YF15bC}A zGpD$X@j?)wZN%EV!Fw?;T<~T&cK)Ipgi=!bv)-bKq5{{&4%Xw1iDQQS5udS#X^E6v z-(~(E{oGCaOZF1*l5Ef~ZF)2ZNM~0&EQv?3mmdZg_L7q45-w1K1;c$sEFACe!kn&) zq8i2YHK&W^Ywiu>1|lhIN47w?NM>2_fYWDVXw*-W%X}bJXZbS<&wI9-^tdtDo2T}CkIlNJ*B2Jni254Iz3tqW3o*(-FED*fBG?B67b4Dn z>An5aIzSK5*lk)`>xkZk1T)=h+W##Rh>49$gRKg4wA{;G*;z|01w>Enem#DnargLG zV{_>(TU$65^q${&=^X}iLzP{?GDo@#aTMzij@ zqRFyXkJqz6O6=X(0fU>un>Rnc^jedY za=*Q@*E^jE-O>9y)FFtFF|5OT@@%KGgk_6}*GZ5f^QXDDnko?N;v@2wSZB&wOQrz- za+4|1WpDT7QE7mnpCxAOSk<_qo!m8#qjb|fD~bjxekZ*Rubqf&(CSor9)T`4J#DkH zu)>1i6onAdgBpD|JJ+>o) zhRtbk@z!eh0=R>O!>Q8$zvAfssf~nUX1Nv@Osa2%*vp_Ag_F=dLCs-m6PER-(~9OsAMYL0@C2Q6&zDLlG)Pn;9lC z#DV~>y&v{p`2dg}-zvCt?HDF8em=FDvy}&q3yL$N=Z%3w1JNJR?W0%ZoAlxC-*#Wm z;_4xLuuzNdf}h7QfLw6FV|?EL*X3V7P)`jKljRr^a+Ka2{W4s@hzY^Z7QCYeHx}z! z72{NviF^hNgI72qQf&j_I$Ko%07FzZxX@A8-^@-t*~%OT$Y`vo`^9_Ao(HwP*@?|Y zSk07ZTIHg+7!NBBv2ESjF5s)(v^u*Tt?g(kU?nf;B=FFJdsqB`cURI9MI2uUT7PLE z=S%W+uAvV#2G)dLxNxdPWv26`=pTwS{mv}^V$vKy&IQ^LKLPzqJs!e)v$b4W%^vy& zS0REs$(G}&@k?|4NvDnm|Lv&Tc+-~RTm{$-s4}eZxNT9+G_P_jKPP~y!%Dp@Ka*i+ z@`Zv%1bUA2l1n3AEB+z>qOqf=&ciy9^}2|V)XR0SpHR4iwREVoSw8sfF?6MI(( z>D*)P9mS$0p!okvf8=zHMBVoOAk}y2kfJ6t!v=fgZU;mMbJ0ZPq#&SX0m6mddxZvp zQA<^)heMg;Xew1>H&H}MD7?)bsFPIdz7?B^RuP5EZVatok5ZPl`S2bl4Y!z=P+BW< zemhRs^fitFxd@l+&M!rNY}0ldnr?G|#g}eOC2)LT)A4P|(*A!OzZg#%avJmF>QMjs z86S!o#oGgP&c>=#a5fG|sm9!rojWK0R$AOF#F`UZy9qIjpYo|bZr}YJufIQV+FP+w zbftSb$KKSE1T2JJf*og0r>`7#wFW}%^V@s>22UH!IHpaN+PN39I)s#Oj(q@|CX(2d=oLwW^ zu4qZQ_Dsb?HbFFa=*$e~0J!gC)-@Ak;KE|*W@+?r#;WifxWxB!f7dP9~pRZ-jn>10Nbp8SP>lkDQ<%tr=`ss6lyO+ zhtV>LG?`Hhc#>NU(r*5i+r=0E#)p&&=RrEGY+!M&|Jn%=9W^E}QSSP4$< z>^=ln+#^*&2{;)#CH?LE_tgy7;?NO8RnDiq;WSUyz?oU(=}&Y&2ORHI7PUrPwrXpa z6LVzeP+XgP^YCyaij8LNg9-3f{fKbYfDMf@nIUrf0eTf|=3sJg_wO5u8=@ zhh6T(Y`q}!SPnAn+8Qd(#s0FAyb2QJR;eJP?*)GnP;l5WQ7!P^I-lIl?Df@?!N>HE zJf`Z#f;rV0@?X-df57l0_3(7O`9wzH>8gfYO?o(sxq`yL0CY^uM=tGDTKv3Hza|V? z#M-5N(Cnw*V|eA}a8v0pgndSDedLT2e1{Se9YPZ*JnhaNfcLJ)K#Nl17Udn|8NpI) z{=2jUgIMU^CzE7?u!1IU(JH9jdED~~58ss8x@WNeb`S}LOK~bzgsa)QDDG$sv>g*S z=~b!U0gH3~uxn!1r?b`ws0s&b_jcId>NqR77Q;2HnD>u1GetAtFCe`G<2U*I)nl?PmN(NbbQlBAwHH@2&nzru@CXCOFII^Nm z^fT7eGDp9(`+M>0XxY-+%2*0-a9euomr`}Kxfz-Wbxq>kyW{7RG%q57|dr1juhjFDvo*N(#sTQGF+{eDhZS)C+N6v!!u*7oinvFnCvx-70v`u)DT zuSla=GmaFMqJ!XcU_qt4I{$eNYyjQEMON~&W#`=lrgfJ@a1~})t}nh%^XtLGd92!S zsrT{T4lMuM5eW2D0YNz>?C*f1WXSXQ$Niv#D!{CYA>q9kM({1#_Md(IAH$c^wFxD# zLWX?u8^cZ(OdWh{gbt6*{N`z$A9I=;EN7DV4 zK)3S$a(%==hFCFLVBxEMGm%~hIS1J;Y8HJA%|k940w2L9&W$o74p}*JZ(N%yYTIXn zj987{#)$RIc+00ZJg<9nlh&m9=6^5dZUnX6lCG_$Sg)(F?*8$NO)kT9Ey$d>8_t42 z6LFgw$2e@RrsoBj-M)VB0ic?;gkNf6HYMD3FZz_fN0^;l7_Gj5N`lO^ROu7GVoR~-1| zSTxC(zshlxZi}`5>Yev}J_6*7+Wu7niFM)p%K}CHXY4p;sIn)o-g+0K8T=c>f(v#a zW0N9#D*86`cU@8MCQK8oJYzkiVdhgdqtl=pCv_<589Jqw_n24zv z!;@`N0}`Goos|F9)5$PxugmCRw#s|VQ^#}D+LhU(?X3@!pQ1EB5w>$Rt~CfxVoC@RK}>lY zx68^mo|Bi-KrCnd(u=5k2bYBAF*(_Er*nAD=;D1{ngcriQ6+&Am*6}=fLYM;@IeVH z6zW~1S1BlBcLbo};-T9v5?;E&a5Mi1Q2=ehsg&cSMCh6*?eTq*BuqEz`4;DCsM|!d zHK*`q;`WWbVWG!5YrAv^!W`%PBbTHp56IelNmcjl2FFYn%2f+~%Kzmg<~T4o^QyKB zo4Of@$RInM*5aU#WX{c6ko_?eQcXOI@QNi3_hHQ&;z z_x>og%v^#49TUxiOS~~C*xP%%(Aly~-z|6JwB{}x>W9qG~pMwE=Cmp}wQ=D`qu)4LS5w=&rcz_;7s8G_c^ zA*%K%FvCWRa~pzF4n6&c+op!O&>0OmMP-C4sw<_$XZ_NK(1Z);(TVamhmrDJ{+s ztx%hrnMS*jPQcMy-TF-UqkmBa=vdglKJ_UsMpx6G&umyIQ0mv1oBrNU z+8F9MHgN&s*&5=^n#6C4s>O>mX_Fp4C45|nL0y7fol>t`^buQ{zWkoLnOQ-$*3WEA z`c~Y=-|eS5B+(zs1AU~PJmp;X+@rbQ6mLTD%P2WvV#}@H0dM^bakX~6oN#rNy5JxS zG&Gjp#;dnXFZrTCAdrrS7_354!s{zu0T$~%j@>NUGIh@{Z`a;YK(SmM50kHB(fkGK z@@WTTBct7|^H!&$?d5XEy`;L!BvTS;>FVk>HU)|sGjFShx*N)xrzd9FZ3kTx53iz= zXGEM%%{3E6?AqG}Wh~rPMkAj~6|FM^$3?8VJ;zeGTVJ;KwSqHgM=lVgpB>EDizuPAB@?i{z;Z@Lw@I5smU zh?K4n(bdscT^UU57W?%>Ejkj5c9=-ju96e&9U^5L3Op9D!xQZm@B$w|AOM7op3ya7 zaIoWUCMw%_P_eY?70qPd)B)s1ed zV%!}j*}Oo$-JH|daLbz+V=3*f%7U=6kY&!>)8(`7U$EMm|L9A1s}W_WxV3$=;Sd{U z^cMV3pRz*BN;J4x9*x@;5apj3pc*^s7d4xpFkoSPvbq}bYMfTGh|zC7`8+@-7x6lB zS>Z@dG>y;v?L-2J4m-J9k4JxtNLM*-ID7i2Py_u&mZu?~2X`H`t1NrvYlI{wcmx}i zE0YTHR=Qz*Nqnm%o{6_6v6#d;#qOXzJi0+rLCRuaBW`vS{478zx z715cjQSmNvGzV`FZ@J#PdHnDvK_CWFpv?={gs+$b-aQeLI%zAdIU9}j$@9Sanu)Ze zb${)j>pb;Tqjl%ps~tRSfsV0AU3$q4u1kE&vgnf|Iv3cj5-0<*9PlyjexBpzeMyC= zf!Gn&I;R5Qh^}gEv(fTe%FFQjd{+CNz_RNH3mb{Z$ct`ko%||VH}S}5**blrNThp) z;6Koz&q}m^A2}KcOpd4EitmR?(&IWg(eVE_)De?2;=OXaH#@H!2ldi)294n%6S+=X zx8B^;P)t!~d#8dAQU%&e2FbJfVj6r0;N+d8f`HqmGd?$-wry_`@O5P`>b+F1I`ph3 z&gP(hJxWE(Sx*lw%nCF)k=Sg?7Wd#=l0Teq3ZCeJ9y;)a zMZ#WF0dK)=eVmuLP~$Y?mP5%B^vUCsB9)^eS~=NG?z4p{uU$NRY)}jv(BT;B3?aqM zUK!UoYD{-_(}}dKaVp7y*3jlv%?c=R;9X3vH%nk~ct|Uon z$3*Mq8riF`c)3OTO~6Ji=}%T+$=V07>f0#a+oVcNgp5Vu@D$wF;7*qY|0&Tw3&td$t$=B1Nb}M=^~ZI@dFKGxgT}Z&sf#? zyh}SJ=SF>CgXFeErf;m7(8XeJUMt$jB(gyx%KzqDvhzlhAlJ6a@qDdqT;bex>2&`} zRufOrICF4VDq@c@JIt8}DfDd^D74_TsVujtb5~cYuS}Ao6pa)bl{^|wVex}{J*evh zzA}$&;%yX;Ub%=YFLYb1A&F~#H6Cj4b79D1?l+-AH{I540gKIaQA_<|d_oP>zOm$# zyQTI9t{SZYO-MAQt8@5nuH!fqo!}B8rFW|l$hy5R< zBZ8$y>XFNqec8b|15ka-qa)1Ny}6Xu+bE+Fh3+(_WPz>32)X;<^YE}i(0lY|nylLo z=OP<At8=SC(@utX& zcG|qIN&@V=XYg{tXR>17gV|`7Be^Mc%md0H!e4b^c6W((|FvQpN+@o&QRv8$_s_S@ z6}U|A+wYvppd;m*DS(s~QGm52I)Y=G@kSaS}N#y8}XAUXR17IGG|k zU5VkW(UvWdi*tQ1{yQyN7OD}PLcR+$47x6eilkv`iNh5zG-a<{>+75O+~%5Z?K*cw zHoKb8Vou@PG7u3UX`98@^hWKzZee`%9yG%^Z%BIO8x#%OHf0v$CR($dS;KTlt6i%PF(^V<}uKM(-akw6}ordpQdp_AAKYY7VK$YHY*T2SF$D%Ghw!S|4uvcR%Lb5(`RN*l7v!aO? zQ}$?4s>`Y|>&EC>H*Et$9YYs}%!X&v_+iiJ;fgFHD`OsZh1xQ1<7~)PztyT=>K?ZNaiMcdL*#mqAj-YcIpx z0a~7Y)afYqyQefJ+iem!1Ok!R8c2G9^I-a zLy3mx&)EK%VuV;E1KnzOmm=VKmD4>(y8#S+47kYc7ht55j@q7f+{{%h5Gh4o*?#Q{ zSF*D;-J0$1iIj0hCm%-K=jb|nFHd6ENMzHF&Lk18k;9wO_|`TytxnQ-Qito3)Kb&A zRwvlNs8n9jN+oSeaaS35u>0hG39=l4+=yVXF6%^{Zqw#*uj_CbuTjlZ9@|a?L=_fw zl{KNo2^)_vu#`weMtY_L)3bs#tCj0=DPBONvE;DhVZL=Y@|Gb<>5Im*1=;V_Z}aQy zHC--rq079IO+1oP-9t%2uw3d$+A3fihQ}&5J`hLAkt~dSXEGkl(~FFf3f+SP{uN3V z-ifqT(OpT@zo;b@k`8B6B{i5i8}96sX$eDlAfPmW&)d9L&LA z-#zKvQVejImSqGBhc16Fq-58S`nQ6Rkjg}RX-O{))$U+9GBqKfF6yu`y4*A`#bZXs z#(i^01ks<<{G^DU^?jt{CNok^Z-(rwtVWKmch%f-id$);v~(we;RlgOkxzoagbk63 zVr7tIE|L~xEQm~w(-2Wp?1u@gCb{5Hdd__GZO=U}QaeZk_SH%)rh+4dc)QTf_U62< zbNU;KIb8v#NUW&$f{5v!92@Ca#bV9Vk4Ot@%UrK_dRQaRcyDD4)}9iHyrrIdyM>o= zS(K@?c_+Km(FIb>XR)JR7Kf3v1G8*5F-|*9FsbtD+%e9tEA5g9wcASdz3Ev52@ccE zOyc2$qz$azKdf=_JE3>kDwE%WguR|Z{|1o8vvs`Vm~eN}hh5NK0@oBhE?^z5%CNdW zdYD8j$>_nAqBSRCJ>Ebpn3c_>k52yw$h|;@Ur^s1Qh@eW;>|$ zi?b_m(L3mjJnW|xp|D6~)ZXb|$jaiCv^X4~>&wXDb`>=pP8>V&WuP8&#Jx5wnlfy= z@XB@!)8=#9J*&BJP+{`2*EpexdOx#2jvwVI%-!-nih;q{-QwC0x6?*KpkyPB=d6Fn ztLg4Tg&yd1WJk4BJ1zh@xi{}3C94!~&4#4cX1{7k@4+KE6}m5@w#)10G)8t4mGA^_ z1J!RmGy$ExQ0#`IL7QAUH#so9v)cm}h{^i?wskH0-o~o7<|jzmljvaJ3}5-SA4y9A z7R{p~UZ-i$i^&-krUh6j_h{0n$g8e5lFl;rsxnQ@qm96mY@vej!yNGuQ)Zgoft@Bh zeU}Q8xJmy*~W~_5xHe9FT zTrQ^FTi8FRYI+ry8Us3^l<>2zQtbH~5@yo(_B;MqB6Qfr5C|p_^8XY-DjM=ax4fek zP?DZwm6Wo-EIn0#&FnWWNUR`3*JnqvwWoIU|0~&AW70aqu+6s6#7*mFS2x?5tPH1_ zqe-i8cOXJ5snn`y;)Pp5Wi4`4#9?Z;&aBHpWM1h~ky;ei35?VFM7PYOGw%> zKMX*O$Pdj^PM$em^)lKL;fB4|XQ0w*0M_wgJ z@48uTOXS(&Wl4Pt?^{ivo?ad-6tII5D%KlBF%#607!3zd%CwOQXC_CNy7-M84T_*y0daNc)QLl9PIm>_Oh;3#yRx5> z6WF?NfC42*`E+Tn^)h!>8rQ#N(xMq>1Ipg^`zcYP)D zpU6dj+Lo;6In(~G{I~QYSz;dmZsxNE)%-oBtJTt&N?MtqR@T+oY%8ZbostLS?S3ZX z9he&acGPDO;KYlID0yonR56wDQE%$!Z}~)flDq2p-u@SV9HO!bFiM+}^2V1vXqT=* zX-N==<0!%`qrtcsdPSNYT?Bv$@E}n54tK+}@bX+1AT;xqJii2^05y5MHf{Mb%LXDs zGdy?6*d!`w>Z?(EqCpN+8k-SRh3A-=3&=WI_=F6b8grQzDSy@WB|vMk*vRR~bY~uw zXr0-Wz^QnsE%;1NAjEt(IuLahiB9vaVJ0f2>et}y6M&PbVLM6{;wr6@j{`m?mxBTb zi!m!rtlqrni-?3Nd~>PK;B?f%ViDycCNml)l*ZbP?>DiAlAdXMju*mM4Ac+IJKK&M za!7n8bVvM@wsn_lT~*-ic>%hx5Z8YGTp^<*@dASNQFwQU^9T{uB3yU(>Rkfkv1O@W z9LvV*B7kwW(>fT8pqjnj!`@4f-txR5)VZ4FBZnW`?w7HR{@L8r1%{EHl5ifGk9RDcVy@;lQG?0HT-t!l>D&L2kxoIJf3Y|5rD6Uc1C#= zte!(0rsbi^=<#d@OJ&-<-&V;bvx;l3vOy}FaS4JJIyHtO|9b)+@&ccRK{#9a;Jjn8 z(f<|hW*i{OfvR!m&R>Hl)^^%fJnbYt)%x?$Ve8KSD3N=Og=LwkY;J~1?(YmptLfr*7L%HxJx2e;@1ru;{23u?0ktFRCx3Nd5y)STB$O diff --git a/docs/articles/EDA_files/figure-html/unnamed-chunk-25-2.png b/docs/articles/EDA_files/figure-html/unnamed-chunk-25-2.png index 16757007c5a4d83a207cf1cea4c8eabfc0db8fbc..252bc85dcbe116cee8cc25157ffdedcac1e0cd40 100644 GIT binary patch delta 7679 zcmX9?X+Trw(vDj7wk~|V+PVPJ)<8srD99$;?d1v{5YSLT!fM%xfb4`2j*10aLF!2a zSyN;eNE8SW5&{&38@8|n!Xk^3ux|!P2ut#vc+cPW%)B%6&OFb|ut@t@qa0UPy%l)FLO}~~I*`o%`tg6iDpNBGjI+TLp^*#1%7QvP)_6sv zA2n-1?hD9}PUU`!KzQka(YE2%&{VRT90&1zW@SHe9Yn>*1zp~@d!~Sx-3f-gla@19 z&*&NAcSPD1CVuav!LD{)Z*Q*dWs))Ti}~I%zgVy%`1FO;Mtg{-5;ORRknq&oRHMhs zS+e3YYmpLyo^jh)x~XJPWeNm|m{Z4(!1v4f0(B7C*)=BCoAkuwjE-hl6ZinUdh|3!!yIPk6L@gDp4lj_tA{37Jt{V@qGxy zi}*A6$!2Q@E~lrfIeL9Th6FF&QTqWu_844a_^t_;3zluFVmEhQBM+u*j(45y263c1 zfB#Z}9VAJKmDOceDC2Lf`ZJ)!u;R)6(Wkg^LWY`spN;O)Vs_~AaNcm1sSXgtd{bxg zr|$j%C#eTS)}FZFReeBtAJ-1Th-?jKU@J5jZA+5ELULBVS(tU;c2fK13Evxa?=gQLIiWqY?(mXP z%F{IjM(7D~AO40TJN4=JWOFkIiu4oOXZEMOH$yK!asVAlQ`#!@(c6S$S#VpP`|V6} ziV+QeH#^A~Xn(xYkgyrszgnM0;=IxXpXNzg!k)A~Iv={#lf-k&Ms`InBt}WU?h5X@ z%i1JQboL}TFHx=5UVZNV2Lkc>_lBf2CBKDHJ=6J*-_9^YMGcK==H@z_{v<8|QqhlR zhm)evr$3+OwtEvqPd_X__>wYYDpqE|Ny2t4{#KqIvV}X>D5!BwKjUUQ4rU{ZZjM_l z@5#K;6}>%HR%fV=4&C*lU5&aKDoGyGQ(h9m+4p3=FTDFZxp5c(dkq~PGt~yf zD#ER~>`Wq06~8$Cll4(Gie9|RHPOR`mvK%$*`S}|UuZ(a`#WC%3c1G84Kd%-;VMs7iG`uqME{rkZ1=Bns@#l#C`YS+?F;gD`$~8 z@tw4|@!6F>+o;{SX7TZnlrgZ=TevcEc--@H9lWWW`{%lf~s%9i)D5r*d zL;I2`r>}Fy%7)KcZU>pokNCO7SQ$%NlR@b%xaRp)E7eK~UafU&lDPJ@qf3$Go7?Sl zwGM|tFkZ4Y;l5FHwzi?ZAR*m{f@G*mm%imvo(o!9W~!lzk=6ybY(e42wZyd!=TWwX zC1J6ablq0;{_t3$p9fTQc90mm+0dBo(|V8X6EK=&Vzu_*qy-f&6|*8-Ei`pnmYw4$8B|aAK79L3Fo0h_FxB{0 zyXC(UqCI4Igc5pPG!Sg<$BK%&g7}v;8M95YouR$mst@d1Hmq@cs?E{E^pUdEKy{bl zAUcgHnkBIZ=1Q-peEcN-ggn82Vn1Z&yXAE;av1`@U2Gts;M&dqBK&&4)!WM2N7wtJm7=66P{y5c#tX#6;zExmn z4eqJAP=?Gn0{#ribqI~4;G7BqfyfSXf(l5m&s7`Gf$`^p1t8j1SC2D+9FB?I6#}w5 zS~NaI5K1z|Z+@Pb$>^Be){E??`#+5h34C$fpBa~1oE;4q?R<#EP*4y&JZXA z)c<-5mt9F0KC~{3u{cv{q0s|9&s)wC?_9of3jD?cmQqH%z@E7l?gpLk3n;In`2{c^ zMV%UPmMkJ2u9Lo^o!|3;gr@a^El8S;s1u{i9I$FAuc>}@Q`wNr@c5i-@BbC7Wa!kn z*aw&NV|xQb1I&zK?_k8>dL1?hv!+ZJ+^XzLkWB6`5gSV8<8UrRjck$&T)>FpE3TIj z-hPu09mjLAG}|f=U}G>7ZaBYMTMr20qoQ0OE1T{h3!}I7vLzDu`g>3nIAAMEZ>>+% z(Iyg?zO@Z;sEVKZt%Tk9OeE3YFmzRBrt^g;R#hka%|QMTd8Ij_AAYlkx$@!HXGb+1XGctc;e#>`UG z?=OqrPKuECylIf!p4qFo<~umHs=D!dAf18)#4b#^_((>HI-o7gyQFkLq2bW%d?dol z{|1}Pb7mYkm$r~HQ)VRp8r+!ZI>a78#saoWDSJ};b<#hjYn+zgKTO! z5w%{UW4iGHv*rL~(FMe@88>{#J5*BGFF2P`H^MC_0yk~X zf=+JDhf*?^*JztFe$3A=d2Wh0-k17^Z1>+G^6~%vWATkeQ2j?YDUJ ze#d!F4M5Ykd9Zy9>2f)uTW%*xN0t?_XcF<&v19*tOp&A4oJ;m0Ofp1+T5OWw-Bxq| zL|+g+?G!saMq)K$5u`u=YMJ2{0s3o}<#vBPb%!y=d}=pOvK7&u_~pbBb^WvTBx7S^ zjogHNGf3mY3QB?x#7!ZAkYn=pzQ;d{(|RuF2>feC&mS zd$Id(Fnu-RL?8{Vu$uzhg|yfVAv739cr?-ZaxH?DSv`DrV~mBNB?P(T%tR zqm@kR|8O7>o-EJ~I>u9LpyczQ7r#y&9}M|x_%?q04#Z*Rtxud(Rlo-|ZFZP48H@{Vn_Bd$kCWC2(dw@+j-cU1^{6%$=OxbEiKox)pSLELKdNRGJvG=2bHZE$O zi`_F@+NT#A1hZLr+LU2%*x(7~UF9=TKo=f`p ztI*}sQNscLM~%X}{7G>!&_03%VT_jgg?V0lqcGu}F~yTjfKaGYZ`U8=aaJaL=dBTS zAr647w*LzI;~;#o<3mNXV@qe))(q#;Q4?2EG(@&);a-Bzq61}ZC+}bCb>2Sh4}xKw zDJv#AME>Li)j?E^G%KNDch+w<_Vz5Or6YasttL1A`xjVfC@>Okxe$(g7p?Ra!yy$T z6OLMidu|JKnc$2bz2T&@Yh%|i_tAPJL)&~>kX$SJCj|)q_gQzEgNWVBn)&-VU)4j| z_=mEXl^7nQ(cplZf^3T~ID@NuSG8Q;260X$c0G{Wh{Q;)UElR8b50F5Jl3YpOJbHK zA7F-av>5BBi^%0k_Vca;XYGXf+VSep_kU2M3lh8nH2CY!+2WJ&$6=K(s^AFSWx&-U ze^u<3<&%~b&q`W!OPhO0Bzys~83-SH`n6I_P3v8ls;fcBeCIKNn>967dc;L;yOH%ClfaPP4W(X3r{Mt568zmQ}FqkMbC;A`hdTRWRo& z-0Ga&c+QTNcN(vhsyl0BI^m`sc2zPLACp#q5wxA?H}X~ursFvrQHq#~-CBW3H~}9V zvE<;`UIMX@9QP$Fv-zsCGh@2bYKp=t{$W2FQD9Ixyh{L%UelDb<(;7(Rb3A-LCoRZ z5@1jrFMT+`SF5k{-L(euBKgFa7;c3+DkBT6F~{j)v(YwHF;HlFmc>d?lv>>T6uhTO zwUVNRbj;B{jW|h<)@)19Dy%(`CO+Wr%#IXuM^( z0b5C63GoK=Rvgy7OU+$>>K)x%0<$T?YbGB?CEjUJpIZuGBHE&l4959mrfVE2=2^mw z?i_;WKM9L4i8L7uz1(xZSF6Ybz;rZ4+lQ!}=GMGVr+!;CgPN!X0N*seAN0j-+sUAJ9ilRsNoe z73EY`dcKVtep7U~l2#-eRyeNlg+vz5D-t(jcXYe4Bz-3WLh;FH`0?Vp6$NJ;-gS!M zwk?3u8XWh;?fwT^E{tClWv-czWWG}vwl)uUi-_WMc0t;i#Rg(84({X1A(lDkDx3ro zMG^?JJ~%@qwXXO(N%H@Dlg^q6)EnHnYHg`VGJ6}?*60QB^WPg~8}G&k_-K1<)=iqT<{mN4Aywvq8u2#Y&Oq zG~gH@7LOlirDQfAav<7a;L*bxqM+(DIhAD_%~1F~ZI~=lunSCAr6W5bM9&qRdzWoV z4*geYLS<{KOW@_a!4SSvfq-dd7WF>)C`IzGl4`{~lal^0Sp8UEHnGDzs6^t@i|i*wdCt9Bppv}u0>oB_JJ%A^)WgSIxB<)q6v zUGQ~{Joux3M#IZ~yuyvztIZupal4aY;B9CIDGjM6a1Aq{disVir<|ROoggF2q-$94 zPKn3K6NjA8#`+v}AWKtvPtw}FZ_B@n7$vW$3-!2+8>d_Vvy5l{dpSEjE)J%m}r%ox^d*YY$ zY_u~p;9vIb@)J8SXS8BO-(c|=7oHdk}6*nf-n{lh6(}_j2+&LwS5pU^3)r~J zdb?;3qZ=f63mZMZ(59ybi#I*J0j^fH1i?gkYPOwJ>reFwAZjmpZr#G4)FMon#NLJ) zNbw7Or%*)inh53w&p`tK5|}ixG)5g3zo@CHJ#e-AfW2&x#(KQtQQw822fU)hS!oyICU*X2v6*WrM zK4|B!?FWf$Q>t{Rh;EBN2Lx5|#hphy=}dpfl&z)o)bcW{;J#|{q;Immn$c=8b}hBg zyqwPWIKj)RqHk_2MXl?)XY?hN!C;d{kjW*%Vc$8YV7kDge%G*U+|r)($#^`xEE zPZ`}{Ladu&Ly1^~NyDUKed9TW*CHZDV41bH7An{yDi%x?M7IboGrXcr2aXw`62 zLNQORWIBDirrCjP=s^fAiKu#_S!CdZHhXhxEfa}8zZ7S^@~Vi>6BJXS(4)n}1Eq=R z(!iWwa754!;*qnLzx(E@?%X=u*O@3S;eWOn zf02)o+)M=O&k%2rMzbng7tkhK?^f);EIJS`4xb+N*n6x*F;lxV&R7(I0y|&?&J)ui8(2Qi38iN*p>x@yEzgyEcNJdD{=<1yw``q?jSj<1K!Q9g z(RPNav81-EG8>*x+hSriE}->k*F=@cY9YI=pS2@~-z|GI}6Ktas=supOg z7+D!zAZt!<9|Mtf)3c7tpbv2&3SegmhM6n98|hykf@d}ag7oNN2B+XA_j=#8uIJ93 zFC_1SwLRlIIZ6Xi1PMvc8*tv<*;TArnsl!I*ebXgei!0hmW9-u&EUR(Q_kXgmE4^| z7+h=9f~ygMxNh~0hek5i7AipjnX)F;f;_FFA2l|*^Z5a$L={N!giVD-lfD?EkFClI zaPW~wC5ModTUEdhxk!s;*~jWy+}r740F&inBIYPmdWqmf&8)Z%Ih9N6dylSW_30yN&B2Af1B|Ma(hCRTR#w+j`6|Trvs0Pyz7|G9 z<^5<<>&vqCy~tRyE5Kb5jwVzY31CuG=X1 z%N5=*bRzvx_*RVxj|^Wh6CFQ%DV5 w5VNN&X$c!i_SXC0>_4`b^h3)xCyOiON|}(hqeO}-Qy2zZwf_(G-(C;@A0Q5(umAu6 delta 7682 zcmX9@c_3S9*H5Rf`dY1goh}BgPG2EawbW8oOJ>Hjdc`tgN`;_PYiuRfM%*s%)bwpJ zZYW}FOQ;f2Yl*d{G?bKDL(od7EzuA=`EL5<&)oBz=iIaW&iS3&K;7Fw-CLer2$C~$ zd?>n;GlW3j@BZ~`!P)TtMgGL-=ws-l{pZfLp92^*-)rnQI$^NqZ0FB`wWHiuTw>aN zveVsz9njwImws}K44h8_ew8c!C75xgB<8?>|9$nxzu%Wigc#p5H{aj*!`HVPwMHS3 zC=>YQ-ND<(mGqbRS!>vec*8&&C{H8P65Ni-Lm`8G3F_>|ws~EwxX@EzRenn63!oXh2#9lC$p*!ogG6LN!hT78hWq8+E$e&?RjFg++E zUb>BPa1dA9f=h=eK3#u$K<8-2q6evQ`ha?3pUIxXnLkQ)&~^@5Oe`*o-r!?o;-Ed_ z`KnNHCjqCjXaF`CeuqE=f$brH@T!>msY6QRUsJ9J-z`H8=h^iKCGjpAu_DdoJk_w> zPMwC1_jYQ{5eoB3C&S`Lot+FrjyAOD(o-*yzhpF@9G?i!+J~JAg;2&FdDVYx)IZfgogur*S-Hxt&Hj1+?GGP-rX~v#A=!3o^TTyTm4xdEM9V+J7VIPKlYyfB zJv#;FHH&Y8l|gRq4N`OB`Z7vS_3Jv#t_c(@eVsf=NlKvs@gTKs#?N2juas4r@b#sQ z>d|-I7jaA9u^v+`8)K3W?)=340Iob-3*iI-JMmCe*5XdPx@yjcAGo>sAv2seLTA!? zP{}A6fk03>>PYkTFSB*Z^`^r~@w_~~9(rLfim42S?G6StjZyk}z;R?AMw@+Cy=jeo zc&53LJ$738Y%G<}Q_lr^H0Q5)9NQjY@V&CNV(t>!4Lx@k6R1^?t=SeeZ($^Ngl4V_ z5LvJ4%>Fiz8*ttTfl_rQ&UsbtQ{Bq}AeEv$kV#?Vo~F+A|BHNcBE559NB& z?Cz;g?+(w@CjYVXPBm|*{jX(_&x@z_5N6DKI)i%tCHj9}F(k>f=Fc>$*URI$dxw;C zhF2V(*S_dCFafyL@wdm`>_H%=J`X99@wpe4|MYzK;j;P7SC`wUko$R9_vN;ZC@A5| zt6eko9^}a|kLBSDhe%NB;R!Nt>1*MqNE7P2ms((Q=Gy(RNA3SP8`|J)MJ&TYzAVYz z`tAQr*Z5xWi0cgX@oz4Pa>R#$UBmL z6oL4W{h|9Krolx4sJ6I>-i9yuBw2 zCgq~E(t9p_-2y1qP(OcjJPkWtFj!FsRu?hxtJ}WXQa$z&YTTxl;oz8limNgx;FRq+ zG7^V0NB-tlt=10)-&e}nq}}e_FWo_pNq6Zzc}5D^XAUojTAhoSlh2XM{kM zYqLn}!|%S>j29(doLDiz$%}^v>MCI;2`jgfV@tOQSR{yBj3rH3tr)CylMnC2hJw6lm-TKl+L}=nNqh^EfsYL{%n<08t-s zkUe^y!CNm6F1{MIH_%}#8Ac#!vA~n0>uar_)^_oba@z*#<95UDpz6qodu^F4WClT)22?u4_&WsRq)=cy*En0nIJThsR9EbGkm{ z__J^%uLqsH$YNIyRi7(E8!pm^;YtX^m#10Q+0AIT=9uM&v87`>Hy}}{Z+E_2m^xc~ z`OBepFwE^iifC&A6?(#QB7i%z&eMMVW@ zV~j0WQ87UD1P9KeDJ35rGk<7%yZ9E+EmO)VCwH!(iy|ztw~*Vw?0jHopc(?<_1(5U z`}4tLwR-mABovtDIj(u*cKp|AKfhpKJA*38n`VvJcu4y}o?D)0Q{P(6;TcL>2OYqV zrsak`gHteINR8CF1L&UGy@!$#R>ucs!4oh>WraCIH=z?5&nhGWU_6sQ4@6-N4A~Q! zBhfKC$AH}%+RULmz6df8SpS-^+~u>hqg+4BHN0Y8Yh-(%#vj&zxKljUisAs`ho3rN z+lo;WcH%^o%k-=8H67r1$dtsgjy;uS!Xkd@{FKt9Pb+_nk<*i%Q?b=SqD(E>3I#HG_tBHUplIqq}IA`alNaHS4U#4Tr4^N%t5;)f>XidIe5=5AwMhnt(It}tpL z3NN`CA#VCk-g6pH!!sQ!K%fbSoA^D@w+8Ex3JqyQx}BFguGhu1lCZGdL6H}BNqPqXu?w&8(LRXvTPQsgd^Ff)en(TeEl zsctoDh{90XIklk|*N`Vi$;pwr@bf!_yKpU?ZZiR$wgAXGuX-zV;+E-;08wl0ajgC~ zfuCH8_9D#gi|GYT6~-51f*|cHhK_o<(sgH+T1o+LK)5MhpT6HS*GTDATa=Jb_Fcm} z_}6wds*diRXjsi~Qk#vC-Bf7lvh~VKz zsxf`~!=MM*<3fX;==dS`h`BE8Tpk(-PHoQ4NYxM9bT0ieN2p$T9u*#l^Gx%uO^vf) z&p@R>g*8A4W+XDtxmSby97^Q8^gV28%aip}HeLy7f9~w9u9?w@MQIh)tZt55&;MC; zqH4CD8~uyJ{2M2Zwy`v|z!f__N)cYGwT=7Z2kYu5)!o%DXj2pRPd1d$zVT*odTing zhA4c$n?JpK+a=h%I(1uwsxEA}xj1JfjZScaBdvcq&0Zc61*+{;%HFNOaZNNw%-HP( z+gQe;o{5cGG20LlccQj506WVM)xzQ#OVMpn@mj@$pfmNQa+nVQ)tLn*fj83+|n6W!v`9 zk$HK0Owj=Glv$iWC`_yZhl%~ycr)%~&`+y4r)U4vjanWn2|Gu%5i=k8X0JcU00TpqV^5v911Q^~hi037b@h5~MBLJ-PVL8s z*l6W%-hZs>#|hE7Ubmu7=QDt*wda#^a2c8nKi`9BziMZC1|a6|Brd81f&Io-%aWF` zzu?C$_O`7Gh@13+G*lvOI;z{ECjM5bI(%U{$!Y1kmJF?EI2y6LQFa63v1in{=mkUB zGeg<4ABq!KixM0>Cu;wA`(m{&51y`gI58Kc#SqU1GvwidOF7zr(7)0dg51GEp=i?; zVHs=UA}tfl_2rC03wfz#c?N;qj474>g=KS+?kT}$N)?n8QG#t$adlH@YbTvlTND53 zrG_7B;}NR5fD-RH8|d(>z0B2W`I{0)gjd97GHv-4-0PcI{SA$&=Um~+DRJt0yC!`d zJD*tTS1T)s%^S-?b=Bg~GPVc}5Gi2SbJu0dkDtE4dTf6#o0PkAKI-jbQ_&0hb^v5; zGZ%;rn5f{y??p<=@ZoFRX|6;=QrRXDTG9Cqn||G_@{gIY6EbM-tqLs#A8Y@(Jd|8W z5wY*@rTdlh>bJNz?PCi*X4YV}B>(028Cpu$OltSBdbHUkRC9H$twT)kIu(cM^RLot z+I~kB&3gY1+fjG{ZX#4GhR>&$KFq7^%)rW3y7B^-;RxmWR_eOftqkJBd6cav&&Vl~ zZ|Fiqe{cQvTTtAFnn9aN3mgb06uiUDyv9Pw82RfXKg`&y47L|ezyXLD%PdJ3e#AFM zgy{&@rSTPfu%mb+!&{0E{}obSt&5(tQ?RUENM>f7pTS%@zUor7K1@AjBmS+31gj_~ zy^_~MoE+HVbghL9l-hTG1%%knJdMSjEx#TfQ~ILLVUZY#X-YLfvuUVi53WQ(A;fhv z>txa)_%!w2J*7KIXD#jzpmk zaW9IT=4=@?H&ezfAr-?;_6q-P>AMf-6`Xalu3;&5P-HiMy(B4ni>Jd_1V6ozsB%@O zQ5!bUeHNFMV|YVWDP9oFZa$n(?3V*@IK8Hz>9Nqzz@6%jZ1Gjr6B8uH{cjN8^?D!N zZSMf~tqMPN^z(gyKL387{2bGz7sh#ZbIH(&{;iRDkkU{A>udS_>7?9K^`4z=F^_7l z#cuJj?r}5Z);0AF>1ugmAtSEC$)XteW%V`A#O(R+@>!txuaM47QK7`SPuUszmir<8CEXa8Pk~(&aCB z)kmce-GHFqiSt$1f&)?PpKMq72saw)2Ne4y(>Y8ti~=M;K-J!Mt!DA{7;8KdDJ zKPdad)uDN)A=*e(cS|6#?!TgFJD0p_wmIsldOsO{9fZ>pP&;PNdK%ma_>WtsTR;t% zz0aTmG+pz&@j9mern{GKsdY=|2z7jc+wDYL=YSPjqSIJ%9OL6A8iBLjh2=PbF`@=; z*?5uRKXIzwRgq z9ek4N1ebcHH-Amf^pEkqfaRFWmSugE0vM^q9eAI{`Kuze7qIbu8WsYtQ)p2DkR@Hd$I7g^83`f1xo8 z#IWyb2`1L^HoCF3roY()o3Nzk*!3tqLiwguLU4$y)DcAUC=?Ta5D8TxouEB|Og;5ZH0Z`Eb&AFMfUOI%^{Si=E zZ1?LxE5kAiw4)6m;xRs;1_OCh?2;^QN>x zekxXMQ5*|GRe@6v{w#T7P7a(`D)WeP*Rq-qEC%CcFaGe|e)s_E0F1h$KGM})QJID` zn-3TZ9>Eh?E_v|30&BVt$D#;Ml*&1 zt(ZN-Av=2RuPv){hgq9ekEnyAkeCI;*P7ROKSkwT&Hvi7tBf8WfAtiUy&M&8x=STm zF#kH`ApU9?QYQo=%Qs4+xXGdY(+>OU)pplP{IYAxJ|31u#II=5$2}-UI?E9e`=8}_CKHrX&a?Em&Ke&DK6(F3AP?Xs;a3)6CNp&3LlCtO?*?sW=cF^Hw zW)2SQ35i6O1rj2-TPh#3K)2(o$cQtV@Cn4i(W4EIGg}oLDA#Z>_ppZY&~;jDMzN$7 z3csZTv!TcMc@`ddXxoDlDk>p#V~euk-C8`Oz1=myNYTGGu*5Ok#le9P#y-5P_9fy1 ztnyATZplFNf=2{5v}jNO6l(YYU?ty9&`=Uz!>(9UbdTYR()u-u1z(&wlak1d{orph zqVlV6l$~E`!|qa4z)rWOVRjd%eSZOmGW zbJ8kybMx$J+#D^IBmxkv`GrI&YVOalS1>*~QQc_;nGiB6^n`giI5_6A%Asu)Uap+p znSBmsl9FsHW3S^dx%{uyj?&o`j*jW`wpVbV5j8fgT}dU9WT*g@o@(Mzal=TxTOQeT zn$1PYBjYAh+d2%@vYW*9Md^55EQIgOTjgYLJwP_CI0$(W1ZfIW%G~jbpTAZ->(KYn zKV5a2`P#R3Kk^`~THoe?N7Qwl*q`B2QdyLma5MXchV1A3s0EG*(>EH7`Xs9;3uDQq zwr@{eM4+r8n0-7IX9Y1eW9O=-tK^P+|2?c_(&g!-PePja1ZsAC__ZH-n%HRp;D|RT zzP^(K!ry@BL_jf^jUps&_Vm7AfqUXlcDtGYx0w0=MU61~r4{T_EMapX@2A=hW4U$E zGf8z7IO`&~QMy18O;$oM5W1yzUz}CV&lzPD#s3?y5t~t}InCOzf9?Q4K&zs*RW3dA)Bcf5do+@#*7? zWW32gxwnTw*m*x;+n2+aS89$~1>2^+mldd&ycV2ObY`eNJ(uSFBYTAL$iA+ksWw{F z%{ckmfA_s}aV;tqN8F{q5yqz7lB9u z&cgt^|0wY5&+rHubsZ+Z<)kl`QW^*8acgtliHoI%6HCZT1NT9t+$bxX5IY9)34anF z9!K;rFb~I)ytoT}Lngz$lM5;~b^69#ft@VbG7`!B7@4{L`&ER+FZPSmw3{i7|RCX63_? zYb%@#kmLkdrtybpj5y!cnI{&0*uZaq4m6qqm4om&nPKXg_qqVqj~MMZ*6_GEm&9z$ zAAGO!dc9xTTWZ>*nV{*zN!^_4AM4A$u>Mv2U|zTwVIOs#-rqh)N7oQ7sr;qBvgnmE z{Ow@7kh!xP(_S<};-&R%T02lZ=mNqdsBU)mRP+v05e+jN#PC@;y_;pJ{rtI6>e%?~ zxuqAfZYYus;-ocR)~T!EMCc$W}d?Ch)qV z>$>bajE3v2%}ykt{|qA*NCLvWpjIdjt&vw&O(96%Q-#8y6FB(5onE-Rv9h)O8h0_& z;doi?XNbqV4^hM3{6f9ORL4a|UV{IFCp=E$#HP^0vraf|4wK+0m;^H#r!XHIJA^q& zvSWx3VUcI!cepn=*DvUT#!szm;I#+*)7PL}WSbcLo^7w8O^vJnc)BvBBYF?$H52tl zEa;@)ALOM6_|}c3`25xZmZc>N+`}cf@6T9ecx4aC8~tj3GMYQ+wh0ETJ!}C zncj$`d+9*Y+UjLqtUpHqCw_1+tv*@BwomfqK5c9;$k-!#<2-uYxK~-G+snW|h`ir6 zTQ&;#?c_>RLC8ci09{v_vfTp{Acs+K+N8)BpI9_RBSB*XXd=X9)bkQWkPx5$|A6>Z z-MzJ|ppQiyc?(#e*%pa>q%ORe2+ndd0pA)Yi-dEo9z>5Pd^aR!Y_t1qNAC8Ae+pqL zjJVSiE~iJmBKofn$7W8ITE$J=OmI6J4O00qrK^*sNEkz?4I*R}HIYA`{p|}F%y9m5 zFP)w5$g%Ca+I`KXCu8kxu#TrJrUTG2gsRRRaM{}4kzr|z?&Z_%e8+HisNZNezDnKY zea3Po3UjqW%F829FSl!}z(NSyD+fF@6YyB5NCU{+Z8@2rt4%+xDd~AO<&V9d-ps4GC7eDjUgjcH)Rrw2JmL9F&WDH=LfK=MsHgu?^&wv;mLV7v~InP_PeKheP zzt>8B>}M&H%LqE!V5{;diMGr>NO;Q%joxS3Cu4@=pFe|mtZ2?hYRKLXsD%u*M%(`; z+lU}CjNsgAx#}0UD?<7sqbOQzC#bZTo(oEO7I`Pe^GyJFHcwE*21_I1{S=gn_iXkb zY*4+FCL8?_moCGRBu&rJIsWvqY6hC6!f z+X=WE78t>CX2E;39^3FJs3=st7+EZ6H znNOd;6z=YdiO>m|nu4#+bi}?8dGvx3kJh;)hmOWXUl z;O+7^7F#z$e^gG^Z@WR|xjNGsSL{0%X&TPERHK{4Yi|*9I4X>)>AaMG@xT!SGhf+T z(M69Xp97cW8rgg@md>>3KHk^Ougms>$U~;+dbp>r?rNhZx{(c^3?0_uYCf&t@}U5& z#?9WZ^ealgG~mHTgy*RJuAN;;6ciFk`Ofr73vCZ$t4Dtm5?%BugUSvu(6RjsvX;p7 zT3Xy+ct^B_wwNun?+XbzXiueecDG$4V(VuH4UoJ1g3>N0#bP6uFKqk8X6m3O3Jx7k zUt4#EbSoqo(MPpSXJ}P0iCG}fZ^Pc;#1UD$=mg|+$Uc+5y{JFUw&)vLxSvD#>o$Q} z#P{3mBgK`b`ULj-U4a^>d&E9Xa#EY~2Wg?3rAfUTo5Xw++`7XQHHE=SZ>e8LpkcKD zc}E6xU;2mDQP_9uj>@Y6zKEE?X{4# zGdl;Yp|{!tQeg-W7nB8BVI401Z2b0Q;m86wr3z(4Oc@kXuVtAzi~HXyEyKo?!(2rFK9?0Rwbnb6zv=8TB@+3G0XSWm>! zl>iuCJN8X%a4bOK%YQp>c1&%4H#tOyU4y~Km{>jWJrU+!%P01EUaf;MNqbNUiH0Et zid<0^TovVN%p*K19GTP_{9$KFHwZco+78_1OL?eym3NxPPxX@pLqrx*fQDOWh1a?E zPo=>-)s=*SG(jX3z^QX%6+}&c1ml(w<^@N3t50xWaZ|6#iB*+Iu_di~Y3jVwfwLkK)*} zj~|(#+Z2uVH~B58PtcM1GLu`YE~_R2*+3c%Q+*L%2KX4@s@^%Y9fCLvu2y zeY$!pVtLZ|uRvSr)f?<8B^^9J)_CCVj+9EwHa}jjjp?G=AZGEN2elnjyd!X#ww!#f zuy8`NT#SbhNw^MDLB(|1CN<*C*Xxi)>TQOeb3rj^Sea%dX&V^y9;DCdJr^X1F7nY+ zy3ka}7Puy;n&~2qKGdt0T3k$N_31B@dV=en{}d8K2t?iC>KtO=vF>!E8RB-So-lr* z&?k8{v5$I^PdPbNs1@gmqUq|Z6o>FLwpOyaCwuPped1KNaVx{saLueS+nCe6(_QSP zs~oRc9P&n4qyhQMRY%Z}J(s=b(ue_+I6N*!TA1XqQN82(}LqewY?PszGF zY(Hb2MsMic%@SwU-5Vbhh`K0xq^$F=@fBPGb*`H-rQK~h&ab{o3p6oow;lUckyc?S zIM=(zWIfB^F}63(4t9^jL*kbWXj?D(`G4fwMVuY`}(K?2!~>wMKSm3v>9*XMz_0`QH%%nkJWtystQ8=#7Rc4)SBeDygB7e$~u zY3N%u?|`Z;lr;C&80+2s*h(&U+OGAi$H!b86XU1xd@3bm+v}fbl!X$TW(`y2$o;)x zqY0XwOdKt$hNfXTWExKTzM;Y7efEv3=wDc^yYiw1&DKu;yTK~MEM>XYXD-<~rLTZ> zNz(F0+kV!q4yNdQ=@3avV_&%pTk{+zHFP z_P~-Qy?Jq_e*V)oy`)n*eU63GyMa$lr8G=Ee%%ii#_}N*!S2;%sL1Z%vFa;KQ57B0 z@3;d!+0ey$M}s%}54pEom039Dt_IKuKTAKLU%@rfj>vxG5Mah~O&?h$P)22Cq&g3-VG z?W630GocRgHgI=YOjHwF#?P7{WQdr*+aJ+4)p~6a$|&(Mb~Q+!nEx>?aAWmDs|n)Ct_}Nc=wsV<`ptJOHp|3B(q&A9ZegH)&o|plU)QFg=->T+3j`YZ zlY{M&F3TlE1QRvTL;O%9CebP9&wpgq4KAQC-8*3rUtgBZA{_7)zF-?|=x=jcqejrSRAPrBJkY2*8(>7%*Lv-@8a{D+}|jfM5NzFCJSyK zu&M_XME(gh2g>&Mgh=U1{zh~frZb&y-&;T5ED5NpQtRNeo!RE<&H;(8JHKBVEud}L z)}eW2Ai!BfauTxUzRTR93|Ypk9kZ`Z^cYf5T%bT)(J_Vi_K}_pey=;%;C7Bxr8p4MsV){B=_N);?wRlL z{rw^WIK`WHX*V%HcfUs$CHRs1x{yrcZ*2~MsfQ;h?><|YQ=B%&U!Ne4T7}jaPQ)Kf z%Y`^?_PHa_3NbfGkhN2TYxvHH`>fUwykztsn5-O1`~aLd4mZJD6s_tx&h*NPQ7&ApeG4}wf^A+xxBaQ4aU`x z#Gt^9~tJWHR97)4jb3YmR%3pA+ z21bKfEAAC9N##baWSR$gZqR$Nst5*8k<#pc9w?HO=+oX2 zk8cwug0L4xzm92X?rt=Qk=~U$POe__&;7_X!_E2dtA|Rv?ssRUyXUM+r~9lGKDA*T zS7h_M(6IVcjT9Gobg*6tgIexux`T$+kt4;6fa#9vd7@`iAm_qZkP@M8+4CKXp+ASQ5&S-69^EUc*rqSndOET>c z-PQZ-nJkfCo{9wTKgpnZ$EgA*wcsou*$ir6)HFDHMS}E>$@o2FiLX91csfL#MC6MK zw`LFHrf(>;{Iyjcx67%VQxkifw)r)?nYoIn`MN{Xmz1s2R5S8#8=Y(6Y<2@|ZJk@-CQ&*#cyo_+blwF6Je z81!`V1?Gur#uZnASA9$NnHn}v8pj$QmFYbdm5tw0)g?zUHd&9TCZ#WjNaQc@ELyRL zNsBKo$~PaY`}Fvsb`A}k?E$I9HSgx3{O-L115~oqPM_za=MXT;HhT4S5{}SB|1E5G zYY1b>%V-9?ht2Cti0djrhb_iyNj?qt&5xA+8{vT!Z-hClmi>nbXthZpd<8qM*6dc+q#CbhfO zJcj8P_O5;$p0h&F0tiEa@Yy$ezM-*{^y%q^J&TWfzS0Xrw4 z*m&_8Fi%=2cPRUoP=8$Id@8-8ZBFDLJ7aPxG-FdYI;>B6XNUJH6B@R4jeyz^Z1*J$ z#Bm;4oA~a&33)tLm!lm@M(wg=Toe`SaveSV%tq-li#*JpJE$3&aRWZu8dYU?t?uUw z6Epzwq4OfyHI?J`W8&x=#u8`LlCtZnR6p$Y3wdppjS1#i6Wi-WiDUBz+GWbu`I}3! zXOU=XVZZS3l&SLZe7@VR53r$W*jfHajDNL{rp#NxU}1EhB3q#E#XWXB?O@xT_+G%N z-(8uD}Ab)p?ZyH!25w4iQ97S zUJFk-4$sbnLykrK&-%Lc&ovd_jilOIa1?lcy$%2KZ5*~(kLV+^@h&RXl8hsZ;vWua zjR-TMR-z5oHg5U{R`=7Gxs-%#BW4zQ(dNzTGa5nr-+tvi0q?KLnu(dtYsuI9PJesJ zV3Wjyp!hHR1&F8OvO8(B-~Z-RfoO_oJ0QMB_2MLm1oJ`q=jw9r zchQO4-aHgT?h!ptC1;KrMSW%@@1bFg*Iv-IDv)wSmAoG9eqjk%ID#l53y6GH-c|*yLD55;1+7Hhk|}|ABZxpj5Om;^;Z|WB zfrgEXES7UE(D!>3{+8r+I#TKKtYA(*7X(2M8ZLDbuNx~}_9TfBIt$C$yMp17QBC-@s+))6jg6g`9jH2)%5eh&ttJ`6vq^< z6zUW$#>eIXTe#(lp-M3NX>XjbpX{R(4yI2BWKxMRP>-AN>-yMkSyyu z=v=;fV+GKwSBq{g_FcqV?EGAQ+mLY&4hc=?T(;EgYs=dVyz{OFBF!t1-`2f*Z*Y~n zGrqa@2uOq~kY8|;TQvux*%%suio#?=8BbOw%+S}GLTC}Sje0B!B+~4jgcS`)a zB}Lv5l>Y${c=t0KQ!Tk;Uvy|nrH)+c+^0KNef9VRMg#hPd*mSV%#LzxrW)Xv>gL|6 z1`-AE#oRubI9Zed)C4S+)iBvuX}JalI~2bwVy=-4%+oaf)+FHL>R{*)G)uuW^JVw-PpKikNLPl6M}qkC?iMbtU(Da$3#&BDHOccu%D#=Gb|4o3hE<^*dL zcUQtjD{c=gqR9Wv(^|Q;5hhY=?cnioBmf2N-p#?49QGP3fo~PWlKP08 z{_3HtkndM>Zgm_PJ)UR><8?uOJDmW3U7gThA$)kS0Aiy+^SzFWFnxo z{f%gu|zgBwIrE)RcsrkwGFm5d&A$U`DoET0OW-kyP^Sf_9X6YVLAJu{i&3IW0a}UV2 zeVV*{rZK>zm3*o)dI^%ppK=dAk`+KW?Qq_~mtcgOiuHvWmDm+*wLb3GHA4@wyJ2RR z$z{d-A4=udA>W~W46PSx9XDP5$a({lv_n@R-WhCIpab=u3XMK@0i&5z*p`vQ{y?8s zh(jTVY#(zEqr_eI?;j6bshK496u0eLWJxL5=}J)L1mDoqfV(KX2dK(%-{u)NCr~?7 z<`T{olt;oOzw=Y=eN9!|*oJAw!+F$qh_Yf1nCk>-Z-SV!BtX}M9;C;!p?MK8h5>wd zZM~Rl8)B^5Xo<3Ah(66z&xp-~OWzOIs7tnGON${H=}mo%8ikIPbggoJ*5{8A?HlB6 zZk%l64d7GtjttQpjqT4g9Q)moSy9Mue;83FCXLQ|gaX_eM4Ic87Qd9L4ae>3t3B7? zpDC4=L&>s#HW!pibhD`C^SPhKU)oY!jL>c=UWg5Uv~~B$9hmqZ*_tOEd>I2yFd2Al z6g4)*lCZKN6!V$MpC%n!vwc$b#eaYRAQ>jo4qmbO^}(NmF`pQWGb7V?TO|XI(9#P~ z!so~>G7fTYR{i+i1ee_I@|Y>WG=|a%e^qW@U!hM@gtlV0Bf?JmIrdA z=>M!a!ggI_>1)E#Wi#6ex$<%;>fREmFs~n55=$@F*HB5Q3Y4<(&bypz6H^b`#SJ%o@I5SqX=tvg!%OL(j2mV_elmQDMhrOAT8yMEJb!uCDAc-rjhonjyLMrF-w=;rG3$a}uf9A*sw)!e^t zxfCL+5B&_aHuXEip-+w|Yvt5WtGAS;S*C0qDeK39=Pa|>Hpev#UQH^!Sz|udLbEw# z^K|*yjl%MU2Cy3STNXWdmOY1eBqu_?zN&1WILVM>-1It&tf~ku3v_9UjV>tV-3X;$ z(+9^Ao2^v_J+pd5QNTa@j|3+f$k<4e*ERnXp0YWbrS4*m?5~>KL4$_7&xBITn<>M% zNRCTCT0(C&>Z&mAQjox_KH+n%wO8f4QaA5>Ep;Acf3wkb_o7*_4l|fJllRN|o>~+l2GD{MhG%6(az^ zJbtBc zofTnFE(YQ7^F;s#T)=@52Rk_L4Tg#y3qFVN&_$iSeICoU%R-VTObu#kB@2&6-V{at zt(l0ek4=ajHVdAbI4&o+64(KpBJLW_`fu)w|Imt#zNs8+OP#EA-=>jJ9(_3Q75e@bn_>&&mhp*xeMy0Q)^ieS1+6K>YB~B&yqu^zg)FO zs++}HZX&BD5kK6fafN25_AKeUqOZxd z^Qe2fswrr-d!P6*gye0I!f}jUuMa=#l`lCG_zjX%27!#US$egOwpyO!(T_GK7f8*d zvU7L3ee-GIULNlg%YG#!D+TI2Y76Q~Qxg2U?t1!cDOBFNXP=VbY_JY882~*A8-43Q zho8Hu&;F~gKeFK65bLzaj4d@$cR_kDu3dINW&O%jiRRiHM1Z7kLcdu72DB zgwH2U1f$?TJF3!~AATIiJvr>T1+K{w0bSj!Zujvxk}DpJELdRLG+9h-xGC`C z2lT5!*10^(r|mUMYq>0Det}B{0}U@GFRcEFfeD`w^+O$KFRug_?A!}T70Si^9DMlW zHz>Cc*(H8`D9(`jynl^Fy#=&DWELc;ll{@`HNq&)0#%hASIxWvZB!~0Igma5(wT^}LrB7wvMH7x# zHyd8}z(H^WSD!jCK!#C301;p8yHTNqE%-upCj=k~_S6Rv*5<7OA@MX?Y`eD!9dXKl zHs7p=BM9zpOb)2gFo-w}2PGeE<)BbCU5?3QW}9nbpwwBFqMosXlC}4^QfKaqAXJ$o zD9O77Ay0IX&RA?j@d_3D_=MOiFqX`v^D>;Un%=#dTYHZtb^>zD9L8SDC&P>dD0j`M z8l{)&$%jNN34;=HEnVVND^(b8t(FWwmQ96DC9k}T;?4Itxwpn4??s#zl{H;<-Mc zuL+&CIw1w)JunnW##GWAu#RBeU7QI9xZg0}qH>?rNT004YO&95l<8H3Bc<1UqMyYh za=rr?EwFCFY+5LOSs&Ctu#&30&6)P+F5Uy@KKNIIegwh|H$W;}2W$ga6^U3COqiMW)12hM8~ym)LqNQ8X(7^F!{fk1)a}vPf#_A zZ1(X!%2eAP5`#}?tiaCTK|55N@!*1=&d0q%s7d5O&bDOWSK25kQb$0{CtM^X6tixh zzRgI!|9}%70)}DW?k1w+c`{E%HuYDOqQBgjy$L2qU2)3#7Su<^V4HFAD6JV-y<4+a zhhx9k%F-fE`t}E_c-i3)*NQv9ZA&^Sd5PR@f0?mIR`%KFpdpN^jek*ets-r9tMC!; zlklkIfNx+&-f$v+8;^U4TVSuW2i_~;xCS5gS)&%A+UHh-#dmpY1xOME+d<72_K-^R z_ot#q=2pB1#UB91?-7y#tqi+PP5VT?MY6nsPm*z+z9lAdT*RqQ^!3=5mTZ!8v6&9U zg2vp7<&6%g0FA-zfi`R?lWT9}lxssCx76D=kyp+poj5FZpcT!PYxi_4weqK&Sh!g2 zdD3Y=L;j6{-OZtZ@zQ&d*XUjm=m_fbM8jyj$4a{N=i?yIi`W;$H<2%i9!vp6?_>Fr z8etg6KoCxRi?XU?C7CRJEsnWjrrF=ers$*5#&g^+;Bz->mTzIeKp8Vj%{!B4{8V{c zh8%VPC#5{`veEcg7Q#NvIR+aXXiL~KdWAZNM&m4&W4DK5bI`#+{ByiIn2Jb)Zl?M7 zTtF1CWY=01^+MF{ga`;OVRRCrT2wRSdULLkoM*rLw*Ct`2~5O~x>(%R;`kr*>K)N< zI}R(s-r!Y-QJf@v(N~!>yu1A&GmyUCgxaFURFI|Y?l#%DYUsN@ThZBYLvtg1E~uu= zt-|yf)Y@WBx61fkb_fZV_p>K7qIfxWoO~UoHWXFil3I+cx3&DDA4eXZo|T7K)7bHi zXvjz%*<#vvn&4{*5PsTLx!OoVAEPhRl=?3lP}7TaK#K|%d5UoWD{4)#jU{t9=(r#E zM`uw@1ofGUC}E$#Po3_=Wv}Sxab8=SQQQ$K51nGr=>MbGCSPmhP|b)@siBKZ z{`u1WQ)?DJWZ~e*BkSQg|HVLrRU%`RL|dEgIIqF_lGiKvM^WAxAg)uH_%D%$8PI{p z`u)vE>@y>n_tsy)HpMsHP|{DE&0+G_oz;Jv^iSA8pfWsv*Lt*jJAQaSd*;XJkNFXI z=jMX-iipev5G7c$04?&?wGAFLKiWnwfDvB?JJzim025?2m2+6;Fwt70z?4QWk!@N6 zP><8aHU7WL-ZTYPl3I{gkvxos5Q_3PL5p_s6mFg%OPB!NxblBue}jJVw3?{(~0gfgj^uC z0UIx4!X1WA&svxIa6iNCQ>V;c;S38P#D@n(CUisc=_J&D9grCjoJ_vt4YVTi+jcrQ zl3?QmOvd+s@k9mn0%k1EduH;s-LCIx)59MBm-H(c>(mKo|hzW;KI;P1-a>z*)fO;?4o*cuA%Q_2*=f20*3({%Y4-|Fa<_`Khu zu%m-Jg$uyB<4RF&v4ydFxRzLLDz&N@dl*U-RRxJmyS!tFGHX%!6f!8DQbVn!ZG6cL zIGi#e0`D%$R3&VZ3(BBP=|OulN>o!&oTDNS6Ntiu(|$DVq^#)H(c-OO(!#1uiC-^< zPrvy7V+LM(XD?~h00kfG_$pT6u}GP|_Mx>#dQ*!hZ1wc45#vEcM^t3xW|H6GDkLM3 zl)W5|S}T!KOAdb8m*yGc&GvdYeWbdf{TaFcHVA;}V-a4&GHdRU@fY6TA)RDAT^Bx>`_uG8bgDOruS&gH|mCf^im4GHgAcmBxsY^4Px(LgHd zA4f($ZV9@zNamD63@FJk1e68Tl>WFMMTm*)&|_RzVQXgvWH^Zw=NPkOe!80~&#c#0 z=E-t&VMokM`aWL|!el^OuzCld&5V|Er)skJu&O6eRO3i!LhU1as-2&ov=w$8z@aM` zqv_JS)@0_&G?s{shVb!y?#T-_EV~he&EhYrjXCWywN`|b!R&^5FT~9aY^w$lZX0H2 zBr@FW%=TKh!UOpEP_;&S_^%N`AH@r8p=9dw>zlgBvEV65ma>Br=PQ(hb3IQ4W?MoX zJihOmAissa%G}%BSe%8LSlI;ju?FfoL~sV!G})|88h#qY5#igP!MTeqT$$vg-dFv$ z^JA>exz|Br4E#H=Fh4-(oolkAMUek>O#??*X@gs%$pJ`$WyM4o;$kTl5+&Y!+t$73o@Q(VOqYNV5z(VTZ2Ffwx0n zT~dECvV$2}%h>m%jyab(VVb5TS{uw9U<>z)jI&^>8I>`onoOIAh{<+G@t{n=~?nY4X5YDrdM-PrVtT z7eIeLz^S5Ap~{M_?^T6lsxrdKfn`?CNqJTr&kE}k4Clos=$Uf`A)Q&moWo_`RocqR z1=kEy#tau~lqj*?$e$G0-hun<*v-jVq3Vr&|0tFIPWsA-+9`>blqA~~10Qm{vDDzg zg%?H~>7wJtG|(3ju8iPVDZsL87cM&q&b^7jiPLuMQqU=}z#Q~Yo438W6W{5|fdmZ> zbBDb_%|v^y5fNVV3uGBJ7Czap#Kj$L!u6!t0-bXy;F>6@ge^vyKd78uoK&&lbkKaO zW768mZCfNm*ah3T`WO|=)mefud(DhlH`*4YA(M@ZSppyzvkmacNR}NAbcRBb=Hs~z zxfuDgm3MRr{opP~O#a=}97RNB^_iugQuAP>rOoKeDn*-f9@{cKzT>nHJ)u8Xbpeaf z@KG$AFTYT@RYK-(m|HqldRz6QEbWS&UE(oXsfr4+CgJb4El?^<6*Ew4)%bd3za#_* zKPl9@kd>~;2eAzfS>9Lg@V1_*UNUjDWw|ZuXA!P*PO5xR?*KZ8~Zi(H!jKahpuy;;^>($KAE#v#$9={ z;EBwdvCC$@HX(GRTMm&9!2~UW7vT(Hmu{e9kBk(|KRUUUPoahGyLf^lB1EXt%km@5 z%ROuaO2Rx&$MnaeHm~cdQ*pS^*wt(2G?{iUm<4|qw6`Z8L4gQXOnqs)4T`?%8B&?Y z$|pZuWKaXM8a_$Y0wcbF7)85;G!1FO;!{_Q0vPc3=MTQZ zfaRxK;It{YTW8IWX|5%sTZXU3T%*SuuP)J8fcLv9cUFZlj4L>QLi<#PiLb^s>yi>3 zGqk3l+|a5+H62<_k*7C7=cEh{cE_#%h`m@gres5@ky>8IUri>Gf#KSzA)X-C1cCx# zPDfY(G2jgEPL0ZN@v%gVg{h~`0neRVkA%DGdj+2l3B>~#ta7ru*2#Hb2&)yCcxo#O z>}-IuvsdJ{+4u2N`qSHHyfa$2XP$Cx=A7^W%x0wYh!PLS%+xx(Z_V^Bo4Ee_KcQIk zzTu^T2XZw$rJ-Qbm_K|no({frc0ySUe83j**pC2UW_W-GhtSEV1-H^dgosyhRts3Z zzS@%o3&mhLcTOg$$ZrQ8f!%PX&r$aM54fg2kRy6d%j+n(t8>tW*_ zu>DjUWPmn)6()>secW;M-8rT5O28RB)BxZNO^wQP>3s38vj?*OE?!)ZBW-3{8qpvS z&V!F27i%LlpSyT`oVBxm(p>fAL+LXOpV&UH06nnZnl(2M%TB$)9Yj_*^3!=Av>!mW zzRvdM#RjKW^lgn9nW5={W2rsTi%+Ga9W5?|v*Py=KH|=9&u*;keE)A*5ng(<%u&8( zNRl0GiyUu)>7#Azi9p%aTe}F@v6L+T(!9yZ2t7#6PbM3=#t#m|;<4vpfykBY?)Cg+ zk5SUd=hlV}+o9FBaB}?>gp2Vn6isr|)eP|U;Wjg4J{5|I9K+1sGW~I&l>ArGPn(oR z`#nK<^vN8l?(ePunp=;?3Fb-$2@2P=H;r$jZ-6}% zqR5V`R6yL}vm5X|HIlM}umhumC;@?!BDX4i#ySDAmm@!a#lj8T3;p2uw@UtzY1r@j zQxngknm*QN2!&%iq^4E}Tg3J}@PUTmG2Cbg{W=zW3~aM&_uaptG4ci;__xO6jCcW< ze&U%o?D#|YLOo1c3^-E8C$dzl{lSK2U;`ue*g7Rf-_EIK%srHJvIEQ9z9cCqekiK^jadeIkfe> zlvmBDfX^XosKNio$A?T84Ce$>yS9(+Fq*d#bjjE8;l+L}w(;1EbgcZ})XaYrhLyFs z92;W~E#tAy`s44SyKaD3|JDD@>&$ig2s>{d?fIPtp1EvkxnaLR%p49H@&A*gtLd#Z z1)-#Mm^vD4a#EwG6cXE<`^!R%pEUcPK9D6jTtKNquTwSfkiV=rVd!8qz6HT|_qF4A zG^~Y5?UNy-o7zz1>O{dTKSi_farzl zz%M5P!T!x?_FNKK@ywnc?=Ybv^H6%Za!nl;_ zl&Yj)FfFu|LjpubI8phq%i!OA2CkU4iJC+ z|HHgQ8iJo3`8GTr&2*8%N1^NYGbf5zcKt=iV=4@K265WR@s|DP`Tyu!^jOHU`OiqM zQ5_PDACUssRUt<%OM*L?mW1s$uymGEzccCdr5j<={dXE;Zag(OxVI(Zq&?tYT=SDI zs+G;}EU-)dhGQEfabZ3i8+p$mOkZQ;p>;9IOi;^hj>(C@8w!NT# zEUe|*%!z*iZO1o6N$R)-UE^}_Bh9jowhE(B11ppnl%J93EI6)QifW{CJsH4)R|@fZVUrk z44jH@Ju>w-l+mdOAJN6j0e8FE-~Dg-DWsB!H`jtPTd;0`Bz_E0u2Tw*IFr{ZzPSrm zMDo#i-DsO04#v%!no(zc7ol`LB@IA_AbiwP6o%!5_c{yz6D<#cS{p(37iR$0v?ow|@P)nq zOU==P7ivS?yJduHb+WO?l2nr>`NoUqDe)3*?OI-UO%B|07 zI>Hy+Qz~trF4ohRJ1F^?9bO+=2{!(Bpe1Q?^X!kFs+8uFk%G+YKd=3FQgnngsbt{g zbkAT#p!KIJ`xzqrjWxHY|DzQPWjg)1*^@@V7wk4ElJ;2x_1Xjfwfexx?lWOVqLaOh zQG$%CT##kz7>my1v$vg}fuHvM;{+FFIW7aqqKu+}EK*h9RS9(?sNV1WuWyT1xQAmx zwS#Pkf6}JSq~YFAo>KsyvQR6ZUhvB<+Db?dNc8IRr9xP$+?m_J#FLmzb~Hse&b$?+aFp@U9}@1vr)LnPrNt^q7Gvk-y^);L;rm&CIFOy|IiIB5vC zic0j`H*@%L6}#{j$DCEYb@TgSK27@4r@;T+8zEh5q5FPo9H)h1reUH5CkBs~f#b$d zw}OxfGoDyLx#Wj}ffd91bA^Lqx8p_pJB+E=-8|`qf<9G#=RdPG}WRiuM~BZvi56 zgY7thA-mtt8qpOrx)aROTK4$3Y5;h#25f%YyF)?#3BN|#S>aRo-oA7D9W#zp+Uai; z+nc6a@>zCcGTV4U`<&B!;(I(%T zx1nU1SQB%2sYO7o5y{ZD{U$ym^2|OyrQUb-K-_K4uD@x_Vn7`r!`-Nhm}JCBU@8p) z?9iWu_qs3FtsRSO7R4O(KAg*!uWQ`e%1Np3TUu^+nFg(AG&EWaxWh-qf8*k#L_M7NkU4X$R-iu(BU{gD9&sqalrBSg*R>Tp%wuPUz&}o=c;3T0Qj(3fID;2 zu=&P&B-7U6PEGA%f>?N%%%vD#ILHGca+|@B*Vi6lOWrE>>@~RO-!xCNjX$DI5A8;8 zVr(>C60?_54%_N`7W*A)tuaylD@*b4srA3eZG+vXEn?xzNKXiPZ4MwKHu@9#P5bE= zyV22H`GAZ+d{gBvzHkfE0OuOVb4-qa1)lq9-ElppwGi!VwsBu8>7W`p#BcBq^{gFS zddYFw`(j-}q_?&*{EfTJmkCvk=hpaHv2a)TFvE~$PIP4qJsB5HwAlW(Iff^v-nudL zmpNR$#6{}|@H|_n%J!9u8N4xwsC#{%n+!=|Xo)$fjIZL)M~_IvqXVgp7>#yxd&okCyvJc-ptb8oNtTY7i*gO{U7OW!re^kv?6O~ruE?a`^~%Uo?@!e zlWiw_sl5WP5DT}4M^a0>tJ~neVp^Nf55sp(pB#VzlVgtWM4I=taHihcLCHK7r{DC6 zO|^jc83Z8EZo-zBxoz06B&2=LXOZ^o;BH@2`M1vjR(K1s@E2=` z<>>lN;)ztpn&am+aT6B!p*zHUYka=?W^wqRe;8S#BSHaYUwe6YV-@;h^oQYcYVy9Z z;T3ZSe8i)eE8FS4c7JaFIr&$(5Y)@q)UNb*M~+uQWZ&HJpd$lkeu>R+{(Z?lUq!IR z5f8|d|D)*9hjY`k1S=cht7_)*?7sO;I*(pFd2`mZu7##?*rG1t`93`+s!%?1;oHAA z-LK}(W5&mzD2U z8BEsfTa4ZRjNb3>?>g7zy5>B~{XF;nx$jfAihQ$*tQy7vFEmeIzkc<~d#bZC!natd z&)7e^sIJZTsonglQ5QAa8N`EgPmeu)a7^#HIOlbgSjPDqJ1zX(o(&i4OG69A{5Oa# z^QH4Qa+>BAOx1dAE|mqn-hTp>N55f1(kHJz!Yp>UPCC84(O_(Jc>JG|IR zJCuj;>#U>2s?p^X4^PeZoqTJKgIl*Sb~TQmK_HwA^(S7dAi^M9pT-(7W!0=Qzo>LCgbYE%RGW; z5JFS}C|6Nkbt49x3)tm;sz#EKBe>)m(e3@6QT1O|FAloeduPb+*B*oiYOE*aM>6jH zyVp2erb(33C(`bBU_ew!BCRd@`-;BV`ML^LuLNPs2G>0T$~f^K^M89Le~;XQ%Pl-XC&G(MHAL4>VgsVSM1?>F`+5do>h(Fht)|n1i90g`Hc$p+ zD28utZ3So=8H2+}I&9gBZ5smsLfvxdpvvtD%T4>sRmDH%qfls=idG5B%D2Ghvp6x` z+)KY%)2`3H4s)7~`P0uXV@mpb+Ap}pFFF6ysX}9erpWUf3Ft%D7j3{va0;EFh`) zF2zA}`=OpA?7=?Ub-?JHhJBhrO5Qez!kDrLhs`O>srH=pzX0Yx(JM^KwtI>f2D?1D z@~-+`;mp&o?v9epc@DL6+xjmvW}83d6qs3JP<8nl5~xWUD)9cc=j`M_+QpjE<-E%O z#9>kRD{S{`vMCNDqe9D`oL&@&AAJjDAvhHF%kh_2-b2+*K$t=k+n|DUrD~pC+O8Zz zjL!BH9{;PZdnsHC4ay&bDe6E}qA;8UgM#2NCc;w*M^W&VJ~3@K+hKqvkcHUy2hn)Z z+mp2Vu)C5QQ7QF^NOQos|_fdIls8oL{m2%CefY(+v*F1 zSoA1*%^CbsqNtSolOen;{4f%)N&G3elhCSDz9}X2{LK*h#|{1?GNIO z$?w%OrSl)V@;NyFE)dbC-A64sFBTf(go3&o{a3}1Z#+;e(7jDj6!|IV2CVi6t z`AT79Z`iDHI6DQn_!Q&(OLEE2Z=p8>}Upg$n9Pnpcmn4o)R{}e3M z1qXz@+4ql4PeIHir}qT;EM;IH%KnsnxxEjsOcxa=>1fnQ) zkay>KCJKG~229NTM%vMKV~w;LY~7SkJJPFQ!|?$>^?HZLHoFX)cbF!TL1Mh{(nsFD z^XBN=dV+akp9(g`azGnBqH9D)xtMX~D2B8a_~;pwq)!A8y+DKX@>|GgDw7crLlcN@ zs_St<;!@uLG<>6vw)@2g8UlFUG^7pY8Ti}Ao2>m<+xJ5fnmu_UT0^rVhsMrsSc}TpF+_{V0JN5G#J#c|8`m zM^ILK@IoxWa~u(+b1Y{6;B3j05G*-VWzgU>@Bt_2~3F2w;Av#VwDaf<_v2R7V}i12bP zVgtA1ZBKb|v|h6jgMQHS1#Q_^*_FDr0(JPfJWbhK+}~)J#iicv#tCc^PpbsJ4BPWF zD*<-5g;wend=eOl=Ho(d-&^a0PLbG5!QVt2lfuX)^u*W-R=Tzv^pWP$1W^o z%N}&HPk<;Y@Gd&?{XO8T3c6dM?#(Zv7Ha;) z6gf;+zf*XgZOdC*@!1Xg$X-DF;B30uZ&iAcmCtdJq7!XUJ5q(tHnpB*d;jjj)^uJk z9OJB=T|+Em`<4kpq4Pfq>s~W7x=HWwbidda&fyz68HVm19Oi1v9LqAGXHR~!toZQ~ zdETbPVSz0t_c=-=LwijKY*Azl&;)$X5Q@-dJpNDhFH~8EylfJya?Zjlrr;SHq-O%B zZWpEO_L@|dtGs%7QBGrJ7c%VJ@9}pS{UKK$y8IE^VRGt4RC-->R0RIfZUVy#!leRi zWpb>o9EIQhYh_|*zYe`D*^MsR`##-+RkWxor{&|_($6}K;?3TffX$052ynF_mf2s? z5ICGaerrx`2y|%v()mu3shmgYKs!)m-(3B z%C9HgR@0-R-uiXZ|3V=pfcg3eQF`E)gwWVA8g>4`@UL~S1MiN01MTYR(#95t^^NvF8kT@^)wb4ZMOPHq-P>!v z&KEGP_IN1SQ6GxTWGM#lTaJW@%8pZg z15M`)+^6!IcRGl=B@nmUcWUC_$FQCGnL_;8q!8IUtVxZo8AFHe=%#kJ(z! zv)ry@(lx(`pAVCQJe3s7vcqn))+tYPX@T-TQvRJ=N7!LTYJU|&!kMv^HktFkuwk9C zdmAN+oD8ARE1)P3pP z59urOr|$Q}x0y{5RXX>xR!xe*{HuiD(>emUMW-p)C(dfEoB?zdxc#3};@&%su(7?(7R++@?cn8HzD6mx z$6lj1n6!tbcubanDxyZ|`9g%J)Qrx~O0Lz?vf?uy6nZWmBCcI%u_KK~bL?jsdu`R& zJ_*xP1~w^M6Ko4~mDBDBgK0_Dvf8KQPeH_JM>NTLB-H+n)|@0N&;8=`=#4df(5WP>^I7)c%8TAq%I$7j{=MC{ zz~e>Vn$qv1^2=@H>MrVTV81*{EUmnPw9GkU0iFv7iFmrUnCa-juJ{uu^fDjqCs|T zlEez=_kCjGxQEzGT6$Ke&(hfecX65oVzWkb(FHVMoIo>u=k3f=Oz$5=YH07fhn-s+ z*eUvy`P2HN77Vo-=j%%Mw$&sYS-dW;9OM+#@mIp<$bSZl?yUyI@>8fKctvk?#t3IW zcr2K4B`In6I2qjb z!Vj>yK=3TE4|7zu)tBAWxd+F#UA$9UTk0-iu!^`orbuHTt!-2ab|Uz9>Cfq5de^Zw zYWw}d_JzI+OF$NUC8v^6uF?oo5-rw?CX##WE~yvW9x%I8$w2%*&IF}kJsMX(XxGse-7BsFo3Y3f*<3(c6f( zKkw~`Fv+y=&%FCV-+AIPHTu4AfD^g(BKONn!6GZGeJUYKHt!n+b6!0VKnhb;(&RFC z(Rm^csCca2?+G?-qP+RMMOFrV0i#%a0#zB30}+(!*BhDzhjbu-DtR@LGzqGAsgWHOUYs^5R#)+Z&(fh;mHT{k)GU-6%t_yQ?LwNTeY%^(|04$XWQ zp|aBcPo2+1@!VSub@3Yem(v!pOvQ}vIjCF=P-zvVrOy{I``>t@I1XGy(v zuP#13+$G=W;BExaZ3fE>MgMNBbJ4?1qcKbIoXd9J!Y~O^8(QuKCwT{w ztgxDhLwBXagUCraPr^*w#lo0Le~?%2eFWd;7>q@L^33oRp>N+73`@Q+-h^sUy;pEg zHhxl~mtE5O3MjSEL>BRoqV1&dl#uH83(XBvn-T5|$I;qKYpd@juWFSHE8buZaM!MH>pnZD{7>korO(@kiob8czyt~td9*y2pq#F!_@j?DR*#x?#q5-^s2Z=P4YSK{ z8IEOJ+Lq%MBR{ZYxcz{LvST&FA0rAsX8)YeX4kiwj1UOmj+;(t8~__5zlu<zzQuDtH#2G{`my1#tZYt#M#k~!uv4S6e?(?9FF0(@ieY)EqI;H9vf z0Z08*5r8AixUx8si}2@a5rsn6U<*=;P>kzCgDaZFk|&z5lVlX`IZ?}(j}VC}W4Ww` z3FS_kuq!To%aEz;H99-Iw^2#eRlnSfx&4W@mZqQ9lU{P!HWQGDp9Df1UN9_CcS{BF z_x8r6UN@C^QEE_7+N^KNd&4wG+f;(b|MroPxUO1|evG5}j_+|Q{j)PM%R+C4$UPR$ zgU_A}L3SFp+UGyU--yAREZe#kgi)!#8H=p^a+bTe-~dO?@g>u2sEWZH*y8 z&nL$*3TV=2h#l*SwZx{;N=owA)X7%ew)-Aqo~+!%Q}&y9Qc*=(s!CeAfgcW3P-tU~ zp?|M}(U`TCxJ`qIt+Nxoy3IC@-NHVP@Bm-wL6C32cF@|Wf)Bqi;XZC8@XNoY^|)WO zAr8Haf8f-1H#Ks^id-v8E`wS8>f>ImT^;%%yM`G>74blLK3Yl9vi45%Et;dRzZ#QP>^9>?InW83J5&qI+PtgIRn56np!54(-v zV~tQ!^JsLnkw~qL&i6H^S;0*)!A*gP4ujU>@~;xO!{#8nb(fa zgsv5##nrT(+SL%;jDo{;ht$UO$q&&FmOd}?fHNm9HwEe?1`R+zoElw~F4^(;RrqskfwdD)9!GYzAMHo&`kxK zB=~)=Dl4^1;-Pn^aX&$W|EILxx9UlN*^jyd)QX9{+#En=q2e(0Uc8c&v@;(8RYMMJ z;V(m~N_U-G_y-w+MOTDKFAfSXQuzM;yJU&(fsvVc^S>D4eH1Q5DJ((nJ1fUlm?hKd zTV|hzWIQnTM@$hOyOAnJ0Rdk`h+n#1DhgqzMsd0dA-XrJRX6Up{fJ7!uJ5GeqFn9! zMcVaMV6?Atq}7^YH(g7du;#H7S-~l@ z9{&FGo*RY16sn9lU@h7*{ed8{K`#M_0aAzfqgtr!==n68uFZ3{e$_Mu``BEPC&VZl z<$Y5q)j`N14H;C$s?h7s-tY>rNwonz(9H&GE?^C8yoOTlw7oD%LTwn@w}0`?Kv|7U6ThN)smO}ey+EM^IHN~{Ph{e&HNjSOD z90+>@oEk5B>O4;3>whur7hp{g1B%%yGF9Ok>+sH*qOdf8eT)QoFh@61+n1RzrW<)} z&G@tiC|)v;=%jz<8M>~Dn>|oO_U@+l`eI`{i7xcHgVJWSwx{uRafelQA@I%^L5g{u ztDQ6gP=Fvhb~sO$Pv*D0AV#g=-p(9EC>fSPdE1c`u`?&m<&jf)B#)Q(U2yINoe)-= zDlmYa@8AN9e!i!knQ&b_t8b-1hz21EoqKKVJebunD2OWiBUAbGBVXEgW0bT+l`kDW z(UR1)CKOr3>_eY|mpWp3e#r+ISOd@_$>A-m-aSGYYHeFwD2~+h%1x!TyXaAjuMnY8 zcII6l_xkJM-a0{vjgI@{i79nrL60MRo~XRE+ol|Z?dTw>lMX0G-RUIvK_O2$Pzyy) zirY?{lAM%{nMCjrxg3pJ^OgmM>V*CDPaoP`ZG6%A#I9Cz!B3A!03!4ZVNP^ZL1Gx@ zUb>v9{EA?@jcG05-_iE%c zcNE~-&uX~%Q_2nc&5PtwZPSs}=jo*kE9kitUv8?Nx%G~0o zm?>d#s>C35!$FfIdOH0|Qbkf3x z1C{B~h!+pCumcDdsxWGE`exoOf08tbVJa#XXVbg6>$$h2cMwb~e$W0lD#fVMIJq4pk!?55?rY6JY?1o`4=lG2Rc(y+8LVu{$Og04J=ZmNI#%FbmTD}mM+@b7m~7-7#sglCxB`jjXX6NRsX1?wHR3SeHvj$ksV5^ zf|Ao^zF^t+FXrQzuEJUWOk)k2ewMw$PwlOdrz~8)DpR5w{SJ7SNfLvt>sdiLY!Q+h z!59@ARZ~)`h5W*JF{`X8ZPE&ogr*^J(tXkZR4J^LYn(uvdu)$79nP;7(--2=6@jzKZBt-^0s!K-j(jQ?&5}bvCCFz=3_Gq>^0up+hbT>I~Jp~WkSnO>`2vUma zND#S26i*#2;|;J?iLBH|3Lp6kFh5dn)Xr>f6tgA@mO8j|f=%2zqv}CX8G8Cn5Pv5F zb|CO^nA;PTLO29~sT>)H5AN$tTPc46oWdHWhBX+O>KL1DF9%aXsODn}R^8#XFcJ}3 z72mNc#XGLu#^3wbZJDDVR2cyawk>YcAD#tc)Q}BihVt71GxFbvi?ip0<3~@%kD{nVFN8TS1M#r9<A-h33AkiFNfa|hhRD%I`gqI2{uIEbNT;IV>ST%GvML!MicIFi+#(lZ4 z-6Grkd~z1qbt|(EA$3t}gr?c-wqRVGnu51AXMfdb z>3)-3A%mxG6Z&U=A9sGv&xFaNJH2fU^WNbWM`(|jqHD+Tavd9soa5HC*>>;$m9!4s z_H7K~c@uO=O`F1jd~`eP(_FtFQ)SyiRC)A%)j;kdG)m8%NgvPj4R?%DEi~as=jIon z@alWMoX6MWfG$XLa*%iH3=Gsrl5mg|c0NiOIu9u#e$W(d^Gfpv8`#Gx_%u+v-K^wm z4o9q0rc!42u@9EI-%Eu!kYWmP7{*2sZ!b=OOfz%2*x}W?_IR0QCsOX|_2?&E6amKE z^{f_x|5G7a#Jup$KZT}E1*dD<5G$vFu6N<2%BkDy2o0u2VYno=%H(wrDgFM(2g)Xt zS}OdX#*9UrLG`4?Ym7CUQdy%+*f!0K^?7ga4BR$mtO=X&Nr7^DV=GD>_dTW`2JUNR zHuQ$pMe$9hH%(j4t8flJt$+7HM*p${tshnmamW%ZQgyzH3V&=1xJ!!@pM7_vWpl!? zgtVoKBO9561*=X~oy4D2;!%n&?VzgZ?USuG4*aI%$f2O-e62L}%sZ)oiN8q^(*w8y z&647NY!5M5?s`Yg-i34v9Jpz!xS^(q(K1h-ID-^3^ES*HEJ~TUtJXc+qQ^hVhOPUt z_4F%DGysR5@%yxbY8KV(-V6aU6z@onZ zY^Pxi3WW)zaPRw_q;eYu9671HSIBeyv|`#FGk&=~)ESFQE1#mr=RYs*K%?=Ge)?F? zH!&p~nv>eG%XHmtO2Bpd(1g6+$h#FGSVKBK%kE09U^h~&>_P1J=BpI^?Y1af=0mww zqXR`A4Lh};3iEt2Qo)kpdYYl@xb^6Y^XwXwN2xLr`HjhyyvvvD&f?wU6diH2>d*Ob z+Q-~kElygT9ektJCB#I#$U&Cnr(A(7CG=t5Jek~gFWz@=2CnWo@{PW-mVZL)Y)meS zIN_~cWlGC!TEz=gF$erw7b0aqLG58943S88geqq+V*tzV8EQ9EZ+m_PW+strV zyJx#*-t89DY}Rz)uZSZBQkEEE$JACHvyZ?;*`NQM{N-v$%=MP34RVhmop$f}8-<(t zX2{4JO?7?blG3{U8%9ZOXF67cD2_*Q-a&H2KSJ4)cz)^4RIm+;Un1oUC2&sK2xd0H zb+YkiPzI_}AVag7n!pDsLrGC(*aQ}7L#F;X-^LbA;^(buwXT9J1M&8t{H0IB9V%Jl ze%$)&B_%>NFnSIw%PFaA!+rJ*?;$+uZ}nv{*8n zc?`nsGtr7MUfh)S81(mZ6p2G88QW(-04{6vnE1VVK-Yfyg&%J+)QZ5RR(>KQIu+w9 zIhE?-^0J~+s<1=YO1f!<2#gog0=GrQVbAaPh++B)kJZAJO~~_aHqIqa@h`5%4B>T+ zTVots_v{z@_`d*m?DL{OOycNr=Fb(_&W74;-zKtd8Ne82UZL$`b|0|FtZ*;5D->JC zHEM5jQt7;RNNb%OqKtX1F2y>Hae-^=DoJrFq)DLa=L^3im}Nr9qiwz)cQ>-#nxUrAO2NmO3v~< z|IC(l$S>d!2AXE-XM%&(+#kCO z6qZYf{6|8ziS1V2=y}i1(?LEhzTAPFi-ZQZ7`!38+~2Gk9ouu1>DR5-p(H+Oo28C^ zKfg4FS)Fsw7i>jShZQ z!U^)_Ep~6k6@>lR^aZb>n+vUQ*a_@LRc>f}dbttnyJvB`yjvoxvZ;lrRxbtT$wvyJ zn<}9E4;;JWzy+n>@&$p2O3!;AfZO(!&@xW6I>ZJz?gPq_tM&)ngl?`PhF z<>pMfda*U-x&o$!+~CR$9MBpSJXcAZtU(!`A9_5Qa+l3ZcN$1?*ZA%K&Y#i!6r9<7 zg%S|_4CMpT2h~uERig-AVrA~?v_?6?5SIPsXE^#uE~RrTu~5X+-UfDqK8FIP0G;Z@^UQ}PxQ*#FKVdwDPzD216;gv$DKEePlub{uvz`0p|2`WRY z`f>gK2L@h84Ks#DyIGUK(^OcmG!9@xAL-Y2c1$5)IErRe{V`9B4M_&OJoSE2Lh^XH zeAW1ib&AyYslj}A6-D=pXbp3>pK5S>vTw;Rn?!Z2oYUf_XV%*%VVIC#Eeba`l_H1JV?RD)8`aX?rG^L$Bv}29PzbMR*$>0&HN@o6lk{!OHb%qsDu1T z|1e0po+0~@=;nZ;gn4H~$?oA&YN*MZhlphY>(CAHDuESEd!ZGlxylg+*cWd@v=AM1 z92>(VYWP=J-htUhX4B0jm@a=XR*zT)hrg-5CA*D6RfkHBfVpGdSV3JGw2KUiU*(?E z!aj_tivX_LYm-XX!Z%?(zD9~WyNeSUF8LBK*W4w-S%Vu}0c0%@@6MWWm$v?1Mrp z6~@0u1*@DniUzTvf@>*IQ5!??T;-uv=ZGRe>+J6n`Imf*g>3x2zBn%`Dvo_hGr{Cw z^<}ar3{@%!Tc%BFp@dW4(4umY+f$LX0%dIk~?`t^Wb73Qh~#WRf5FHU-r_3AtwPAX2aX zFZX)te6!@MtZbXKdbW?$Q_7O!Gd+yuvhPDSr3Q9>D>?Rvz8Su8$AEIehZNALuzE5B zr6E-J&!ioyC@CCx@bOEEyfk)^iy>FzxN2c`r7=!=%Y<{+kn|01C^4uT<(>Tso?Dqe zy&DZz&MR;}bEd7w!__fmsmLrkNvVk#L+=W5GF+|KB*v}1)74hAqG*tOJ|$DgZ)RNJ z!B_sGJ*b7$n8;oXsv+3}nVi9%bIrAR%#DIo2CcwW;8Z5>m@19BiQ{1q!mx5RRAcFu zKT|nB9`{kr0pX`sYwhG||60MvOWcP;YSx-!m4sN14DdNb!f~GORhjZ7Ve5P+Eh4f9 zf?Y|OGNaPsH%1s73ZSIUy7e}nCaJVRmY`qT7#5;s1@3ChpjQgs(7?O2%HR^=Zn|^2)HjqR_~cda31BWZB)g+(r*R^0R2gV`;R_tXsE4e7mJ)dRWTY zg3oOfdPrEEPF9taNC>m#$Q=;qcz2-oY%tOEoyO9K>_hQ^9YazLHV4r_8=3hnw!#f1jkl)+nYND3x<@0%$O_5AEG@(*G8epT1qQHsgfoy=}d|FF5@Z>XMwqht`ee zOOm(Uu~Yg+YsGzwRFNE8Es%CZ z=HcL48|j6D4EG)Xhcz>I-?Dx5i4UQ3E*hosnEcXaVAJu2foK6#)S1Q%3g{8(>y^lI zCYATqg}j4FuV%lBUZc>u0w>34kX@g|iJiaQcvDKZ$!I9O>`sIHp)aRLU6pgp;Bs1{ zI?tdw+<8?oknc&5u09=XMB2CM-q4@=3EYS^t-%%*c;-lJNEcIa> z)%=VSAY7#*a6;Zok_CPq8|K(%V01L7eG zP8;RD-_dVGtNgUh*_X!_w<#V56LI9x@ifkK6_Qe)>0RR3O0Y8utWkNruT=R=D*(UC zEbu9$TTC`3%MVjrd*f!;vN0xDwU* zTs31d1=Vxj(&MWL<~r%p)Tb>l@YCnMCfhSxn1r?T(VNl{*J1|8Qt?fpiJif;{g|e2 z!;OWC3IlYbseH9>pHpP&9VOl>83s8~{O7k>;Eq>DU1os{IZ9tCKpLL<6by&8ZprxF zFjM@A@Yh{F#<$6}5e`o>xGi3Bgosx_9VKCBTh3LvUM{~vsiNl_P_D2KLs&xzUt$fA z5>`%~d}~a?i0pY@`hAPToRkJrnF6=))qLz;GLlUAe9vom0yz(Z2N%m6m&GRdXSJA* zWS!H31i*x4fy-$Zmf}%8Zd_rkgw?xybkXH^HA&Cc9QU3v`-su87c42NOwaw4oPt9w z4JNPCk__2=_@-Y(oYO9nVpu3(4qVj`94cq^S{4ook4?`&6{X>O{wTK|KfYjU8+Vwj z@R}CkCFxT{K3}9m8#!2Y8~0|g!LLCTM!(^pQ51GfXk#2|H|4`3?(#Y&sJXZsBU!kiktMt>|hQyJiRAU=zODdq+8M0*k&$YvI&ZJF^c!$4DV%vNDKm#yc>52S8skNg) z8np!@k&?>7w224IKCvB4(F+`^Y&={R$G1dRqJ7;0d8+hj8Fw?Y;i0fIHAv=;))#GcOF8Ifu@a8V^oxU#LfPC#~!uz{>2H-m( z=^hi^CDDQUhm%Dp`sX}oxakEz66nsr_&eq3`DlsO;Nj|o-CEs!3YuA}>x?X-N+?>Y z*`+5L&&9Xr>WpariX=_l`f*%esa+4o!~{yLt}a|P9r-5R%H$fzi0F z%FFGei-pCZB&pnB?LJ6OYRtG}0zRo6G(5P?fRkE0NnSb~wDr#n#lujZfUCZ4BE*Vs z=RN072N~qaQX(bT6pCWF{Sjbv#{=K&q4S=1!mkehMK@8H$FQ8nPQb8XU<^KSHTI`A z1%EhNYX>#->a8vQ>75_!G6_O;uRp5c{x~tgbY&U4fQ=2*Qu5u z#Ol^w$dLK{zgxr5!G=RI`N2X_oBJo=CP%23h>VxyOd!hAqMO%b=R?J{wTocTbE0*d zfk4L4@=>*&a#9n!YW-Gc+t*g2sD>1L4LVhD+okSsh+XTKPU2qK$Ht;GLm1FFx|37` zf}-B3O-jQBsFn_ha{G995O znk_Bfd=_J3$~de#XAY@BPBDcXUe!zl!_K*hUEK=7?NbD^hX(L>50q`-_EhtvAY*RO7ByzEc<$Go^}~zA^3w*)BtrLbw70~l8<(QE?aA@uGT~R zFQF))q!LU^Q(#C->Vm(ts5l*Tf3|@e>= zn8_zhWua22p)%H|LGGdq{07EMD;WW)drgx&lgvKDET5j8T>5%`iB@pw?E&gP1wr4JQhvee3Bb8;@oAjh|MV0@y-O(vhQG>fy_Rqs zwQ5@yv~1|%lzelAEq%{J_J4YLf!2nJhLoN|2x!XqNf8SCO(Hb$QkL1TI zK8IdoTaj?DMC4z7fPE2!T$G=c``I8x!qP*7H%ZV_tdqV`&}8k4*@H;z{jWzQ6L_$3 zkYECU+P+9Qj&e!jFRBvbG>%!-tQ{n5F-fy`qO7oXTYaoO%jwBc!| zfb$Yjte^7^c^4zEVwmVZ!5lcghpt7VtPM;K^>l{~y^k$JE81@?c2= z-K_6>j=;~w&{UKtuJQX;jL~dOLoutTi~r-1mml}*jw-SgLb%KbNxJOG7nX$4&hqhI zn6*mTgV)q|mH!|HUUp778k`xkBM>n<`H`3}?Nj9N#tgXIJ53x#nI zi{7tIHxI``dbsm$bHU|*_Zy9=4xfF~@cd3Z^P8BoYu>|{5AwCp1d>sIb(6^{&X6Vi zRh%7v6>s!k7UnB}@%rC3JA6JiS5D~Jy<^+DDMAujnTM9JyvSwXM7C9T4+~sGIKm2G z>M?#>g8FaDM`A}WF!0A~*~VQt{P5wvK`ux* zxD6fQG5C)Hp(L1B)a0j-5ak=R9_YjA^{%T^BL7?Tq($Z1yXhQ*cnt9{70%@&Zv0oS z0{ip;(nx{#F8r;67(L&`Poy6^De%V%lx26EC?ABqz1}a@?)Q_{)SJUwYhQpnX;@cQ-Vin62zobsg8!>;r{VnU^={9M0zhtB<|dp)io>JvooyeaoT{rG+sAx7&d z_Gx$k_c()Z%i{^4j2}Cyq*7+zKGyh-)oX@cJv%y(3Co0N5t%qVUM~0ff1-hAg4-Nx z3La-cL`WIi$<;l=6%50Ie@mtyD*pV+9%RS;v|ixTC_fF~rQdu1(W)Y$=mN@HBiyL` zqIR)jr91z5Qkdi^T%pP}YlnB^N=w0QBc&@-{D;D*l0y2rm0ieDt#Iva6nNj*F$e%!GqP*w2Y z)U68=7p)zxYq8(@r$V+!)~-LZVW)K-`tnP)$1hJIVsmX9YW<>2CO7BKZ10e zV$aZ8xBbyU#ilOe^5YU2Cm z3ajR@Almueov)vN2L0Kvl=IamFQ;cBC^MB3P1j2GmKIY0Ivvq%55bo5$t#DIqT7ES zJ1iPEJ<>ZE?Xgi3*nQQ#c-C^aHRo_OKXPZcrKOLYUQd}$C7i9-&3hs!$b9YX`zGOA zYgoO5VX~B+)`;PT9L}sd@Y=LQPF)KaFEHKZ^fo&E@4!JrMlU9q|furu^tV+F`!=3Bhn0;H(fSrb|xQm=)H z)fIz5=G89VbHTg!=Z;R3EiGy}Tx4Aa78w#G{&Yl_PJ*Wb#%?7nEWc(`kD+@wQaZ`# zWUe8;`)t6x+Ur9Q(Uf3iZgqx220;49h|tgX_`v7-W@-0Qc4EU@@|Kw(yh}C69m>?| zeQdWuZ`3<^zp`wSHzm9b%-WG(YYY8lk-^n$vgWda+_d@B91{IjD&GFT$TN9=_ z4M)w^_Vf;ZW>j_;ZzObkWF&@l5011PEq23*!1gdLZ@&;M6Wb0J93Yc$qT5=6E?vdz zML@S_PGW=ite|`QX4=u{><6MDyCj;W6+b*^Qxn}_Gtsc$rQ~0a zD+=FGnP`ZMV3zsn-uL<#WQwZSwduS2#<f{v8!nPy71kp^Mu{nHqMl!fK_?}rs7lYc_U43wFWY>K$qTCLvZ3ES_1crZ&W z#7~fMed!eCT@@^bK9N_Z2Pxw365=+e_*c=RhBWtqIqb7YN_@YmpCinSTRTr}jx@_s28u)cJp zVNqrTHZ^F(oY2pwoBpw2h`FDear5=W{QI4M6-O&5Ui4@c^= z3MacuCv$DTc^^0p2^_sSbE~?69;Z=!=L-XwLv&l)WwYy*&e0pQn*=%0IvhP-(R^)9 z?<{**Rl{qLdv{bb#XT$NFXK<#^1YhGM?Om@_B*1{+&oE@d=|OixLe~uzCxY!e1qXE b>Dz|Jj-2Ha?;UnK%A#m3gX>vC;)m>0g!^U*OTyx37Hga3+#G?mqADkOHSg%9FQ(O-}y0GV+TWM4C(X+(;+u*zEo;ok^5+7sa;gPgW zKK{RwP9TZf_BvVzO%_FTz+Y5;O!2Q&AQ3l$lT4fdnk~ORpo7PKL3#XYyXga&U6-Va+R_MD z43V9XSnA%Ho=Nc!2aDu=sMTdSK)USnHW2(e;p66@8-G-Al&_|condG*8zUOLh+fX+ znMo%tbnYM{h|#=tjK?9Mr-}bi4P4L~w2cAN7REdo?G0>yG+pbGTv;dZd8lZu*vmp+=h~x~tXlfmy}fUWcXm zVSHaw06~FH&lZkMJQ421O7g4nm80^NH z-hx?i#CXlAJ3M+4A)Kx4VqH6IYtAB(j4SjdQQ&FubRK>6FOr>MYOyy*+a7}@^hxQC zJQZ^@ag|@gbhUE<>yUI4c%c?SuJDI!`v{Nl!1G&?U5Ah)a(Y*~aZyq%drOy>*dEKR zzn>5Mtn*@NwN}|jT$U1T_4QBbe@lG!;cG|Ps6R<92K#ZjU ztK6hQ*0+DFX7OHm9EzB~JtcmDi~uUDCEOMxmmuHKnKE9a7HWWbZH{jcegSln)&G8c z)s-C{m@uqclIaWAJSncUTY4K!faA z&scgh`b|&)6-rJQo~c@}4mpuo(?nnYdX6ryFXl!un~v_qbUmQ~F++|D(R847!aI2= z`g2~e{r`fyx|_!@m>JA(NtuPuDCA4Q+uK9->~Tb2k>exG{5gaZhpVsXDs{^ZE*6GA z!H%`PYg~FU<`bp$5xroa1PlwS$z=9y?;9oN9p6&hV*WL9KKHK_OVq&9JfOXF=?56> zVlJ3vT6CRnpM~vmF5IQ3I<3$2Mago@Zs(%e3PKP?D)(0`QRXzuj$zQmQ?9I)L{(MZ z$M7DlYOXCm{Yjv&zO2Y4zSp{fz<%qw4LtE6skQ54!r7_JH9+ak>TAFBug}jvMA$jF zU>xkFU-LDpl9q2WYNG|iRgZ3Kjko;S-nL68LiC_g3wVZIX{GnJ$R#@1{gTH&p=S@T zT{qI?EhfF{=vXDf+P4T~i6gRZ|G7&AyZ1MZc5XLC^7X}=FZ7!e`im(-_qnZ7?+ zI%6qUn5Wh00>FOBs*A#l;)7H^?KkmNM2&sD)jymc*VFnkEmYIp1BHJsm{FDXvT72Q zM5X6Lnl~rVJbKa6AacWaC}{jl^XHazP8QYSYJA_?*M@Wz_4xK=;AvpA!`~WJ){Aw~ z28~uMAz8ZU`A|`T-kKg+Ut_@{MM!5jgUtYq&XtdJinLHI()l#z${9iLNKJ^mOq7?Y z5I3xDQ(f-0)04E(?m-Y_+5+z8zU12;&&Ok`Te_Sg&iSW*f2F?ya~BsM z2i7QB^~(Tq{>Tz@r787aIOjHQU}Zi+2q;ULw*P?ny;hs0>mTv$_i!>A@QE5*80a59 z4A$7+balGy8FjcTg1%U+LWnjqlV&m>G;9ZVo^qWC=_a?d#4jy~ef1mvMEH8InH4b@ zD-1WLX$$P?E*#_ zYm}C8{Q(2SVH=>3ZY}5}J|<4jI>oZiGi+RDkI^j)r}N%8u*tGX6L9ZT^_y8o&iTm3 zN8)%PDQGFD@M;B%hLlbXtyU9P$9qOjF-PLWMU-rzbq>xIg`x*`QQ+Zr)04RrOL`OU zh>t`^6Ni45^tAjOlN@u8{$`nvz@a@%e!tscV+M%py$fiGuLh#im30K{dJf&f%S&1g zH!6+R#4YZHoPNw{JZzikjve{T)eKUNJ?qzJ#*L+coo-?I`0#c;?L=Cn?K5sSjollt zT-4mm@7B)J;eD{5PCe?cE1@Xnbq!olA~fg4nh}siE>cvLjq^rE<6fU{=dOJ4_W`2D zzwn5U^Dg^ViX28i=qz(O8tCz_CRJ=6Oxow0oJ9{M{#ofq7$;&@G>jXs8S_Apc5iWZ znE5z1n@<-mJS&LdT+XQJQ+|_{OKT+;0FmrAJKt)gw)OnW+Zx$_H1!53o`jaKbq_6L zUE&=i@;kZ9yiieM+m#qF7cF&x9OSU&XvnqburZz%HViOeIZ{6)i54Wlb&vLG7uZSrHt3Dc=E)diuC&r=wJaV+X^(QM_5pr1iMUZ34JWhl#PoL z2b)5APLa~Ia7`{+1j~^u0;_@r;7@YTd&ohE}fd4qr4RGP*H9w97OZRY}i}YD2 zJ;tSG?5_w5uQGj96*VYRO`|$(Evwm5T8}0GL@`lX0jGJK=4dPF9UFP+3~pF4z-F6N zqZGALc}nzQ{Wz3;ZK86LmKt9#(utu>7rG^S(vvf`f4CFhvJkVqg=VH_5~P)d$hkc7 zK>&nh4J34`FpV&7k#;c^1wi}z-gBDzVl^#ITpus-U3RlBc&|{in;O|tpB-we3f`-m z8O@<9tt3T#RR3&G5BRqO*m@R;L&xpIQn6O@i!=2*5TakOhyv!cD*i2Z#pJ9OZgDih zk*8{Mw!8%1*jOC(dj$K6&ELA|qgQ}cLPTRlV4h*z1Ns}EKGXmT{cQ@aK~ran41*V= zz`e8QF4Syw$2E^_RUX%`_L9B{b?JMzl(l+sI@dAJ(lWy~kv*Dg>=x@b%S*n#zE~cg zHg-nO#MG^F+{=jhh&w4p)1vIJK5rDDHFsjMKzFl7wVf=Q$S`2piHN%Zb}ver5qxA) zB?e0~$MPw1*+Y%$O235V_V!5v*u}dii5A&=g%ewf86&j<8&YB<(XcL}KApp|IUwfw zc?TV-im}99G>q;UhtGK$G0&l!aaLl`cq9Kayxl;id;A?2uE}EsM68`4j`Wbj(%&U$ zPl<26Luo~-O3wp~UCq+5#bK_`g@CcwG!m@jT58&0(Atq;UYC-dx+=1VIHxY>{;Px`M#!oiSeJZ71H ztlMKgWxxnbo}DLvqjuhz{%qq za(uWlaF_Me`8^;`N&84zSlxy*kv)uehe|qMs%iy&owvzNlba77WO9#))#wPRfha6Q zECP<*)B|}IEco=qU*Z28m41SsDxHaZ=E%cOMXg;YzKLMXwiFaRxlj4hy5ZT}B1Qvw znPOyp)QC#1`O|Dl45ksVda*1&62Hh8WOB!Azs}yhaNbpfy0+{f(`C;0ZrcN0U{5ee zpjFEG2&KCR?wr$o2ECn2{AqQvgj;S9J*rZBWob5)K6}f*E0{Fu8Bt1A&UB=(+fIR~ zcb#ob8Px;%*3V!uwR|dEEP(7~H*OBfHW)TOpA=F8fEX<1#Re-hR}u|`XU(O*QITD4 z#{(J1f}%zjhn$D~0f!Ch6|C-R4R#Ltu?s<4K^v)Bpi>{(9gtY4WO=b00=zx_ny;}k z!Q4#?n{G}}5(Bg<+q~)iTrbHUESNnj{CxRrU1zlJ;PKgY?P?ro0_N15x(%>OsNBc- z(pi}N9Nq&rN;A9GwIguwpjezdE4D_Be!Yi}pB+?a=Py8I7o=hgE>jiuds)ltaeNb- z)#qXREJvORYk`*4vQ?oC8--t+h%@w*8=LwF!Kgex8tY9AeB(evuPxryI2_?M`Mc_L z$FulmLR~{12fsLa56EXw{OWKR4Dt?$?6B+;psUT_go!h!|3(Vr@KZ&zm3oLEd_!Ll zl`xp16MLz$2xLG{ci+w{!0nf44SOa(nsxw7?2^Knm+NIH%Y2!D0PVD%<=@+y?Q}fw zx%~OFyForkhwQ>bMaqzMhQ8!?BiSW8;MxSxQ{UZ)|XA);cXz zNyOSe#)9E%s44tn$hsXbO}|H{4*6E)Fu#ygi=9h5&bMwMsTQ) zC`IhTf}jI4@C>d|g{dK_nW54z+~mQlg)tnUutx>_$y5bgq}0Ma@t0aEluZT9h?QcD zA?`T%(+$m26IPeZELq#Xe5mi^1HG0JgRnNZ-of z)vmEZuUtzL5okhjZfvXP$XIP3#A7>OrR9NQprr|f+EZr?u1R7Pw19$_FRh$=_t816>IwgtTQVLBPtUC)wCntOe>3LF;^`g;ElhV=KfP%b z3H58e3?8-Kpo_@y10kdKBCuGm7DEdI!FK%j%8(iPO{R$vA3ow25!90SiFo);AAY}h zmJD}@F0sXmz^0W~SPdN)rh0lJq!Z)_V`%Ok!vJ`bOf8uTsHTZ^ zg61$!-Lo+?>{ziIX}SAoK(!Delj%+3TyGrN#BS*N15#yd6k5DX za)oF80t&CkfoK=aveLls-*?a6+ge=VKeqn&H0BvdalS2-mefZzzQj9Lek+GlTFP;3 zfpZ$<qO3rX#iKWy3^&#oYRt`Er614~h1Rx+AZ)d!H|9ps(c6=_p2KX%mSyTob!e zEYi;*)uA}di7%A&`s*|GhYGx11)XrMWesCO*X9kyf9*_-w_0(H5BikTeL4%|plKgj z_>t+KfF_NiA>t66Njh33*5)h-@-w+w*fEMnXTMR7H0%Hbj_zB)rWis^Vhms4f#izr zAkDn$I&Wy0_?9qm5aHG7OWMaalG^`_#hiCNrfvSE0qfcO54aAds^NSTw(BWYP~2Xa z(`P7S8hrB{urCE(%{g$*#X1-#lo!zV{&F8gO0JpyoRHI>NK-dL!Hw@F+=R z{H&XahgnIWR={yb-lvAV%a@2+x%vXbgzoSXX4qm6wLbw*jE@M1%X|YxZDSjg#v5yf z3ue#kqIg(5slpA?wBq3bVIxR^blnG@54Lqi`r4M%1>}*A5@XRwHQj@vz6?gf4shEW zcV~YBfl@H3Z4b9j`3qG8?5J4?mc>N#AS|M=;v&6`}dgnG&+TqceJXW zw9!z8;kT)L}63D2@2>9L7fHg?VS{?ah9<9Dxe%<;)rm{3-@j{v2A@e4T!XSmCx2 zLZ6`KMXVt@2(q!q1$0%@;;5m6frViaG&VGo7WaR>eIF=*^bgEw>fYASI&g5g?pBT; z_A(*#mePcgfgpumy*%b!KrI(9FGHhHuc4%8I8pr}9fz~?m;%Zc;pgF z4UjFO@tMkmKMkRLzG!Rx^ar)yDg!}}MH}Kmb7k9`11#-Ar*pYeQAnPl7)n`phfRom z{~0b|d@U~IlKwa#5y#NTt8weAgT486(9jUJ$1?rOjoarX6L(Nvdjm+ehZWlFGxSkI zp$^u!FJRRvOaj>f+`T|U(>lN4&{bZnBRju?;ATiM@m}p<7Wh}W8D+Q;hrTEf=acF; zW>Kci*0;f*{X1)kwsIwk{P;aywmYMMaUV1X%l;8ECuW|hB#Yr_^Uil@=)W7MeJjqO zEAku19DtbU0rCBf`GF~*XLVac4XHQv|2+g9{)jJA7`Nb%st|R!*u9N$?dRk8Yg6|{ zWJEC-I{8FLKuc~TbD680@)hMizQ1u>b?CNd$}`8k%nlhz1ixTOg%HkojM^D}^FdM` z+VGE;K_9{{*2q4zv^|K-atKEa7i_By=@RY^uvE5XAvAwD32bNqRHn%&qcO+7DrPvuI{6N=4?m&370Q5hl# zGf4zAWsNq+Y%4!RT{U7^`XbItiFcQ@Hx7VJW9h&QUT?^o+~pR3DeKXgWr6i*6Z>;!V>d{V9#+`7hlny_D-`OLe<0u!xkVG0>& zRf5QS1nd>bUPxd(SM4G8GDlRFRzS6L0~mgy75IL^_xv)!qUt8Q#7a$Z^CVCt{t5c;0blCAU+F0pO{ z_J@o#QlM!nELG!Xmgd~ahnBLt`ZFK*odBy6I3TSj9o@iHSX&B6Q+&rU%TMT?!tsMe z7WDG|HOWlcnuB%kXVnL_tQ6a89}Fv4>F7Ii5z zdF})SYA-N7>)TmI)0n5AbuCO*l3#sjY;_F4QDF-VlR}Wu%TmJtN?kpwd{3> zmoclIXbZ$5%8?PgVf*#&M=MLhhcUGBV~LAG&#_<-&7-@#p!qzSnvZ~+vqQhx!-Od((IX9!-r0b}#Y z9GeBokl(SjD}(wog>Y(S)1N)7MOh-C3-+DPr8OjoGDo|Yh95UfqvVSlp>BN+HXPSd z4dYzWkgvGiIsGa(j-BE}2e=`-;JyuXnR=Ce1kdxX*l3?acn7~fmk?2_z9^vyh) zY*>Whcyy)^IT!pZ*OS*{b`-^|wlJ7~%r^}&nBW80v3)o@V|WD=Rr|&Fu$M=ZRa~S~$N4{XLykigRpUTJQ)H zH+)&>pNt|V{lg#9dI!Bh!itaI%rYush@}+6k(au<;T8it>6w)H42HfeqiGb=V(z~| zU~b(03rr#JFwgWDP@2*ZF>z#*%XC(zgxj3sXG=nk`xB z5wx5~t_y$F$Xq?Ov{1Dqmo-B211^$N4CY*2Jm!UgJtM&A%A*flRWnGg!rcE2E-c0I znjF05=Uk%Z7x+FzW~9!jj8jv#-b=voI)LpTT+5r`P^*yGCXqHUy7kp_cRB2ZrR^W^yFOrg&98Fi`8FL$9KmjQLKFanI1}(Ct)~`Q9_&UsqJ9$ytuh-?F(ojd zLavNg*5pf{P`7JE*wG#TZPf0DASmCM3-&EvOC^6f=DK!W zGO-)58g1H`6V@~TzU+uCC%oRA{v)*Q;Dgq#Y(M(7x%4511FNENtsi`t!nPOV!r6Ur z>pB3gLgNgrt$VE&LSLKOSv|e^@*H|joAafG%&=$m7A`(eZYd!gockFYEwrC{Q&KRR z%elEx4-@(eX7b~wc}M3F-;-!hz$V00Fs&ni7-&)SXz0{;aNJ`9{djUB9({e|`BUYn^r8ect` zn>y)Q%9okQFuHUhCPWGKH3GUDiuN-07k%gWMyIvmsJ<=hNA0tb-Z8W<7 z7h_7dIYGYu>^Zq*l9_Bict2C6i+pTK9|nVEehwhS1KrE3ykUVX$9e$n$?*p6?P@w6L#5w0G$9w!>O)+f3ape~GS9fIWM}5+0|azU7kPY8iB& zprp!D;N(X(`zbE3l4i*eCcJA94R364Le#RkF(p1#yd&ygNo%|OB2>Wbin2`NwpqWc zLXBFGS!Q@HC$InFLa*Cvy2k|Dsbo+le(X!&hT*y&H7G*PJ!@4odURmiGW?dU*xn&f zca~KgjUkWc+xXJkv@Y2?2znHftAa`Z4~$j+HgLg+)@_v+scgf``AYWNM2=A7* zn?9g}2CKt%`nFwO_KN@fIU$#*zuah{hZ@R59mCqDsIULS#bv3?>Bbj-oE0ZdTL*M=zbDszrXZ9PQ{Z7%& zEH32HtLqlWw3$T(VG;h{j!ZPrOD#|Gl=Msf|ERGWzvxI6@rkjxwp}n-%8oln=xNVc z7f^C%a2L3~Xf~^3Bbad)DOr8VCs>@+5 zD}M5oA`fy*P+0@wR-A5FFvs1_!|dJU)E{ngZD@z-BMdLKS%>}Rzk)uihc8XtSQ-?m zX;dxorWwR@%1KCEMO(ztxCa}}pE85_bc_*M-K-N=RmNUfRiUqG0+hsJtmFiSH2I+x zN={vdTHCem9WH#ld(4_B;n$XU74+&^Aea%?F4uH4LNn=mU(H!q9p*7a#1rzyQ2q#$wh=>sXmRB({{!RB z^!lETRNFFs7&Lwv-YoZ93tU#tV@Fw?s+ws%$EGp~H-{0T`MVWP=F)tmA<`I8l33}= zwUCV64#*?kLJGKfiF#|XeBfIsrK$d}@q2huL*NI#`9x!sSy)k1FLB@GUKZD4cugqrJOd$u4vopNR1bOl{DouGU39)lTSB%eV&sQfkC0$6(s~<3@%zMME0(CA5g%1T6(L_jsXX}hFhZRV(ciD7GI0b zg-R|Gg@UnAdJr&~pO!|SB^?DJ6xQ1COWa|T5)z4RUMIPNteW^Rbh+iC9-MC}uVFe( zTz?WhiR~8Zi1A759i@Ve+fqy2deV0?;sVDp0^`H1A@KPU+;yp z7<)+VHNSS}vwQapuZnDt9(e8x=iG@2!`YJBURvc$mJ*mT1*4&JUg$Xk@pKUxa#7W$S!j^9?n_sJ(;q3@E&M|9DxziFHDX|r%e%9 zu!;E}-%W2#bLG_V5I$j^v^sH@t_EkRDl?4tEGcf4-USdPo8&OVu!WWzbxa>o!9b`1 zz(}aMUmK#CMw>l@Odh#qX6O)0y+oX2khykbR@cCnY4SUH&DsS{ERk>5@8eSRlq-7p zfc61U+4|t-&)^5IY;26p3ekWkCz%maQq1c?x%K#c&+Y52XB+Tx3!;OV-^`X`Uygmw zP|;|bqUjq?Pm?3WIApGGZ72|{mtJPMo^MPUWM#K4h%rjbSD!nBEg~yxt-!!NV^jk9 zb!>m!ZN0GBsaE;dBkJp4(e-=HZ#XSFvg^u65vTv2ZyG=4o#)v;pSGgZu2DJCC@U$P z=IN}e005;SL4G$_3+}5%>X1y`4Ho8TQw9fx$Ys?K1%Z~cS~}3;WPqojSBt?y8F?#y zEI}IpIb59RB}E>0oCD>bNueDpMURA8Z1pSS3X#d5kAI_Hmre6Cy`vUN9eO@wPEbpa z*=0}UQ8DVHz-DLR%&EZ#irp@YYc8E(*YORKF@t=i!@;~wPwS6tAI+%APiQAezBUON z8AjuN1WZ>|(*8L~gv)ycQ8IZ*NgsxC2T6y;_P7?+*s%^NwxAZ3jU~E9k!;4K zCvv`-mF6@xE`>Ptt}ks+kx9;HKe4ZA9SwUusKVzbfXS2cQ1|bDpERmCA-Q8s+vIbW zcL49oI>u>9GxWOrN#Kp1-_m$Z3Hm5XT~SLb%t3~YoZ+Rayd@SOy*bvFIoE$D(?jYy68t8J1l!1q2BU++ z112X|vUx3!ovubE)aIz*UF0S@3c4k^F1b#D6HQxd+W{qS{h!R5jmtHUBTbODulG#E2MpIeqS1<|2|N`u^99Zk@u1X3ck_iu ze{DMqr1q`J2}`b-)FckpPT69*AwV}Fr%A+g_bwzPOYSX(9-_-WGKzM!JvstL<*9Y3 zV@=fhd@Rvw<8yggy>3LYG;)0(V$#xc!huJN3;75*a-0Z_L9S6Q_dqHKd-lh6xV;I; zs&lz7To&uK&y~y(LG(x{X8KY?W*%$AUL%%Z##_s~6wEB60FGH@;ifSIfQY!p1G*`} zc7YhM0+H{O^4@)WjnbnVFD;+2QEI9zPW~0?ZY%AQVINOsxh!bK%cfc}*_-it!0hIg zRTZC+2xsDrSy8&mP@Y*1SFz&Y@nnvc+#0lGe@*yMchfE7G%qOIqTQFaqA$2vM|Z#iUb{{-$-CJVZhJx#uOOu$)A!}tHBK+E1RP@qD(9Ax{rw_n? z!9WRitf*CS;19k?zv!x$kM8E?TvdfNxW>)9_6tTe-8^{cjt*gxfU!I&V1Ol<Mg` zD_iB5I4C4XC1>pHX-0N1!^Y+@eLj?9F4-cf$TJpAdjDz63 z=v#d~1}TNJ5%&%{4Bi5b!%VWYRG;-jAcbAeLJSXH55m!cJM}75j*pG~#sfr^MU<~< z<>bndQ-2TZ%uZ+{YaMlm$TMQjGklxz0?aOajlw3F4kW$x)Bd3f7rC3h{(RV8kQofy^noWslLsgxQ z<4shB4FR5+jR_~m3|hbB4;qN4_^o_&M8}gr(`7?rINYRd&x~$7RQj-E znP6Z*k$@Z>V@1@RG#Ym13bN?3D<6q;>Ab5?Q7SOLJ;TQ*cp-W(_TaP4 zsjl3lUwOxzE-u8JOHb%6DnM>+bsUvFms&}g{7hMr6kz2y;`w@l3=sIQG&;U1 zSJ8cb#m+MR#d%JQMOSk3>!uko*o%1)YaA6HOa79dBkv=$HG6FonBg%XQ2V|SJ$XF* z|6+R9m}eP2$Ln}J9PHa1{AIcajGBl6jvAUK6(<(?pw~Dc%xnyGYApTs1KN-L%LCmU zf`}ZFlcfamum>HI$5bNKsj(J2+!_i#IQfvSbK^~E>_Zy#ZIgU3qiTXf^i@RmZ>yCT7C2%y#;x(Qi|-ZU2}6;3@UN%QR;l}@>ya`*eTK(Y+uiQ)5&NP zV?nM9=Q5goXsev3_C=iEVZstHL(Gqw=DT!S71V}Ek*|q}854JPbClz1HaNqm)h=i{ zO+6TJ1emY9`a2mP+D!-RKp_(f$=|?(-SqCO5T}eXpdM!w#D?7B{R4Y{CKPuU8G0+X zGJonsS)r`x0%g#8W*IqFUXnHF7fV(P+rQOsM1`$gX|dnw{O`v+@|ChM*C&W2qfv~_ zPm_dV=d$zzUZh0FAj&D7Ann=uV)e6^#|UcJ6;dCX$wNF8Qy}Jv?1a;#!sn%i8Op^O?cQdNaykb}BGd!}Pg{gCaTC zWlXdC_Xsm8f111xfraN4T!XMh>G*c|b-dzG@WE1UTe0_3?u#rH(#p>{F6hn$Z2(Fi zQ1sRDaCfyl`Q8<3q3Tc6`+(N8wLi9c=<9juI0jT_W4~>hR6QU36Ef+)^EUo45kzsz zs5RMtbWK?4ahsDy0m7l?wgPHTX4yFqPMiCOEkQLRSJxx|x+Cq>sVyzXo&_nYFe4lo zqnLphC#-j{qwRf=%U}l?wg>BusQ6uR;lR+jm7MN#^$l%^%Yi` zB^t#R3qdI4J%1y%UL7O4TV8uJ=pMr#!HOq~66ctry4YD$HGp(#p>|^)zA>KTq8q#g z-fe_dMTHkny%c11xtmOFKf4NZQVXijppXUef=?y66}awT3b3%B_5HZG@1x^?fqQL@ zi#)$WJ;f8zwV*v|E9gGCIG;edl{nF1N^4^m)7^jIRPs*W(=Z}b5=fdZs4w}LOrD_9nPwIN}DsufeZI|0oxurZcH3rMEphYjNhX+kQC( zpA&kXW){*PLI?c}T&g~$(Qt{F!_!6^cYZ=cPwlP1r>zZCcm%wbVQh95^ohEb9K~Lv}YsVXJxG4MtF7@x;4MOQzRQQL7%Q^7ka}!5IpF6yo z^QbMGh2VI^D=2sfCCMS>jGHMtE>+}C+8OKX@j-zwyBNY5{!HmT(&^nXU z&mYs?MTXB%%Y_LQ2Msy&vKZ3nsqm3Y2J@`3_0M^CNgKoW0bc7p&n_gnqB&0Z@NtXr zLKKAr#89t+h%O6z1*!C#t34i?gY)iOk)vUmtQB4b*KJy-J(o z+bzglZP8+mMbpGnmrO%qV)7^Qj+UVn>iDo#(~#k?HrCdGm#96t<(2g>anJW{&F)C7 z7tSTvV?a-!)XvT`*JrE+SNPVMF^gi_19}~L+OyR;TVUOlr8kPBV$xKfZ55f{&-Cs? zQbpik6QVrK;eH3gm=`-_&CDy(u^P*t_f727TkCCJt#$>8AvntyAbcl4nS<6g14%P5 zqt(-?_`_wG@DE-%fjctTAO`E+X=BsIUW1!U?@Kl&AU!pS|DKZcyAB)~iSD;V=;6V} z5B}0r!0P_?Tb7wnL1*^a(l#4BUv=97AgS#=qHAgL_YzZDMW2*En=Z9F{CHjzsuqU| z-oR;>$WZPy?4}G95=rBYUs`wRwD#dOW=6xwURj<<>t!G&R)QJQ7l2MqU%Y( zMh1?_(Zqxy``I_~P8mP+NLbq)kgn9N-l>iET;6oW4PzCe-|d$;zJyRlT;W2c>rV#{T@Us3PVKO648zy3 zg^d0DXM2uSviwM)tN{|Q$t+zI?})q>yY}0CaDD+NT0?e?=mjrut<1I)357|#Aht7{ z%-;s;B|h-WY7r}AMDp`_q9qWq;w}p=(%B^NwomNGp7#^6 z`eezyQ?0e*3{6KA#v5MUEU^~c(Qdieqrc#DKhzv8xp9Aseo8IM*xHax z4>KCtO}E#Zjd9;R&JZQ7U#!Ry&E5B^Lvszvfsvu2)#bh)Q;PcUJAF$F#;W)el20B! zy?&ApO&;;z?tJpIeN6{WGcLJg+IKej5RWibwrIxbOQ6{^>@Z)+UED^QGOe1cnRh?7 zu!X|(f#$#2-B(D>7m2o$U0dD-xdq4E+MRtuIR$9#z5)*TrJ2LG)J|6p_4?Jj zS~diJc?Dkz3gOr517_r=#5a9$^RugtEfKE*Ar6)Dt@y;~4x^-{TjWeTB&ZiU36*@s z3a^Qa?B)pHV96>n7eg7-wV!$bxne~88N9?aRm9(N>XG2OZO1gf{R5jo2`j+IN~3Y9 zfSqypVh>v`|L6quao9krmg*rdaxUk6I^Th@n7wpSmGspwd_y-I6jn=lCRWj7K}5!p zL(scQ-rL~;q;nuCk^O6{!Kb{_`PftW=+Gsy{FQ;VX*BQ&{aJ4FQioZg@9g&QbN=SUoi@xfdE#z z|295i<%!~u>Wvqr-UZj)`ehgSQ%?b-(N*Y-TcbhsVou{1O!jTBu%)w6!p(unCwXfZ zwxB2F#LOPwwn1KwoZ`eiftKWf=97WvVSg^X~msF^x uVAV7z)U3G5U6icfwpnje1E2XXNUUz|cG+o;DBAzvZEy`-|eZ~4t& zZKNH(LyLB;EaP{#-%tFE?y~XwqfDyoDmr%Zv{~{E?0U@74|20Vop7`9*$`%%eCX&p z)Ag<4+lw!$0~~Fi0U?=(t$0>*BWiWUh$@#8yA`OpGN+8SFBT0BGTkei1>PChrp?4k zSxV6c~)ecvC#&cGY+magbXdi{9OgSP1yO7Ktt1ygtL%lQEL(>r!c zRa~(+T_>MnG1}Br8(3m!hpBxdV83S5i*53naWsEzHD0e%vG0GV6GH&jx(2M#b)Nay z#^M?*&f%hjf9csF1=TomP2yUtOzz-TONWgNG(j+f-#-BwAVTkt^8 z!8J|T?-U;nKdbK8Sd-g{|5DCK)foMnOz`Cp=)#qjCaUhYqfN%ki5gpac{*d^*0pzw z-6{iD6R4|me7_W2fA(vz(28ubkkoV@IlF$~VoT-vrnMkB`~)||VDd+37H|RJ@2PSvG1i&JA2b&6 zZ)AiOaYHad8HVyJG~;qRJ+{N}j@9NE!Oyn1z5t5Rawo~W=K6&33!p!NAk}?xC!9PG z6T+siX$8wec#77NOr?kLV~;fcJATLFO`Y+D+=5r8j4omm93DW+2%v zHxi$~Y7G~;mTZTxN?18~9fin=x6GvUHdt@QDy$cj+&P!jT?N9;fcfU9q zh)M6IQ)V(xItd1u1#hsCq}d#$iyEfOe`K?;0F`3at_`r%Q&RFgx9Z}mG#kXvAB`N{R@R_ z3dIEv5S>gE;coyh54LC`_s2u1x9|8JVn8e_Rhsjt#o4)@CU$zn6MV0QuBk29GLQ*Pa70TN%`vA6e>zwX z$cL0v>JTQNH;ar=d0kr`{pI62_cx==8P#LiYPX(FRg=~=>iQHBKRex*$o(&T)|G3`CnzLAi3opgUd;gf?vw1PO1?L<%Ifo zy`#E|aZTq@2Moswb#k(tFpM0t&;QyBp}x-2RD4*-Pj9-gJ=U@vOye&p7XHRH=C;cH zV!xR|hyurE)THO!TDUkl(N|r;w+GxhU|1nGq3Ne7Jft)dCbb@ zRj6~#M02(b<>l$l`A1{|x|?@O6_l{>v@fo3(_n z>%@9PK<&tg94_`-gCS)`J;!h><{5CEbLXz6)9IVcmTzG4Y)dlMncv^JSz>`q_N}e8 za`l=G7E(pp0pvjdo$Bxa*P}SUKtDNVK*@Uu}?C7&& z9BsNuZjF+>`_^Jtt`s!h@AM;izkjvO1a((_Z>-8-UJy;yn3*!hR$jM2CD>T?D`ulRJ}T#Y=%%D@?O?vC)34PS1Q| z&PWTvEof1z!WM@MMlG`>JoF@_&#S_wt`JRvcUB1JpgC`b&aI%ZU_-zND_Xc32%j&# zLsSA--;fG&Fxb>jYt6J;D#}CHAC~M;hi?({h9cLT3h@V@U)`g9CN)|Upu3?rfV&acXZaiVy*fg{k5;)~zRlMH-7$X?jw#6|zN9^(a1BLkg&u#o0 zCCP)mM3yB=6MSt2hiBeu0zrA)}GVzOml#|7LC!VAn81rH_y`d!m1`dCxuG0v zr^PZ&Qavo0@Ws#MOEXtTvJk@*({}%LG^0N-Yrv{ld!4ac0^qfy~l^o?5>{ znx3YAm32W*NT1K4hF_Eka?^bc$X>Tyox zp`5-1C-COB4O$i+ft3x^{`!Kl#u-6L_;aZW36doTPpf~~mppK=?nHlgm zp{_lU#r+}y%1nZ=UrbAt)LeDVl}{0C0(Jq&o|qH~gy&tT)ma@(Zd%>XaTisZTJsX_ zkX_gkD|Ac^&)*}h=Qybn3BH{8w^W5`6!`X}9R1AB2Yeyc3mWlo?pJ8Ud6&sDc*JgG z{c_Tm+Dge)yrU552!vcy6`6y~^674|rn>D?JM;yt&vfcX#S=v$c?a{!G6mI$Hy>MP zoph1Vn@gd;Jb3g3=@`aI6XQ|Ab%nkT)V-tW>7gOSH=u??6nRKjlBjdKc>eE4Zoc!j zo~=J3C7=F`+7i+x>e(QAFO}rzZHq6})ZC!(lXe)dp$-CRiVI`v&l4e{IHAWilIYL$ zmDld>+tKzFIQQ|5KF~!o0V``-V-m6Mm`?wmDPH)A}W338*2#7yVe)2k(D=Q4M$ zDP>+6-^j{UDE{un)<*#?3Zr3m1NlU$LoGfxCfx^@?_+tAsCu>bXrC)?GsWz>v8m2q zp%|5rD`vknyGd**2-DYrCSxBWlIM%y5tx4nV!rQ@yw9WZB|VgG{$~~V&Tjya;ZJY; zQ@&hwmuNn9UQkh;xZI;=+OIwqV`XYwwb3>U=s6_Ey zqI653-re0B^C=-^#TQfyR|IM=|XlN z4o4l(YQ%lbB{w`ZIUhbE$;qG}l#>*zvx9PQK*pR+QPSj&8Nnk$qiQUQ6SJEeBuj*y z(dBWt$AA9aYzU|qzE3vHhpw=Cl@Dpu38^>sw zrtl^!=P3o*j9iW7+VBdujrB+#ZIp?NEN>4_S=|ahkg-nmmYh0Z$4Z`ae|R|*(yr;< z?w(_Kq3kuTuSBJp>a4LBHXbJa zA9dfM-Fh)+SKZ72zK*aUEE-Kp8`+8kcoLut1LHh|SRaVFTAhYV45MeqChshEF3%Gl zxS&$%U({8oPjVK->~JyTkw(z*-kA{?!pzNC*l}V zy|D66d9hcuuw}L?FQD5nUWrssYBdAKa0O;qV zyChGFmQ!E>lC5cdDwt`hIbRmAVY`NDLtw2*V5Y@xsUwEH;j`hpiU>=B5^-xuc#pHH z;l18%QK=8u5%=QFc65MR^Y+4ShVQo10#}O~%7YYU-PiYKHztF9%QV z(bl!Y&_*wQ=TAvFwP(%nrNAG!<+8I%!-f~cVMYV<6GK7@V2(qhNl~En&4?~EgivC* zC4M=Pi8GHkfSP_xnTHIQg7@MF%p2S*9uFUnV2nF99007gPdgIyZ z;~5{X-BR#;Fxh8r67@cOsYf+?wR71TpcWxm{>6$O{1cLjhoxFhd3PMM`B-v{lh>s@ z-#tl3-40xzAbh_TFWPdESl}^mW0LNnQhxzxamE)lTg;0i^H7eHWsuRHBd>16?Uwzy z_|_hq74;)G46&Zv0goHPzkT1EdT0RsNiOW@+g#1jY~C>>7c&gbI0Tx~Ow8JO=IsbL z+<@v4&i!2NRUNCU#T_I3KUCshp(NShZZy|{6g3ELEy|y!xudg{kQ<~l52Y0GNnqze zdwrHyFxu#_0VTiI{c^Ye_B4Ry5VPzha*`+;q0M9nq>gO1NMihzucLd{-4Tsmd_Asm zJyTbdx(mo&E1MWFDB>Mbt>Uy0;4@qU)PW4J%J=<>%)unGyP>E z6D3jTk2&$XzT=z*wCq>!B4+~Om4V86$K=kT$;h zGyt6vD8?oi>+E;!#Y=^s$-O82*VVUPei7b@HA2f`jDX!*v0Hylw3xm57RFIN=Iy?7oOMCO`suI z^~&?ef%bqI*T37z)V9py-*Q(D-R6S@Te(dmF!A*du)UNge!aSNLJ6 z)>8#%pP(7CXRnx*7h0Id?egVJ#6FCoI_FbO6;BPIJ|z&cS8`dD=nIv1V1$F-LVJVf@*GUYEVCYJuAlvv$!>y6c5tN$b zb?^Q?+F&a8Wxdjnum|s=#eKnC-biC*9^Q4Fp2MFXXIQS2>J8T})f|T`YP&dlWpS)V zd#AVhki?1aa%Nch!vBfJ8UKBl6Q=ILkhbr#*77)C=ReLHScCg-b@*!V;K|p)bv`%P zNhj^+Z{8bfcG5WmVQ9d5e>rsX)`wg;WqXnEJ;W;5)*ZS{01C+WW2lAz74Kx_5mem& ph4$U@hbo8B%ReYQJh8m+QP$(%X!%-nO&Jx_6^+^b5tzZU3# zmwB0aK$dxhm%$&D2lfZ?e?I;2t#`7!cH!Aj#Uh(mS^eufarauE7w&oXzB8_1$>!5Z z<)cr{v&@g#u`RjZ2E6i_FJg$Vt|uLHA+`qZHL`x8?4 z^;c9Tvm|B8z-2kVDkNuy_&95R#@s|Z8mrxVT{s#!*ugSga+~q|R1;a-Hsk_?%y;%h zE&fHpu^T1oqZYhW*LL%Hb(9`_^UGV!S_adoR}KO>y>uul-ZMmM#LClvvK+<~4Z24H za5?q3p2FtztG>w2r1a1VO_5)Hg_vi1VhzsyY;sl1pb7IA_u*Qra`Mqu(n;5MjiK)| z^)htoL*f>rIBFVtBKFfmK%ZNZJd%zkA1$H9onayBEr98*8uqu~ac#bjS9;P%P|$Q- zP}EzjEyy?Qx9ZN7ZuUXZzW+d@AF@W`XSN1z`-D$dvyR_3xg_!N)M5@a%uf#VQzsv7 zsiwuuoR=eKly3~i4i&7wTQn12Ac@ue2Sw>NyLVgs7?4T@KLVWg{nqbtq+Oql=H0Yr z8x7^zM}mKR*}>ASoPhK;9GYYmQOEB*9W9@*l z@J)eQG=gq7yb}Vs_wFE=smcYih^40`{wDn!&28J^PqWJB3; zsVlPO$ITok&xT6zKQ;Q&_r99si-a%?kz$dE zk=eRp`|F5u8uNWl^4ICiTMW~qrh@*IgVCzWSl|smG|rFsNfken%EE1`=GHB}u@;BnR9Y91b+%gsFemQ$}28Tw?%g)QOZ!`+b^uRe{w24G8`*v4hCQbpnLnHAk=Ey=Z4Kt6Dtlv>TM6<`v6b!wT?{N0V0PSDHyJ$ zta!$BN60HpoW>!&j*!~l>PjyXHY{~;`OAs5;layEPP4;9k;N38@A~T_<~96K;&r|P z6~jife7C#Wp^?Sc$1r{aK~!u>#GAW9vB6BGXt1e)XJ`4tGxByO_S$AXK5 z%+U(k(mST@$cPiMsR+q&9uE!a9%?a>{VOYRmF0{(BSm1Nrc&r5kVn}z461>MvRx_>%k_=9UG}@F8 znImGgw?@TrqLPB!(smsirb>1KA}U^aHc^r_pVzCH3>Rg=xSoA#n-60iW81l*EqIiu z-i<$}VKD4S_nV6n?jeLw_*4 zm~K=69NZj9SRt>xJymE znM6%9{p*hw*DVuR0kFJklVFlny$;rCqchetf4veP{_YD`aN#XE_&=ECl;ypnU&j|a zBibmY|9m%OZ-0%t3j!Hy3rODeM48sS*Z2<-hvzF}gy~c&<`!Cf-J~@Uf8%^PWqHdW zFXl}9be2gge>RB1-!0jT8kIve*ad^IIjF48k#y3H3(aRu`+*jHgi3a6!mn#I0d<(W{7gbq}jz zd26Iw`$_bUZZH{;(kD%OjWd4ru6KKB5^KzlvPSB|!?fWRh8tsb)+etGS3dn_NTU;^ z^(dU*wG4OSSX;|F zsms`g0}h7J*sYJ7PYE-BE*do7Cj3%EGeN0ZaZmpOspOf8>F3+ee=Y1{n4e&vs8p0hio~j zL1Mq0r2GtH=RdjvhD$V*N)ig#bbcw2a>)PAOn90Ld7ZH(?1}m6T8i8E#BGOx;p136 z*oZq)()`$nrDRgpBew$#`@Mj^K8qHP_!kI_-tnf(%=u-#=5qF>#v`(-Lq4QiC__h6 z@n$0lDLwUgNUUP^cE+Rzen*n31{)do(=wvQ1Vg@Q{6~Z5#d14!) zxYCz$8wbBGOV5p<)^K@9=dHb%7KvWqXXaJ@Wc0G`)NsAzl@HG}ti_}OuXG~jG-!D* z=;*?ZR96QS@tjlzTGn?c+LRn(p;IElK+(60r*aS{h2yTk@&ACPr!lXs%pok4=6aaxX>!W)zV02xdaZoL{&WzL8c=h;)eh>Vp|8IY6LkWszKe7J#XOq@*?NwQpeOk#!w`z~$pm zXC#mATuXm;ed{Bx45trT+zWEG7ekszC77YfH!hwd2ccHTn3J%s)UdH7aGd5NM&8Jv zWvsgWL3y{}@_I7^*k&*?x8Egmb9=fqeFAZjepmy`-_NG5jwfeY{LmLw*R~y!#md-D zmC#~}=~v)%UBUssmv{j6uBdho-8#`@8X&U39waMm<*vFk-C zCPp#BEPUa_Tdv?fk&MGBfu@%up;6DztLy(4FgCm5m9jsbBO$b>C%9mx0kFttz++?Y z@Ek0Y+LnIb2GU8`cQnJj;UP@PQ)sIIziI%5HrUVh>(TC%{EI2-kFusw_S*VSm_^Ns ztG4K=FE+&D$|+4*v7Rk{>vto}N$o|ZOEA0UXP3L0Fu%hY8?9Aaj4~(jUC;tzOl;cg zFqcGG2Uhc`vx?#2*81I0nKFS8_sObo!c1_${KEWL!T>kN*@6F6cP8pajHZloFTdVH z`|#j^5*EOu{tKod@WC|@70d>Ao-8>}y5^eqI`Cu*kTXg)jy>=6Y@QYKx-vG(%X1V# zi+k3GqMj$Y5#sCd@Tgy4(ykkz{!41h8LzOi4dl&r#ez1FdpC_Zr*kj|vEPuIwSb^M zKpr_=R5{F;j@J5EGhlG39;Z87H8&b|yDspK^AM+uQ!`0hTG=m+X+;lqpPw>kcqvnK z_;-gG0dZT6q^k2K^ph|^vG~^A=NJ!R@=OED0~nol)>?Pvy-9}oc?r#A(Hb6%&-!do zG7E>5>RgnlEwZ4CZwpIknBv(R+q(ou7gTOoNajO8d&eJnyEDpfHB=ns`ABfqSq(QVm2Pdz=V&v zf}S*=4@-|S(j3~AWYjo@50v*K9tPo0*MY_U1PgPNh$7}YP>0vnNn8O-$#3;dk6=Bs zJ1&yV2+-iDXzAne1$m|XQ4(SzHcM$;p0U4fy=K~cQab6HmD14-MAXiRA8NU0OT^SZ0k`*h%~T>MFs z19QroOZZP3&>U@C!Locgm8#ZFmnYCjLI;u~aZk%g_7xI21^+MhpE-Z)7nDn@uZUP6 zHG={a!TKV<0~q$zYDW}fZ*RPh%I~c!5(8F50l4)@nloRE9wmVuE@D?U&(xg|5*0A8 ztIu>r_m`KlM$LQHWew4E=V9`7!wJz~RsRe;q2N3emD*OcDY@$jlEfp+7>RN~Ec>N8 zomHl$v@zK{P2NqI0n}$>6K7|Hru0GgIDHqOGf7R}3K{HN3d{`mtrsS7RAu=}T-s%D zyuIn6$6aG9T5L*3+y$-Oe(6;VNzdSJUuvj??o(M`R&-=~KKgxo{BtFF%L{rooJTOa zCM-;0;$?2{Y1@fB^QF;n;ibgGanHO++~vMw7Dk|WF^WUT{Ga>zGYLor9GKTg*70|Y##NHO|I9xnI<-xO5PSzkw^+`M~M#L&fc=;93|lD(LfXZl;^ z;rZtelc^`RCzlL{$KX6QEvwvPB%FfQk=iX_ZD&WM5|nREFxQ$Gur9VFv{|Yc2}&=i zLFKL3)h|K@{tWX1C~ZRxsyXGMFt#Lb%(s z$TeiQlLSMLK8{+mQB|6P{(oR70!{nn;=uT7wk*bl2QrH58hhw|o2YW`O&$OQlyS6gZ5SoU4IPcOpRlZCT^JAVe_5qDefyZTwQsQvci55xm^c2_%V~ zhHsWbBj$BPV-5e>cG->vzI*YC6NN+GR%PKPm@j$l>(n_*4warrXZ_ zfH8MnmiDG=2cw>5%%uJgd|hpd`#Wtz^e`NMaC#j^QxnDZT|X7eObz397`$;Iibh?C zRB*96aTX@@Ao#?Qo8db^Eqezzjqz#-=~X=?9Q^vRrixl9EmaB+71DnRb4-0A(_N6D zt(D`m&iC|k7TM|C z>=$s+fmEtiq4>-0LH(q3(LWB`VZ2GuQ+Z-$QkG%5Zjp_l=^d!?eY-$eU)ue6wO13^ ziZt;_^{H&b1#ulr@AHZYWi%2uMKo zMaw24pzM&axPf7dvIJR@pac*C35F#k5P0W~|Nr$oA6~w2U3X^A%$zxM&hPxrsTT40-5gV};RN!|dNJiBrxgQxLIE2Q}GSnzIvuh`!aOLPh9j z*%>l8>u-9_s<~1o?jD%e8E#mdovzL5QMT$4o6oB(>X8r##6#CDdWd`f8g?qD+^pBo z3)B<@j1iU>ef`%fkro=u3h}DPKi!?l{23N|ZrroCG@Eg#G@Ek5J5uh-)elvngVVTz zr{|QRWPHS!>w4SHO39*QOR#Xs_6G!_?T`HnN4SGoeZ-IAp(VE(USOmi7LQ?HO^{hr z{mf(%-#2Z}Hs5d+=EXBwuM~TKJ5?XPzp_CV%(VV7B6D!|thY%cpTrF>8sMg^*CXTP zO)im5jA@w(1N3FLnkXw~OQPJeXNql7Y} zB^Ac%y|=Q~Mald5;=I_FPA^%DO&RoDzBkY5YWowdVLr-fb&bqEuty z$eIgvqa#H;p%8J)J+sCMaeGhHL#(_1x{LYoh#f#?aco=H)Be%lFxlf)d!3DPsW7YKbS?>aJC^3SDL=3cAqF>-02uTofc~Q@*qN9S&JvfYecP&8zjSr znt|`7=7hM#_(l5a?~UWLYPOyFh&`q}xt|E%AP^bbx9C;dPRr+sE73faP3=@=P28^N z@K3ylACvJHLf*6ULb_IBi}BaM#&-P_lkQaF2aOD5UmtC7e^^(MN%e`oRl#VN=`$Zw zId)8-A(~WM;klwzLcj$*(+}%jLgg*S*6jL7uitz z1ro7SFWsDgEgQs+9c(PS5Mtj;`4nGNXgjQ&PBk+yjaNJVNnZYEyo|q7)9j)vsxBAG z@FIm|^a={VY4?@d(j3_gx8-K#Jcc8d zZ%gAId1)qZDQI+1ZyhA`PUh#vd;uzaaYCS(NC}*2#L1(?e|vW?9rRy&-3XBbSsRsT z0T0Q~_!xA>?!&(^PGu8R?UQ-XfTL#P=BXh@78F?Acya8O$dkXukOaFIgjrbH(xRe< z?Nb!f98OjXUmj&$Dsy*%b@2?`ldsCO>z6M;9hs$#NSe^1fm2q*@mEP$b3flZ8ay3J zm$A+@<(p1;TlI91P3m&FR$8s2O*fcYznJMXhF>H zf1KcfE2}LjD7a}5*tp)S#Uv_Z> z*3ve2J^nig;gz5DK;g3Fu6ScG3ASLM#9ayz-(-+1-ArNzbDN22CQzRj7$5D_y=#ZQ zh2QF2U4e4$GQ_Z}U{}oz;EPi0R#e?!R~4U?>ulM10pqe#UU7#9?akR+h_G z-`(xs3|kOYZ_*8t2&d@`#rhD%g@OUB;atw`X!WY)A zB~aC0Gl7#jq+I6kjpd0wkX^|L{p zj&q146IJQtICY2=*6%9C8k}i-P+_fry z!2`oZc@BdMhi>K5MxVMJR`0#i09bjc5tkvL= zfuUo|)bI)3LkkO54kVba*NYt325#krDPFTGA665h|Md7R<4-c|+4T-=b@8P&w=vr> zl^W0CEH18W;}8FVAs6A?1EOlwwbX{S$F=+6Ic-k|5BG0H%r^#1c0w&k=Z@;|E;KHH zI3Pdr4@JJxwQfp$6z^7DHBd$RRZvV})R&~5$b%gNBEy6?erwxf+;m+%uvM8IttrB8 z*P%QE(-c^X`bsg1yB^wwoFl8j$J=p-Dts_I7Q9s_8aQJ;uh0@xC@p{D)5hc z^#zGP#J{+T{aScj#9D|Q{Md^F0{sr|jEZ8IF z!jK2ib`fag$Pe*UH0hG>%vU?iu-u|&UF;~TIW@rL9n|E)M@uC=3 z!KLgW%|^`wt&yut;$~Cs+tJ#PQIs85?Lesy=kDQ~NO4E9%0Ct`!)%r5UR8-!(W}xv`u5mcu+&&%rZ~PND#UYb4yG?*t+y zGg>@sebS)4{SIR)7cJ-ATBh**j)}A2zut(G;L&6W>%A>UMHOGK<4g)04S`Lu`)O}X zW#ZwJ7V8NyLBloI&IXc+!0L!^o=`f1C2?u_ksZnbO)H+|ed4+MZ`YKEOo@|uXU1;P z9B`H(W~Vk6nH=^p{m@uHQ8qcxG|QN2gzx_f5;&i4*5avg?0#ZQgKSDc)cBG*5sz;v z=YMMYt>|QFau#xiJLeCebAY4o1U+loHIk&Y6$5tErgJ6!y9{;n4;3HtU%O`PZC0!x zo@MhAHxHHuTJ@ydHf5d*zGlf)C-I$yG_j_)%1MQz;BB;>gI(0^Gb|a%Uhs6F@KR@F zkYanK@a1wPn%0qG5-=dU#vdgSa9?=JT*w{&;n+PGXvo09rr&qKQN#Ek+Ky~qwo#uf z=eAYusT*~rRBJh_W^psl^NLMR$l8g{1NNvr2*fERv|AQOFJ;}EER%9mn`V(hJxoh3 zcq%DD63Od~HX#(J+4w81937Rx;i3!4*1e=>PqX#>l-^_U} zf*rZKPwlUvAD$9=+QOjwoRaTY{LGo8*KA7x^}>{7Fs2qtxqh0gShz{Y0(qviC&}l@nAfVCjydEHp zGzh(ILcX=28XaXK!H?x-b1b&fT{AhaFSv1+VunUcpYev#c@H?$eM2s}99MJ&M(|*X z?Xz|dsb?Mhrp=%SnZI|H`=_3b;Q5jalbAw1AlWBcU5fkkV5T+XI65zbQ=D@3?jGo- z7|J#|RJ-YZ4Xms&8qx>J`1Pq-7#$GBA>C~Sdgw#8!7uM~*#@0BQ*FuN)zz3V_j3Y1 znw8EmigOWC&;jU86$+Hgu|o6CRUJw?!_q7^`%!-IT<~z)MDtcIJD*dx)bUAAqwx@p zF28Po&LdlVGDtZ!e#S(UsF%(p zb;c&L+0X9fw#in1i220(HCeH};CI*M*YQGfY+=k!~i{UhT^ViHNc_RK(S4XoDW<{5rGPg+zAcrIR86}uE*45~FZTIZA zV!I=cmcdhRTOxKVBwAXQqIno7C+G7JK4r{+=E2Ib_-noq-IBTCzuPV6`j_Kwe3>9|$h(3oTaUz3H4^X7V?yPv?c$k05`FxEj6|fHsz#0`3#|nn7$e@vgVW zF79lj_ztPOT@i(~+8{`JoRe^PrW2}OwUr2AL_=6Xp!brWneT7jIX)`!^5Qk5{N9C^ zk{g3ft?a+RL#ZB^$p1265;h#aagye7#Mt@R`em|iipi7&?Pknb(=3FN#+*}3Qm+Nq$)BW%z&70zdjSG2Y{!cOD`oPuLCA#nw{MZd>J7)4*=gqQ@7)p^`71Yx;w0_B# zd2%89O&#e5NPG(!6CF*7qDfYu-Uei`w^_)*3PKWEMyfwD%50mKyfK@dH*mcpjmxVo zS<3yb^>Y=yv3yC?kawL~-CDW>k6+&$f+Z~G^LfpGGB0TnCXT1opHS-Q(j*-O!8$76 zQZRsQ&F3tmvrgxse4ue{^u{4t7E(Ar9j5BLDADNqQ8k4V7}tGl%nT`t5c9(~#=m97 zN&b}4>-L&RsQJYE3(xF)KnlZ5R~Aksk_D;lyeUPaB|jo>qXG&YE3dEdWzUE{KH9wh zhS*AA^p?kA*qr{dVc%x$KUO6~x1#M4qWv&E`dKTkSxKV6@gSO5Ml9DkTo`w+lB! z$s0p~zfA+*zx!V!+WbsXA>A@Kf;=>te7Xxbh#_yU8mb|!T1FK*PQxG@^(AZHvma~> z%a{hdop?Ss+4ar$RK((kB0cBjTsstWLP9*Er=&^{D&te83pwl);uG#oK5y=_B+VN) z-w|FE8P#FK2;|D7$g7*JQ7(fz!e%NJ64B>_04HMoU@_(9F`DMe;<_-!4_9ktR| zs_JXzc9ipF^r%?n6L=$73H_v0o4Rejz{ctykYH=Tj>xut%O z_uCxDMs$Q`)dP_MV(93}0ZHkwo3f`*2O+(+C5On2J$hIjWb0R`ztSp;HXlN@9SOlq zquVBVrPcO{s)C3bGwm=9QSLsrUS3wvE{zz)E8l$36r@Eu2bQsZ3KCug$%v|79`xo7 zNcA_4_5^Rf=rQN|^mt8d?^(+iG$bzSL9Wxr=}eP;IHtfAU_ADP~mdr6a!nyp}XQdWd)~^r`<{;jJN?Xw6_;K{K0MD4VDVN9R=rrG-yu8yXjzjWtC26|}0s!x7sUa*XwzOLb1!xXyQi`x}n^|`kqugoztKVqbQ z#7PM6sdmtB{+u=j3w5m&=&juXsrK?yXz~5R)Ni?{3eup1=d-eL`KK7b ztz8L!jNZ69j(eKNoZ_Y%R!}Gj+?G5}y-bVw;)+RC(W~VrvE`j#Q5|bpNnIo zJIyo+UVRPE%cf^FRd4jX3Nj-2l1KB_7u{DkF4B$Fb|g_w%UvW!YE5?0+FszG(t7{T z!z*KZRCa;*yBj3j8M~NzBMn9*f|K2b7VW6q&jd9UJhyz9DY|RpX^$KEE>F|^4uy`U zwHgpnZgzd5mlt6g5HYnM%r#_cJ208H9HtTPP$WU9SHAwDM&6`Dw=!(mj~Qi7UnwZ|HJmDzoOKJr3)cU{^Y@`u9qj{5&X1`q zo#T|t4-ULZU@k*>wISS({bnHkBHkT}Nq;|x^~HK4AyKY+-ZP=zXad!H#m}@z14`j= z-V86^D^(#k-eA9V4hS%CHrIsf1njWR4 z+Y8oPvM>qD=_s&7+tSX6J+4{?3GFnr>SNk$_Vu3fL`TV*f($DUdtOTNY6F`=4Qb48ku~4QAU}=CbZ&S}AG8rP;}=2nsr`f8oV? z`#mH~35rTsgR^BFx>4i*D1w9-l5uUi)?>7?G*7TCC=mKUU#fF7 z1l)dJU$K+}ISXft(JR}j_pF3{mne2hiW+EN-2u!v{dB0n7?=i90PC*?vKaSt z>75&nwDjc)Qwr1ON@*c^!&GkP3sb_?hLC{asPiZQW?GW#*DEVVjqtXkZD1NAB)Y9D z1Kw|1d)JYdFL3$;JSM@9T!0H+1aR-6#s0vP>8Tze{EspiNuhK?9GLJ!5+ysmoE19L zXOEYI`E}0*$jagAdU)W(qXLl9)jrLIFB@cTNlq(8`7@unCgD2LYgVfPb!~F1{b5*NZ7v!MeQEEdkP}|FIK8dwn_578+@bd4 z?3n|fXNSdc-n^!%Up!nX&%L=2{E8&a1K8qghSKqQZC#&%vKo>8z`9?l^FNx^3183b z3I8a9Oz9?uH2wnz(Q2lVzblj1RFUVe>??SWp3SUh@__E*V{Q+ITO|lrx*9MvP zCjnMMAnad4SvwX_4fU2o_p@x!*xIQj-7d#Kl`l;e9ZcCe9e2{li{17{c$G0>8_OLd zxQpyaAGvI&yzE@`AkW-?{Ziw2U#0b%HE`4Vq{Q_*6Flcg-pH%OlOOjSHMJb&HOv-3 zB3`b0^JJN6ee?BV?-<%AIkya%ru6bCZ%aeZR1~2^o43*uDA6LxFGXo-Icj=dvWu!n z6R!_Y|4my*147=Le~Y{EZvgK^#BVG$u;(lL0Kt>DTUTJ~IL0J?+{3plAJQ=PO6@vf zCunDEZANirZ0k3rjMuk-RDqK2{Y)sC?`6u;Kb*G|F$>H6vjDljGC%Xdtv-J&=Pm(O z1h{_1smw>oMnx{Bx&^~K zUo<%@a{l5QCemjm0T0#L4N`pQ^w!ZM)X0T3vY-j1&DlBzlY=rX zzSj>B97yz$63mo|RO&4twR^!7FT^j5Ac>4KyM$rKG;3gz>dGU4`c?PLoT`PVcMG3p z8yXzxo!_HMNM?9wdcy=z^sTeww+Pn?8&Iob7tL8!KK9x)yrw{@Hg(eoLVw-ML9myt z1%R!wCu#;Z`frJMRw+-U+l)x&ydPzB-@AaI{8ubmH zj$l9xb5ZP_7Be8I?GHei>(qTLmfyS%n7GNfI94zWpXH$z4;qPWqw6?eHzc1x@#d{B z9F@cNec>mZT{dIz8m`e6!kAqStw(9f_93DRdXmm&h1_btIhHdHXG4x_uc}B}_mN_< z_d=NJzx)`6TUR!B)hf9|eE$`Rx24;_6HzzFh&K9UfbAWB8{T?jf`#P9RTzg%$K_w} zWhbWYP2p5K=GBDbgWFG5GD)9iaixZfg;1N4f8X+(@ z5`C*3lr-X{{z0Yo`FLEJwqfF%;DlAMk4t#9e_{1Au{7P-Vl{`5Xe4=G=sAc$GfSr_nBDAJ*_TU1k!CzA4 z{|5|eyZ2+n)m@|1o6G502Q0$$T$lUclB!i&zIb`>dRsM7S>ALWMiR#!zN_^p1k64+MbNiJfRJ-Y7cj#cb;LA~BU0xp?ABf6BYc0LBb^aKrs|MZ@#%)T#;R;aRAc)kzh~OG?y~k8JEUh$lkm08Oo)ihj+ondBhdQ&WIQZ;94W? zZBAaY>uO6n^uK~XRKiC|j${18CBoFRssEzuoV_t*s{#`+1t0y_w*35_9(&EiJ02vd`#a5bZ!V| zy$V=aWGFo$c=&291HUZ!lV8Hk4>t`TxeYiUP}TqqB6f2GwpdYfIFB=4w`(BSj{PqS z$6ZOuwm-2O7S`>tMNh#2gh`!Rx8&rimy&wNG}U=*C#mZEf8mUI(vOT!&) z(dTa+pytJvlA8h2vNgz}&y0J%%o0MTqDov(Ym&D=S~LM7BkpUNDEihZ@G~fdHfx2s zlAArSmlucIC72dJ-(q-|(IN~`PG}zfjc#dzJ=tVnikzKIRIJp=He9xybb&XmpTC`I zodxIsNwz})sA&!xcY2yVp;5Ag?9KSedb0?A%?=QZfc-6=2bR*dUiCRgd-FL%hfVy_ zlpnyLKGDEnIv;5*qe>ea8ykcQlSY+dmbKIf5sNWxU4_~Q3>w#0koEK>X?00IfB0Xi z8U26k2|$EI=X!3{tM=*&?n;kLK9xiashS4EA;c9ih~IHx%+Q`Ei43w@D1f6A1K1I_ zdfaH=`sa6ns!>ZUZb|S-_)x`ZZFOh1@(_p}+Hl{1Y{=yT4h}6QuiFk)l=A}skenZ> zJ60~HA(O0VkhSPOJjr?w08h{4a~r0nvVtwitO3Ew*0ZdALBe-rzh(#&`V_6%HPV5G zU|@r;W`+113hqE^o*vDuYz6hmmYICm-lA#y7hanD`S5FZ5TY9c{Iminkx2V=+SUPj zFsT9rEP;FJ|9m;Rn}F*}cW_GKyz4utaF-G|_FVF=LS;11VCq(F+78HcG>^El!$?P! z4#QN0{t2*$M}2ScnHO`OKDGp){c_ZOL>dX1z zYLR??lCT+8{RcA`CW1PwRaN0Y(@}I_si+)8r3AEA{y8$1d)EIfE2hC2$0A?H*oc-I zSkm_&eIY?_1yS91PUeXzZ+mm4R;ik8U$Wh14RL0cjn)c#TG<>l&8Wau8>20?rv2UO zW=ZO9$4z)?;t^>bet$l2YSF{fZ}X4yS_+~BtFPox;xAHsE$+}OUL21N_}_F7Ts7vN zG>tKZE1x9?AZfu7A=~~U$!y&W3KceY(3kdlEU$X+h31*~D8isM{hJgRKVGQ;g}+X9 zX-C(ycYfA_)J)ZDdjl-5Y5zX81HL%e6>7y(tuW1(zq)w1ety-}$aOI%HP{MNkz;S0 zv$Dh}XIqy=%?Sb@l&_nrAx4$X*W0S`h2zDUV^RBPkI>DIt&SfCqD zt9FBPKmVArkBP@vC5!>vGQexuO}PrmJSiH`EuFNX0Z;+HBQorGpyA7@bz(OEL&IWL zYvgIVf!?03rdm|RaZQ3)Zf;qBf7kgNV7LS3BY<0V85> zS0jJo+N!48DRZDJA}_$LuE|*nSTfu|3s%*FZM9rI^c;7rivs)okT z1zLpP(W=&H%d++1OiBge%?M6z*3PqY3?Is(<~{BL~h2PwM)NE+qZnORg5 z8lITlqo^r5MLt_}>10#uTht$8k~dZumu0%WBy*~&BG*|DPD4jD1+35>Zn5Wipq}V$ z=0M3xx&k>UiBfyP!DWSPzfnsZeq!XE3SM`jy>5qw=qh}Z@Rj3y9m%FX#}ac#q>*)3 z@sa+mZ815(hb{i2IoDjHflFC`Jb19ur*4*TdV-f$RCaQ6;V-P!P_I89BgjUt449L8 z(u!~=jnh8`IMQn?e=FiIVX=y#dZrSnb;K19vWyNPL%_E3_n!f!-u@KB^W~oN366(a zg5T_sPY9bCQE}ASLq7rAhn)4er)|VVPI-}Dk>OE0Y0bw!C&vLd;R3pB`T)r#W4Bn0 zbVnEP3jyf_S6SGOAs%GSlGJ#R*PehnW#G7U#eDeR7~_vk&;#wYsHH3Hz%;v-VKuy! zO@WL4wJ{sA-R!%0C8cu4a>xOm1}%?e+M3O&Lt?DT2p&TfWqC(NmXq#MO6!->WZ1^i zUOa?;^|x+Qe@o4D;rE`T0c?_u;Jlp`c9{%Zkg26s7>0dVae#v}@F~=&9bo6r2N|I& zT%e$Kp>SzlG+DEgAiP6KV73N}`j&;5X(<%y{sHs@2Cl~V&V0W4<(y3A4m@mOJU`ZQ zGF*Cklv+3t{AB^4@v{H4dV)5%?Vt_r)kJ`Q>MzXJX99PgD17?%`~7^tvPN1hP9J&Z zdfMkfQg7UUoH#Uo-@vOp`4bN?S!!VmSV2LSpc90ECZC8gQUoBHsB5b)aIo#@?1ft~%ggD=<>nr9+%TZ3pjWDRb{W~ERKx7I+6_h&XzL-V z^Vc*@R)1CkO`~Oe3$x6fpqvhy%+=>-w=TZSKDm}|!JGHX>$mJ+Sf%IpZKQ3Jj2ciM zF$B$ko$=3qxwFGRVoYT$1pjyJknOBnq!{X%`x;<1V-&rf{~wO-mJI~zu(P0C2+FWv ziD!Qf$EI&9g}LjB(Xjc$9&Y%xsootRMrLD6meSQhBg3rE{A(t%5j+ewyT5)q{pfWJ z%ZL>^pYk7w;3X52zU@hnl||XInyXQO>wDha{*z&Y`$X>_<@*$F^tb2vS7vn1SQdy9 zVV45!NTN0uE!UOifZDGVt9$u3!n5gy=H-z0mpl4a93? zimy+_hpM?$R7nV&9YBcPciOuC8vJh(lhO07+pe1bCNXV(nhRCqpr)oa#uUm+Z3s~f zips-A0tUzG03kq{+akO`v(9%voMCCF9-$5*tGd}MRjLc{95>vCBbvR`a#xiZ^x9G_- zZv6Lh+x#?ua=vnruw?0Er{7O}ewgU*qYk`GaaCzpca@(1+xw;j`k3gWxAo9dc;GWL zAjb}EYDgP`8`w>G!_jYl!fSnh;&?8ZY+g>Ym7_@l*FXa2nN#uL(SsXpBZ)<)$P8+#LGQT=f`OUw6K|a*yaZ(>9T>JImqlvoC z*~a;q-bVwte*RzBquBmLejF`DJ(a_{-m34{8UXcF5jff1hrU7}9O|hr_aX|^yge=Z zovAMCAIPYa?nC|fWK?CeRoO)Ilaca}5&9|7kR$?um{eZf)&7frL9-DBky&CyljkXKMIvj<`dDd*uQtX%|B}NTfsLrl!X^BAY|^GFt^9m>UQ6&`5p@; zcGBMR6hAGsMQ!z9tT}IhYz^ct&1yH2T8nHsbd__PC9LJWioo#X$D$r{gmhYqYz04` zzIQx=)9{yI%_rK#BQ8Ldd#?%1?A@J^D(lBim*Sas(f!v8 z_5+;bN6^;e~^5(G1@WUbL-|f7~^sFo95oLEhKLGx2T4jfMjQZ0lW8QDH-1Y6xB@G5Q( z7r*j=qBRW!BJ*z3A)&~sZMb}{qz9W77jb-HSFt^gcc)}MV+>`>&AGoia1$R}JlYi! zLBvgz_<9%sTYsLi^GTJ~wEl>kC?Byi>=T_{i(7tVOwkMGry{Yw_`1H;Gg@kagYD&` zq3k(D%OyyiK*c-`2M7dVSGK+bP1d4^Hfw3f z)Zm3}n{H0+Nf+Lft$_@X(R+Mz+Ivjh7Xv}3DMyy(EA%*m4|HE0|Jm$G|CPm$zqnI! zPd0g)@#wpKF3@fa{nKhPk?Hj*dn{vTkhpgoiXCjoq8nW-09Mgn4jzwhdNM7B5bHBt z#>n*zl=Jx4hJ57v0D_!eN>NdokBwP60`W5fec`u18r3M3R_qHv1ufLXKVQW|6D2-# zyY1S_TQM62DnYPr*>88dA$;=jvQ{1uz8s?RKwga__}fFK`l3Yd_eYFcR-T&p3K-;c zR;>nVPF}5u)RH*Pu8*bsO@f+DA-Ze$A@*OPFJ^PryJgJ%2JL_-byJx6#} zj5k_FMTMDo(W9<_8#i=Ywf?iX%IYh*D({IL*5uu0i2sJx+ImpYA#@VjX9SHIy9u6- zZv^75p)g+=|4#CLT~P)_(kjfQb5|1+uGIK%@jq3ZP!`$IM+C+MeQBUeuiY-q-cyqI znkDZwp{rsrSd4l@5sjpPN0Kuu^2VD>29Jy04LWiA(Splb7N#LBXDAZ0j?T{5ab&6l z0zx3FGu!uuzY`t{L50@23*N1g3tB&%qgpQI5|)ET!)QOoYD8VyBK5E}$UB?w?Z>Qj zIL4bfl>Betb5I56@bp6(?|$CYNrw>^stMJyF{^URYl^=mmDEHYac}e5dL}}7EAIPR zyT4_j|d|Y9kjGDwjMX-J4~I1 z^V*;q|D4tZwbHx=7vX$ixpmn1FIk&K^D`z5A&&YBLroERXf2TEV9NWl|mIqME*%r@lc@yAg)F z=@On)zZaZ8LW}=xvzFw_0gU7(H7LNHCJ>7znYa;boYgk=pq+3<%}&%k@Ge`xEh|t2pBU|aA3*nQ=O*a(| zVZ-U@d|KOR-D7uvae?@ZX&i<@-rFq|hkMWV;G(SfKxwUSmvbXFO(pEa)AV6whL&T5>g+bh_ z9E{~?AQ*_Kv7WxY$KS)6;pYtJIql2?QSjP``Ck%1i~~xf{P2H&bbKghRk}BS7@kTw zJTO_|YOj#%)Z;a<8;omzrL_9$j6u{#Lx|?^M_Zi9K&^dU%hR!;(dw0dYI58S3w)=J zl>7yOsDVJpe3KyC@uZNNURY2ljBrk?8>l&m&{-9VA;LBs^-3*uHo6UCVO% zUbF6eq@RKoSLzMTX{{I;<6l}yui8n^EeUdf2hN`W;tJ9mu@h<`C=aH*8v7)8M}GP6 z2I8^k>D!;qUS=MIlMV!w{pT)Ci#Nh!mG!W(wrhVEb?qOMzng)nZ^gj55hA`6_$#lU zWUz$odm}^YY_TO}0Q<1$liPVWYZ6qbD>E>y4Mrk*!-1?jFAXvLrCj_nnnEu1TMl16 z41cmXmLRL*e@kMtF{>iF&q%ToUc4Q70E)VH%;fJTa2H!2FG*J36*!0+zH} ziNnGK8sC`h4{D=EOwISdNEsssObzWvRm8n=7>9*u)qT^fr2w4YO_lGkF}X1ehX6rT z++QCPt+tmpFRp;`;ZsvX&rnB_hiID%@C*;DAEK_w>23zbOnn8-vLB}@akvsKre(U7 z=3yAKxVhD)O`#!^e3Tpna#B^6H5V|t7-5|pYA%sGCFMdr+g(KqGu3i znorfxZ-hwosHf?ZEwO!^;!13!YdJ$&zA3z~gsV3K{XjD5IgL(w6wd!@4JQ%+Wm8Eg3bF;0jJzc(Z1hfrA+ zXObGolwZV{V`GP+ABTr@+IKrQwHXhGgTsK@FM+F+*p$Uew>9x%!Dv$)!_Rb+&5ku^ zT#UGChWlMf2R$@CF}2k47p-EXBVTWzh1qEHH4$hO@7ON0U(59VbJy2x_nNfyqct6P zRjo96(N!A;K1X$5Ok*1JR{B`tHoclXyJ6jL5Ub(?-bQ>HxUs~2cblaPnb4t9bXoew z%*p%ioINb}41B5zw)d&*CZmo&G&V!i8!>jqyw|=D2VF@dh?~RyBU!5Yzo2dKCS}4& zU@>1w+G#rRnd#9HlUt(KzdkRXpTNn_&6MT=XZUk6QqziSj~1dR66n^4%-3kQd}h~` zF<}7S5FHmV&3{dR9_2GLk;a#}WTdPrcJq0JG2Y7-KOoi2fK;}Ik*PtR^qcq{C;SPt z5rHX87_V2Nj3HHvM9;NV9)hsh^-f~ctdBGIVdb#Ugn9b~i>026m-}@yBchL(WCaPm z1|-16O9wbH?y8^|HVG50lb@3Y3+&m=5jQa{Hsfzs_ ze|lK)-{bqrv7_w~&;zEbB%QOknEHlc!F_aPUXYPMhH|~m;}?oV15QAm4&@ngiV&+q zAx!a|&o#lm`%VYVi96ZXV=o$fZiv0;_S4O6wyiW;t@03O+oY^K?@cH;(XTU*kRB2{ z*3JvD=AK5!X$UY>B7vDGG2jX=?ur|$CSiQi@HzV-nwZ9<9vyedV9KK_%(-*x3_pGi za={oP0Neqb zgXx(lOXh9ejmR59mu(2jH8@EYx&H~&QJJb9f+Pcn6ixM%w@Q%iW?T;Xq*>U`0~X^{ zcYvXi;MC{(gou1|?rkIo&CNYu!KWehN<=BNHZ=DwvQE`8D^ZCvJFNJ3qCc|X#`Gt8 z!Uo4OEMVL7(*nUIm$~q@FbCN={~@Xm37lN!lsi=($%S5hPIt;b^JIf^YYbe~>7~a= zQ;S#Q1tlJ}Pxv#N%L_T0stp>HphfB00-e?fbgSX3flB#JLFr;@&FhwsuG!f{L*7TE zUJ+DDUmI$(e0|A(yMX(6c2iHoQ+4%~M&#pq)FtNaPuFWyKJPl<3KBMpYDrEDwEAHJ z-HQ6w9b%Y^h-AWI#nDs-UchVGK*ya$+nb2iD5|`*HI7uwPLaSxPg_dV^?ZSit~yJx zE)@0C2KNbEX3y-sE%+X6WHM@Yw9*g2tVvZay@h93;5x8_nXf1#wg!(EB_>DE97RzZ z1-kV5jZ)iF!+|#ZZhO_L)^v;OAk=F?0)>tGPL-k&B(KQW%4(g3LbD$+Pla^9e!2Mw z$+#ra-KS|$6(v{669{%`BrHC zm2<#xKj`9TI912o^YxTrEj28C!jU=_P)_E;Ac3WG{s_DAG$zi*|xU z6X`D&vlqXLPYZH`TIVZmS(^zAjoKB79_t1}vVz`NM6V_j{JUV#YO?UA;@V4vx3wTx4EdjF9a!8I#y({4kp}9Qt7_tFlT)F0v%h5}_v-%V~ zO0VJ%LN$u%FjTk3S6ww)PDDjr(>)SWcn~Ao9AICuTo!W{($}fWO7}d{l$+0ZSG_X9 zZxW`3*3qfYa3yn+i9%Z$j-cZqs!qWON3gE+DceXHF z4#-9AyhIukng3qrD8>42`zo$yA5HD7%F>kld39H>XI8VMCsU-TTAZqkMXGq^i%syk^E>Fv_AGUJ8)fxygx;D39wiqj1 z?TTrypPFiznK`K5rc*s^oqBP>J&m)e?9Nh-`&iYlp3d zWW%X^MmK%Ryzd{I?kj#wcPHEo`!5O1Vw^YN?tsif=o0rXQqwZb247MriYE`KE}BEX zxaNDUJYZq0_~`dcL2qTT4W)lb(C^i8X?l;txx?O^ zn|{z}Q-E5kIeuivtKdfLu~KVsTIzEe^Ic5P96k z>C)FcDyhhzqLAuFFf4V{{tnZo!G=IO+k05LSo9q^AI+sBMVVgK_!c-^gGi=Dsodv+ zBGeWcPYV6;1I40~vwVE)uYzm57mN9IniL(00Jn6eX)$gH+b!SRUi1F>?2>9t4oUMw z_dlq{=n5wQEJ_)HzBE>(%NoD|Z38yIhAX8- z>6*$Cl9fetsPT#KRJHF77&mxW>~`~Ty3yt_OJAQ;MsJNHtx=bmI4>%x&I_~9qYEe% zzavq^pOo1~>dK;t<&~%_=!G@gi$GOGb`qF7d85)H!XD(UjQXaJMZg_$`NKx5au^T; z>lfJb2khc1euSAq#5_O)*>-@ln1R^LGyM4#$&JzFuCD;wxba#k;&w*M@LS-r?{5e~TQL~GGHED$6}CiVfPetASD21<#d(%by?xWvKg4Q9?x z5S}38J1|@vd1?M1oKi?b>1g1_1!~@pG<7=~xg=!Z3IkO&Ta-Ms^OqC=!eUP_w$(1NN0k!*^*+M$HY=@iLb+a z&P%AvIbbW+hKLug>^4$jTcxPmJrYh|rjlOFx?fuiB@B#feg zr$pcBtP_TF{dVrSA;5%2xxr8!QdS>}#aT0mzB*^4^SN1?*cD7kmvD0lK-A)~Z z;a1I3Cqd2$Pr^WDYvl0?mkGVk&GkJF`)T2INRdl`<0G3?>oC)yvoH9!Y}@pQPlHFL zRiy;&pm`?^eOIoT${S-MeVPT`(hDd|?A(0iI(7S>hr~T9Nhm1FZ|XV*u=n>zS0zT5 z*!{9483zI3ocrMv4AlV9mUZfo8aI*_wQ)Q&>%~tBF#AB`P3ws5$U}RVrl+m}w|KDr z?99oaNs!XTx-ns}bUnYlr~ZbfD_OlL^f!Frm<=8h{mwYW`3`faFJa~jVU2ifxC_#p z4Ko=SBiK5(n)|SML_4z#eeQe6!*Lk?L&6|^Vn{I9+B<`LFpvY|6XhRS?doT9N`4_3p+t+gS38fuiceoA86URpHR zqG~bleD8pWh21`dj;pNcHXW!BWi3UHM{ER6T_#AYVq?blkIU&t9QZFYU}A4(+3oBf z77YySGH>W=lasQl3f4EI^Jbmp%7eY*Z+on_oGiC)B9m>xAa4M)%Y3Kq6b7U5PHUMk zn$6+<1}l^OgK#)7Te2}SSa5SB&}`_LPDzksYc%Wcal>EP#5V7(rM<;}5*r&>)2)1- zFdCnwtPk)he)1_pgS4*gKU>+el@*IUP6rMreleVxYP?7o{T7-JY{GS@RV)OJ)SH(lS2)LhSC~G0u&*piuQlm@*P=i7zm1C|6Rh z452Zas#`hQd=Y$77V+(S*SerfX_!ei70~^0n{^bvF(Foh9Dyaj@UCG^sz1z|&&~ z8vSgQW~syvA7uRuqr-~fAr1}zkgA#hf@Z+dn|T7TzW7+*W0hCTw;+Nx^hK9rKo>11 zz}k^9+)QWH=k=q5OP_lSli`DU9uJo9Bm;WX(vf*$!YE-B)s3ZLEW72vN5tOy?R%?T z#w*lQR~m!D7cLEurXutAjT?8N8Ae!aL=)gk{l9pf|W^Dsz>{k$e`&K6ktH#BE9#$BfxdM-%j zN4~?SXll!hikzBexyrA{#V3xewC?jx#eK@+JpA~`+mlCkat^>7oXLzJGp$hrt?R{i zTaAIj?Z1zn8kRut>zJwf7|ty^ivx)WEpLN8|Qzkh06yjj>b3o4xx-c z*VynQ3z;90`K>c=$W4S{9(IL&z^)Cl@ipY!bLP1{|Bz8sQ(?*dDBf@98T)Di$1t>vs+bzRp=|iOI#u2xzzj9G*5Zs z@p+|qF%i!$6`QC0j~p;Ej7VAN2beS3L6Yw zOZ_)GWvhUB-}5_YLPJcVVzUYtHdhTf@aI?jBw+4IVm5Ox0Y0<;4LTklfH)avU^tyM z2f&Nk5AQ+IoaFr_ws<&!VnEV~V2$WNe1T2X?0>-YTcovf%?htTbtw)#r&_|qkx#gYgUp3u9DgSJb> zy7KnwvMsAHTu2qx*`xL^NlkcMyBw(N!#{ej)Lusn!Hnz9>I377u2e0j|M1#ASt$<{5ZO3T zjiQf4%#IZ@rN2HFV#fU}F3%&X@1dd+zTe+Mfb`U+j)`rj_v|js=kBx~`;cc8RWtuX zp9huyPcVNJ-U`0?Mpx=s@{KQ)_UZG}drY)<&XEQ3&2U!G-ur!20&br;2V*NVs#bQv zjJg);o91?<`yegI7Z=eHKC%h2QC-(VF%RJH5JD^Fo91))&Hv^k9+BTgB|K^fXNCHm z1|e7mEAkhY|CaP&UmAr>kiFE2ON0sv1J%exxC}DV61!0hd=ED(tK~XPV5|Ex7>7`T zFC+OA;C()CMDJ%{PxB}m3BY2T)>D_KBqijs2ajWCfMKw~^2vY4lQDd&WwV%!h zq_5C5`Fsv!ryI%1dm>KfJlvjNlpug6jEKrW-K7(1SPJw@mb_g6&Xgg&8CNCr1H@a< z8L{X@Ao?wlR}Njnub`!Z1AaT9x_M%$r8wBQRKMsZyoGiHmDOLb!C}&dHHVf-4Z7ww z#@l#3W`kSnk^g{;|d!rxCi4z#a4@x;tN~xUf-!CWZf;>7*~A`ZKGpE}=q~7Wxl4kdfBbE;Y42BNVa!`&;~ip>5V&wtqwl7si&|{W;zm&KU4(Gu3%CVdSkf?Yp z_L@O}dADMgWv&y!5VmZD#_nC32kdl%mMlwI_+|OwS2@;t?3kG%(CPqx?uB+~68>4E z_JmjkJ$l4^shdR|p*BT%Pt=rRK$`*>5x-?I?LBnk5r)F3Jxt0s@9w{Hl7G#TKG@7@ zb^oPJAdD&ga?Vh8;#r?)#C+C8U-wU%WS=d1(wN|n>iL5@SbrNS%Tk6_pJm_M7De?o z>>S27+6rD?eC@7kr4;Wv<%XbQU-&ZOw|Zsv!yggh>Fwh4&@%m2?Eb`mgi{+`vlMiR z5w3MXMxP5;rg8~}fC~lo50KJr{c=`EnSDe}W^5ZsM-@xPhBg~rr!wag6XRxA3pU;K zGS=WVw8$WlP^Wb@A`trz!_5S*4=cM{4rMVhjgdh(U$|m3UR&fhnyQMmFcSuJCyHHD zHykK%)3v@1N2vCkK9G*;#SbA?GgYwMOJ2|p174{R9)m~P9NIFOdqpWb(M4I)2k1mbtCp6j* zlwPxq_xZTsl(WLp(}t!~?47KElC|lZ!9ueEl4j1Lqem6E1Z&s{@~Cj(v#dn|UG(Lb`&HJs8kUx8|^@h@J8r~Gd^IG1J*hkJ+XM(NDG4`ZJ2I*_$Lc+o*VoDu*6 zUQSh4(|UT+8@M$qei88Pa$^y*qXTAYdL_yAsO#66q|&zPxm!BWuS8y)7n6hvIMMUP z+gp@%fFiWT1!#7GAeS=&5ISg{n7egV@tK;c>f#ACO?eI~#I3dwmCS8Kf~FAMmsqe4 zE?o+>eG64vSh;h7S2bD!=cQt!IqN@L|2An!y;Cqx&a`1!@7qFGr*#Z>2%_P0zW?yV z;rJIvA|E@M(eO_62m4S_@SVj&YI9O+EoCzjtz>$u~%ds{uLg9OndW^3zGAZTWf*R3!7jCWa+n9GS@ z1n!MR74)U7C^sCVyj0%Umbge4cLR-YzUL(S+#3MzOIm9MpC+EA;gy3k>2R@ zt55#83Bb$ZcCs&0T$;kX8Q>*R-&rwT;XNhgCK)}#FJv$i(hF<4^P&6~tfj2vO@*7G zbx2KXF3qm{ncC-H)=ZE5CqRmO5qye3gP{kNL@_7CmefteUc>X09sh8ed(BU3R(eBo zuV>!6D$*Uz_dCg&Y}nX|oMAr(PchlP&By6$_-#9Q>~`}Z0aUhH?|j7jZIR~LE#t;4 zQnaTD1kwlgnb9x{yducPB!j?}Hx)-JPY_IIvrFaS)&Y-e$4?s~|n>nrE2LDPsuk{sGD?T+e0twpb`5Z$Hw{Da5Z-1hRfPLn{BJI zqKG)&(6F$C7U9dLM!STZfb9GO%y|%3C;w4Rg8zwtkorGA9aOi1{wg;YcQZwe!9MRV zk6oJKuau63oWQA(AA){7u(6QY!WyR|3%>(gSCQw;$jZ?}ZiOAjsn#CA4ge5Q-6Kn&t^x6JtL} z>KOkKV5ma5i9X>snglZ8&2NfE3_*q4olrSen3gkQ13|T&G-Sh{Zx4j70@&x0U3Zb*W-&t;Q}SnsEz}(#6Q4%%nSt&AQIy z1E8q~%!t2jIqhwCL;({}Q2tT4l_84b)t%M5FM~}~d^+ZwW1O3?a@edaHp=M27q5*- zEI$>H{39lj-N66*<~Uvv8cWX#0X{z&IQ;W5Y>U3BedtqJX^SrhAO!3WSaY)w%a!lMAwWhKbb*%8 zzIY$a*h~9lM;QeW^9crp* z^|?s+((KzrPr)rmqjPi?r$B`RZ{yFax*F0eH$~v}<~gUT_r-es%%eI3z?dS5A=XEaqax z2Q3Bozr8k=0zOi*C@mEjm9^kaMxxw}%WK=n9s+eDFe1+9_<}k)BGgP5cJzinVgu-O zvx#5-yZHN?S$q6!X(RRF3$~i*uxPyGP`7%cwM&aD8Hd2DpXxz)y^P1NLKWZsAK#fLdaDYpbVEm@SS{g#zKVxi2b?)K+9KZovaQK=1Wl`uR}I>N&Euy%GK&Tiyd7}?*)JQq0>{gMA|6eP^*e>TF~16jh%{4#2pydQ~laRsH1I;I6c3>Fx93Vsm6^U)WrE>!&P@$dfuSRxv4 diff --git a/docs/articles/EDA_files/figure-html/unnamed-chunk-34-1.png b/docs/articles/EDA_files/figure-html/unnamed-chunk-34-1.png index 73997a3699a5180014a5a5e07ab474416c783671..81ecb5296741a9b3a0a62319cd09c6c7efa572ba 100644 GIT binary patch delta 7108 zcmcgxXIN9|w#M-|-WgQR3?3P&XNCYq6qGu2XB@#z)o_#nBvAoD0*TT>Xt5k+REq3G zN+1D&fDr=-gx+jm=p`f+DM}znAc0Uq=kCq9&vSp=|Ce7p`PN$R`qsDlUfBNT?#?$Q zaoKw&$$w?1kcgC#uo%;MnQSz@#MXy-r}n?fFV+5O$~__Y;pO-QItMZS>a(7q`Z{%ad(`{~ZgFn3@33=dIR9i8gLPaE%56bWS?ECJZ9Q3!IWoL9o!y-I-(mLVj@(e{46eNODF{OD=!i}h|aKj`P zl5~;Wr8Q`VEYLgJ=ue!%S2V$lONKfT&s}J@CZ`W!bv&}{r7sW|HGhSMrFh~ZevS27 zLz}d=`sMW{eO;!I&;4-LTer~yJdv^f9%c>Ndgio5LFZejjEvx0%{m zj-}pCA-5|Hzkz7GW4=dEpWR{KXe8o+fRAaRS5k)*q4!tcJW}tkI|A zB?>$0MJ5j!7po|H63^Lh{WeEYv*)<>aTHA|s!j8FN^~>Hyh^09GK|V<{ti9u$KXzu zDK%6kt3DM-5r!milNjKRvPY*2z5{UjNC|ojy(37jw!1RiSGS9J$$9>*(XFY>2X0zs zt5yBEQEU~KUq81Vt0~JfX&?=Y_hRY=j~4kdb4{4uGwYsGezM_IN23;pQQrx_L=$)Z zuW#YAJJyWxeegfiuHU2o^8@Ms{PO?%1IZOO=q8RSIXc9!8i@Q2b;wcr7ea((+MHL$ z{4~H^>+fACxf2U5AWHW=oBO3^0i4o$HQWPNxWiz2*=-?`|?_TtnPZ}54w@*|A6%WQQ!T3(CGWpTm^gS z41z#F(L*#QabVtwqc@FR%!O8rsk8)*m>02E{garj-;IQGXXICC{uM=foacbpktt!a z7iOEA-fKE^Y%{~I**`948|0-~bt7k%;pg4r*jBgq&`Qo)U~=;Itsa^&QhsOGlLG}E1wG38oo zHo6=N2Tg3pV=(hqqwttZqf*Z$4= zlIYHR@>q^95Pq}V<4Fze2S}F5xzl@xNhK(iT5TYpI;?EPxlTYw5Oj`y#PKDc9{8W~ z4UZal-$$NJ7DQ==C`A)XqqGL+K{kp$M)QIA=bH}Kl^iT&+BkqNflyJ@D{ZqjI$sXA+<) zioSJ8Yjf~lj<8IQ;zjIHi;x;>(0HxTN z5Yd*M#_Ac;BF*>7DCl!J02g#%bR!uj^j?4Yu6VSeVdrC9f6qH=eS1%UNka<4IDN6E z*lYDE2X7L)HantQ`*(ThBHHJmi&VW)>|6_Axu^JK8<}Titu|p38;aku8VEh@JY@0O z)ssXwkZNo7QngW<$aHbEDU?L@Pw1r7PnAFNB|X9UcLjdx!yVWrY~-hlv{O#jyo_nh zVJvUiiH-WxJJZ8fJAk6|rSIxl(q_)AszpOE9|65BHTu<)1xSPO*n>;va@|pTlNuH~ z<}%bv9Z*TmNL_6lb*-6KnrnSAK)BxP-ws84ZxQh((>DpB$Xp(P1GSW2{Z)e$7E#qh z{HQQCS~OX_D6)z2fC8t~6D;Vb7O++BJ9xGoIjMRjvU3J`aNro;r64htTB&yw6V@*s zl((*D_P{mfb5Xd+TWheMVqk3`n%CEoFEBU>X}0-TvF=Rkro&K&Vwbx8OfrBw&e_&l zc0&4|V=XUn4`>Z)GBG4k-s!0EypXP$up8@kP&T3AEem3>=0oP1uVoz4F!8>gnobJoMea}G+U5DgFee{|OCP*Z z?AoqG<+NWfE4L|`4r2?>0^%Y@UEuutvc_AOkg%nasrOEXV{V`#`BhN z!dq&%P5+Kq9mqWR&FLcUt0Kneg#hmY%6d71RK75(pggxC-<2tAC1t&ghGM7ohAc)S zq~#S!5n~n7r874sI!0beShPvbLKEISGmZD!nnnBFWkK$BhR-Ev)MBHWYjzx^-FfXA ze@3oo$t*CgLv2S`_8eW*3}dejeWMilcwP5N%jFKInOgf`%+4EvpS@Mg)*qsJ4VsKP zoNo?w6q|Y%=if@c?Hb>gjWr);MG*tkNmNv$<*hGfGEcEKfMhP$yAP>8jpf%n@9Bc=${r!xx!8iWSKzFdJ+H!IGOAK?x?~E}>BQJPBf`$OeJogdQ9DH$>V!wo7XEbykBXC`T}o z*B5F67q(@lHVb!i6Hg%V017M3X9C|rv|DX$Sh<1Y4;z9PCi>_R?)F66fDv7e8gsIy zvSJt$Ei-M{T;jF|6vSML8qE3JO!}i!53*4wM$B_nn(GsDE49Kdf)q;Sfy~eqDm}&! z#@B)HEsvc|O%Q`~9vbIs>;2#THiAH^;8H9lD|e?B9I}GPE4NoXG4)@5W`%`dg9D=e zDGAc|3=MJ;zu;&N(PkTO`{huAf1mhwnM+siXp9RiRUeWXNP0a{R5g83F@cwgTHFr| zA>A(ptVIXZzwUdXfTXEDHA2U@9{WLM^27qFt(I5(!&G<5_Z-QI$JMd zvv^SfBxK7@U+#*cWvx#?`ST^?q&W(!MBLc)@< z!-_iE#9&ZTnXxy-j?Nwz%8Us!Wm98h!SdOOLJwxx&67vX)*clTd*|zjI|huqQ1f(E zIRFZLxh-J{KB@COO9v_~?$Ik{q^U8#>J6LOTS8AT+J+<9d9g5&8gBYCgchg*8>nIg z=VfETIZKX?5;Q$1)G0HRa0N%KBT}6jYM#1U2Qc0=Jxgk z4mY~F2G$+p1Tk)0v}d}i{{->nKfjCKFPCitA$8s^v{R~}vXY(&x>0S6vsk@#S-jWk z8rbY)9CibsyOV|5M;)bPQZG^;9Xozc6h%{mCCKYQFMQpvJ%hv#syxt8lBb#_C}1uF z0MXlN>jFsV7wp`4x8qos-B;w|4)GPQn4E?+)_0!&W!RM#fZ!oNXp_7%4K<=a0DJ&!ALkUmI&CSz!#8~@=T`FY7N zPtzvP{CuF^_b^t>mQ#eq*G?=Cb|b&hh3%1RB00H zQJ63~bQCL|3v-6$1wBx#Ysx#Jjv@Ml^6#t?r!B}I zn!R~pm;SGNN)czCwCF`UFiB=Mkk?&7V}<8L!y zHl|Lyh!2W61=w>uQ@a`@!KQ#-x=ka^W6a1Xwnw71d|UG@90TE<9r%FMjSHC8e0>VnRBcY zj4C7uQ-zBC4Z+QIYn4mpo{e8$>8G09;QAuX1k?JMQyZ`LCXrN0*|d=roZ2Pq3K0Bm zlop3E+jkl=tXzdVgTLo0mN+*loNI_}Zt`?6p!f*K8ZZueSV}YWGUl69_4gvrCoOIb zW!yR|W+m6)6yd|H+m%Yr;Ok2v4l_z%V3vncV!PG#{=>HLL_9EcEF%3#qB>@cVp|Yx zz_7mlj-&&**;b?z@7ckw`?L(7S_F-|o}X+c?*bs%amgFa-NtSEMI(ld|3WD^273ZA zZSl3?7P9iQ3S0e8_z(3|Mzn@2N1swFwT_-Z>ZWvAM?WGpLr`)fjB$oUt#<0(7@nZK z1Nx*QFhSgAY*%K~s_Ax1`)aG#urY}yApIM`G{*mVn(*0X>7O`^In>y7Dt7Spaf<05 zYAX;sy}%j~CDVff>Hx0llJ)BR$|zoyZi>&byS;0qqu-;~hoH9XlV!u0F+jgUb{VbM z7~gcD|4Q1*pGu7{j`n4l=>ryQYod?%2fnk{khL4u-7>bv!C__?v|J-qio@-tlibX@ zXz|1^eg}jH<)>VEJ=5zk<6t68mTzIHk6?2K z*Dr!A;f6En1!|;Q@725#;hsXyt7ke)F5*-`uC*@kt@7HE4`Fxiq+TKW+#0E$M0&~Z z-zCc*XW-%C&#~hj=+pHmZmi0zR%`9^!zVQar5xBOO_U4sy_I@qvn9@86j{Jii!Gm+ zn&tTv9K?wBT9+xoQexepJ7O4I5`wS8Szjg&`S2f#Zsj6eoIqRTmzv-O1i*<$%+p5FE8uamE`EGX)oa-WGukoQE7aN-y z1E}DcX4fWIR(I;*x+S*ZlzOZyNC;eY7k<(5*2R>Qn1i`)nAMMuj_$=cN~;i$9? zsta%)=9vbebT^;f?~xK;Y+j&U> z2gCJAZaw8*>euJI(ulzRUX(%RK`n89^z~a??|TX~mR@=m96JgVg(lofy*W9pvAZB` z$D(F_23CO57%+nzAEq2O>0Xw&>Va4MrtIg2pZ1WtHKAC{&N#v{i<-I`ReKhzxrkc) zNHyp=R{h*{MyYKDtFJ+v0Wa^aOyrtUQ1b>>u-2HRRO4kldA8vZQ^FrIyZzylrj7Bl z9vJ^B_Ts$399()%5hT&SfvGxxQ_*qc&Y!4aQQiTg-n9v8=|4FQ00@3gCJoBFh_AuZ zxZJ=m-=p(sT5eY&B2P|MAqYGQ|5aMdDg(*bo@$?;>ECN=N{ap+HAc?6XrFQ-tNvD= z=_A-DuC_s;e>rhmy01(nq4`fRjAm;!|H|DidTx6vuBd7r%IUd)SlwU2dK=!_ri0lq zTFF0*BGu$7Ncpz8b9gfwH43$-EoVw4d~G5!5M{XW}}>$NuL4bmuByQ!0_gFZ6#p3x0mUao?e7qgEEQ6R|S&!%r|r z;?teh0N(duV?r3sq5H7z$sRd0Q8D91iDYQQvljkQ|h5>~R@N_MA zwa|6mAn3~cC$}ONM+u~am$5@p4(ybnV>&@qoeYv!{BG!Z(jcE3L8etQm47wupyoOAK_c3yw403j_lBnjh$dOgh8b} zD?@q<#y;hQj39PHA01Z9@)kIVBu5an$aZGBrGjkc8mPJF^9CGhnZS%{o%+; zfD?k~jsFqO<4sGS|EBL*#4|8zn9&93>D;dE>$0QzyL)7OK=i_D>wWtUA^AXP0I}0O zL}{~;DGzUZDM|YM>w;hy}w8kBnlfGZ4Br^y})lnVE-oR0tstY68e!+KrKcn%#`83Me6 zDRF_FC>HTNNU^OhQ+d97>It8&;y@#nz55*_b9pG#q4QuklOKlM&G>r#FALA?Y`RxpPv{a@ z36YT?1$2d*!I8PYV9ZlAWW?Zg&HY`C^_0w~2(8KZ=dYi&;ARk#Zt9}O2($VGCl+X6 zdxy-Qb=_U{%H`(*TkOax8;52+%j*11Cy*<6nMZ$iquQJ{HIfi6JWaC|?$er_zJ{G-PV}>h`m7L@0e@P6zEIsuWnG_sEU%Pz(HZEVXHc2QonO6UL}`5rk^L;!^xf}R z`MQvyJ7CA9`#abD!t8QEZshZ5;Q9mt1I&ET3`yLKgc3EB*?--WJbvJ(n9ncrn-B;)K_FbjQKnlF zy$L%3l|+mZ0>mIY*eG;Z1;P>_fEpHA0tCYnmb`m;?|pjTAD{T$Q}wSpRdxQS>g1O4 ztHrIaN|GP%=%xMVaXJ`BXZTVv3-i1c$BKJbA0)<{d(0WUC%>D$$Kt0$RwEAdzkK^u z)?W`FOmYvId(00sy?*YYW5tPwkI%9KYtOn|(|x-0#V^xkNtgfq&C#7ZzdKXrKR>zg zC`Nz$^w%Puh}P-PDZ0rU9Ss@B79ILSA(K#dpipL*otQ6`-iDr)9^PO{o`=JJoI!o< z#Xx8_3-3=EY^Ur^@mwf=fc3jR~%+nb!x#zx1#Bc`a!U(k=zC9XQ-RQ;4q zjrL{ooL}B0!d8v07p{zoclNYO_)sPs4Za0iLQVNQFZ`5mx%himaG&EVn|#S4P-paB zE527fVp1HQUz!i1*V>+zrg06~lfA-oXT47*`~aO|DBdDggUE<-RkhgiJ3$Y$@ek5& z)vEmP74!7YJY|;q^sfMfAF(!x-qIo*JOGO)8sZmz($*+$OmUydfzbTCAHv6Kuv&rs zYekJ)rMmeJWx-An7hfBH1swfas@`8@nt9I=-D|W9>udP0age6g*Id;cJ7~oTlW;2HQMsdd3DkQV3 z;K*_sUg94w)(8# zuox!@Dw19{gAJgbJxEehy#KtrMp`b6Hx-;AHH~5QcoC8p5!wvA3l4H-=T8To*_Qk_ zEP1K$5k-d$P#C|U)?z`x$c>#5$@e@fHXW%>{UWI$JhdN#4wg=oY zWrJC0oyyR~f!|fNuyxl9*E^2!6iJ)Xyc;R~l5+q#_?6}o0mqOvAc{fJDz*DjK~->d z*i^*GTkxb2R~l`|v{^NUQ(?v0s)%keV@cdTOW2x&!!v}L){fk`DY^ANWX}zLpZK%hFXb&7w=P{$s9GZ4b!TGspc{np+-9l!Q}F~J}fbJ7mf{IDDH;f&uiK^}RD`I4#aO_TiYP+vKm=H{E1Y?ZPn%5@GCaFc@EKK-qj_m5f38}lRF;e#KmR-mCYSGU6 z*(f_0{QSY1l6NmnS(_hB{r#ww>#a;JqY}w5X4rrBV^z>ph$Y4O6k7-Ma2UasMt*Qo zap+ikE7ZFywLo&n@tc`-4i60kAz_g+o1U##C~1gp_rhpYk8xW4waaTV+~7q0V-YeP z_~>-XdLj{RuUlD7ll`%-PobfG7tg=EDYKZzm~uxKy6k6???y9TRDH+7SaHs)kWQ{e+oh~j{nquY^!&voMhHINwYF!yY7AEU!y?k ztg>?;iY@=+-Ah+3A}KvX!hBM?hkFc2m;cikwtz@r2rN-GO^Y))#^KUd1DH z0Gc~>88pkp4UxrGM*84G;e3ec@!evV%4(v1l&EOuWE#DoUs;ndHg(dDlGjoMgDq6U zLEo8kr9UPRvcuK=;(TTCr9isRM5^HcWm|FftFEv7l{)vZtIN;erZ>bSjD!v*BwI`7 z@A&d2y)HNy0%hI>z3u~Z_Ytf!2aQX>ohSLF1c;eFWEMEjye9?1DbTIic=595e|8c4 zCYv3t^aRB~!jGr@w|r^hlLAFXQJM^rqE+B(Onx?Y$KZ-ntto(;CTsF3im)L)kr{BZ znOnir6kU5E>=u~=_;6nwnJ$i1YF{A@nR+7Az%j^8FZ^pBoOJS?;jlUrdB&F3KtvoJZ0oeyg zyIpeIoH_dJaS2*qUyWj{?Rdwoa0EiLB)@6$`m?)M5w;r2e?-v(04izb zcJr+A0=UFr?HNt?@e3rAkkpVTy%jGS?a7|DF{|FwQ{S}{CvKQ(jygiwZ8lpuYF2@= zoD?tHxRu`x-@^AuB5)B-E_vZ?MBPPFx~}?(l#UENn@FM2ifcu$>Z#!;@(%?zc!!Z3 z=Cg~bhI&P-y+XZb`MvdVVuEhER@C6zZtzb3Ys!t`9`fF;`sEaC5d$u|mgQtML$l=OJs-wmfxHSlr&j>Hkom_HaH!K16s zkI`Zsac(wYpZ1544XhPBR&?>nlqTe~&t`J(FGM16E1zt=})@0ak zN*HtQBWa^sq8?nhKg6I}Rrgs{i;rCGcCQM3GX_Omb_!^)yXkKkRU@pSF0Qtm%xKS6 zx~Q7Oemqn#G~7$3R-vou_$GTlEd}4_&825M;oyvhCaImzqFk)L*)2K?SX&8FbVRS2 zbvmq5Tz+0&_7ilqt{lu^nE36>jhDLBb~q}Zo3d&*_xbm_I|JR0ocvk3YXWi$2pg9j5d2-CP4J>lpFA z3rwDpLqEYAI5DScU{#kMZz2%$>8`4Ik;|^qkm3hg-MJNE$@M1%0MKXBv(Z!Lv&JW+ zMO5rJPpFE`C*az#=JAoPftP#nTnxX|6Gx4PY==YVn^U6Kef>MEKaLiDuZ==kbGiBHUN`#vA;jvYJyv-2uLvk4Ud8g;w-$2mwA_>L2p7U zYWjM8r(^6o--zv9LntV-Fl>S?UB-%hUt5GW+CEB6EI&V?k*VH z`Ir=FfN>7QYfidE7uLvgbKp|n>;$YU#5c4ueY&f2dj4!XPCg%g7LyQ+0#T^UQy4du z$0Xb|4JNEw1IOKsytYOiX<2Vc*_Ht{9g8fnfilZ&tKpbEx6xFEM^N_ zXw0qvDbFa5WwPw1N&XJ#4x$*&IG=_AGPMwB zC$M0G0J!U0_=uBJ6FPjNb)~hFb3n9XyLpR;O_(R;0DQ{NfCMB9;}RZ-r}aQ|yJ`RF z?sMxl0~>G=+SD*>3;>S6AT?sJiHIR0UvUVpm|HiAj^z2cWZf8LY zzBPj|vyWj%z4Y0qo*5>wPMOfIopT|+kA0V7yRmTV_3%P28uMIWOdGxQhN3ghYd0Ao zIJ+kVJ5P&Oklbwk{AN#suEqa0{TVQ>zH;Q$oUL-Ttq}~(FU91>yqk*af8{>U1zEWZ zsi~ur|L(LQ=d0!2Y+j%s*`a2$s~!Jqmr*y+!W5tCc3^j*8)?FKyWnt}6^ zf40ut@;E;)7ya3%OVkPGQ|ia1Ag`Sf;vg$P*RS+6wR5M*Kf%TZPM?U`F>nJrT28(U z+3T&1{JFK~vXh^`#Oel@y$*QN|Tc=dxd5TR-0x`aq6QbD?+ja z39~^8T&XFpJa5PZpHOK;;zUpOr-ly%@cfZg(BL7w>=Z_VghH{oU%=z8nAy9n`60_c z!?-0o@e5y-bZH3c$rV=DD)zf5IwAM)Gmvmp3g3h%)!PVi`Fhbzv2*xYs96~qlz&!_ zXB;V*dH_6dg6Q$j;y%N2*IJQG7wpUU;A|kLqxE$P4K$R(I#tX1z+Ui-_=Q{mGqGE3 z{KN*B_j@j^@Pim`lLydo9UC9?AlVukn>JW?y=!$R*O4<`7twq*VT2YEIPzs2s<9Hx zvHX6;u?bp7V7+HgZV`8*9^1l}I>KJsslCePxMWDi@U8F8zQk;--1l4zfN*A0A|{vm{19B~KU| zY{0;zwApM-5GUaxP5gWwE+xOPzYV_G&2^Hc?X!hZ67|RawvYCt5>TaNrbn-sq@UmVcU@AMJUJ81eXa zCuZT{VR-y5$Ab|>xaulj^>wuN^ZVyaPLmRNyy96Re!oi#1+uCmXlCq9;r_^Megsnl zs{F4kxC^i^fA{I6mpf@Q9&!e#jb)-_#!WCH`Thel%1EtzD?2w=k|$IQKe9;nH0B4u zdYM1Tzh2)2qT>`cwH-zQ=9@z+#uamBu2*fN!QMTwjGbm`ut$me*G8u9Gsq;Wt$@gq zU^3d>7jEtLe9qsS;uS;2du2#S$9ZZsH*iUCNx$F2@84neu6SJ<^?}pBHMv2YOl*JW z(3iOT)lx9$c3_z+q&;i2IKWb^yns7a^M&T%ZoG?_Ch0uvRd+q#H{$TsemN2h@XH_X zfP{xOCu2iumu)fgQM(3m57soOOrtS|0KR1nKHAQXev@BRh?JrCtG|P|_Km?m{{_IT zjzabHyo@`BT7XQ){zaD;QV5pvAx)ku*3H(dl~(=j9#{eyr5bLFECKxVV2WEHz3kUI zGGBB63FU(3H^i|Wy`V5(7r@2P zOPHYpuouT-k#$2EWcrNpss0O#(-*9~m&Nem+G%)DpqyPpDqgnU(i)Fg24^&~FYTVD z@pL!+Xk?r3WTz!b+1RWd=s#)gZr`6>3tg?Zp9D)?9slKsKpI^B9EBRVIuiO>kK$(T zJvOJKjw{=w&i6wO8mz@-Ut`tUs@;oX88R!W3vM-7CQ2i zK)Ew#kKM%4^6+m8;2fcX!VcCr?rFZyjqxiW*ks^Wt}1~wXMFuHG`{cV(zQvn=z9>* zi_4_$ND#F0lZ1^^bn9eKRO7 z)m*icf$b`&K&*J|-HD+F!(A9zV{~#F-T7QFNgnkL9XaQc^ICdqLM@g1YECp zfHJaYp0$Yo!E*S7fCoa%i!G|v^!a}AX=+q2=%|`*KWjNSIm4GxZqx@S-eCB5#4Q@K`!y7syN zQ1>u9VkiKtzSvTmLaz;MIT;up)K`CXu33d|Kw86F!f_!+*`r`X_3CY zL4MTKJAKxcv~A(VFDmAyAvQ+rd6(`JI`?44{-HbP?Y3S3taq~cYV=l-U4c=$PjKPI z6dhsrfL=22L9u7M?;zac(Lx%0AfeJ3A0*2e7s71^cj|vC1#Xvm z>>{qe9CbOJNhcx4B&sYfu6$)R7K(;Ov68p~s%^jOopC)8lVxU^67B&BeO{-ChC%~Zx`1xcbe>oAcNz#v&W_gs0?a)eborM^ z?38esV&>{F_$~&KDiP_&WL*vv#6e75J;S=7@ms2Rd*9ny&LNd6U*ctbXnlTNv?#aHMoeqi zR{jmiaAQ%V6SiT;0~h3yUnGrxyhi%cRsSXWWwu3aZ{qUP~DPbg<7fEd;{+rMFt zW7l>dZ7{0mx1@~r>o0XoT(F=ifxjv5xt$RANjg?Ag&nw7=G7~gv z!To2H?pEcp$LLN68Lx;@I`#%GeK#A@8y0JVjt-zJ%n6T>*ICpvxL9+FXf=L~s5utP9a3$SMRGou}M?MC1m(IuRrCVfoar+XKtgo0lX3C1pCuxeDLn|sj1L-jILYpzd1`R8Iq{?^^_W*FAz0W$W76YSpWa*= z6hAMS2`I0F_a{Vt&qKUy zh%{l>UshH1TO8O~D5TfpVAjhL^14sCvU+N&yQEg7JySKWm`AVEd~(pXWOL({S+!HE zKnMYe&lx3Qq0DWsXTqBela^!xZ%CzGNCz`Zi{*+Q)fjOwA#3}0t7j+SjI_g}$m{$Y z&NXIi44@xZ*f$5oMnGIWIpH`@Rf#Y)Ozl7Jcr>>62=#+fWknV<%>G+u7_uqgob%7c IKV3`uFZ2GtdjJ3c diff --git a/docs/articles/EDA_files/figure-html/unnamed-chunk-36-1.png b/docs/articles/EDA_files/figure-html/unnamed-chunk-36-1.png index ddb864fb03ab58030f38616d45bc790ffab9558d..5aabbf37a8c2fff7ed04de6f28fe1b14cf7b3873 100644 GIT binary patch delta 4043 zcmXw6c|4T+7e<#vsR*Sjxdy42N@!+m-H6wk$yh^WyRwy$ok5GbUF2m98B1bBwh-AV zOSZw-nPF_hG&QmpWBf4v-haR6bIx1-Z4NE1MHg7mPyc*oPQB*qCuHsO)}sn7#5|WT*&U zFMYfiw?8^bRdbsVlbDjU|2YmX;xa6-JS2zguy2D8R-JM<$DetGZ>Zc zm9C2v05HbB{28^yy8C*%y5JhyU6Jji1z_V*8^!j9bx>6xlV+V`%);T7fvOd3NkoK| zQ&pRtyn-=OcQqqREUL^ln@=JvQ8>1;`(~f2rO}dC&rD*l#MYywyla@0dweRYk2myK zCqO3qo+G{lmg(bPT&ILrAdQ*IleObBM66v%2x;xda61IxRaB44NKw+}6B5ZzylF>FoDTif=bR z7gxcQESxKR%`8DQ4k3T4r}2`gp$*i{8x7Yb-2shAI0TdX7I#WT5|ev)A7*={-d(S5rtawXl#$hA5Rr=2R+G`!q$=g_+(V}{-!QwBHg2spu29o ztpdO&njeN<)uoFFG!>mUNw3K-UADWTSYt+NA=W`TXduvD?r_QDrvai{sQXD|W>`5y z(U<{s@Vf23d9N0e^$Wb5@&19f?KQurCqxBXT8zC7m>z%%@!Ki+6e>(>tTVJVYZKxb z*B7|7?}eba;uY!MWbVDxJ%Lt@FO*tg1W5ssj7<;6hP=7%S^9}S&Q%-dYV?FP%51fCz*0@y;eXs|c%hVY2BWbp z1tuDJ{S3bo#~NJ87vyz#nboT@V6f_FTCryD*84OUEK`CxuUfW^nh`A3L*8b28|1}* z1E0WP)nv<$KOcX3dn+U_>sfrtmD;;Zc50jm2mABpaB;g>G!5@{j~x+j z@jChKKB#@#s9x@3l22mjPt5m0GK~%*He*K0=plejJbr18LZrm-*t1v!Q?EM@Xj#|- zy21{%ov>hY5YIE`e+$m3;46ACpjS3pf4jITIamjY;r%xIshuR~L@O^k_ZF{qS9c&u z%TQ^XessT%EPZ(OUENk^%}IIY*NxfPNvi#!j`2T_c=BTk>DbYaaM_=qg@O`_nmS`% zLeOE(DH|au12A5Q@$A-bCTs%QB&xEC1vhaxoN)|aCdQXkDW_p`1GX)RN>Fz;Ne?6% z#T;vJtjztwtTcrizk!S;>Au`Zuajim@Q_5spBx95xx6C<#rMpHV58 z^gnNwJ}~cJUh%4L>_hu}ifdA*nxoJnu@azH6#(mlu>!8L6 z?1M;qJ5lO_x({}yFuw01h-d*WDdz_AeC^b@dv#%Ss!z#2h=~8O7;(8)jX(%0>Kjz7 z_c1oU*Jyi~HBY$?{qfv&FvsCMCaAy8J#hg$(>id3f7JcaQ#*f?u#b?}hpS{v7?8H) zljAMKqsF1-A78*+ZWB2s6_2G5hs5Wnt&EfbUuuI-ZqYKRnXiZ{ThC ziq@H`Kp!7eP4=FCMH^>+j}a(G$R%KTH)5aRr$hYH@IvwEt<({T_*&;WG2-sB)N%b| zZ!q&Fb!9mUJvS4uPc{$!*92VJDQ{?ZOabXANw)XCAPzkvIy7~{mA~6^U75hj3HY`1E#iQ z0aw>KOz-nvjw-4Y`D(PqQ8!RN>7Akm8+tyVGix$|)rEMMYK?-QR;vB0Pnt-N$^5To z;o;qWF;RSMZ%(G{u!GTcb>1^z zuKAebKkmk2hE}GE{wZ|bkcy9)V6MR975SUv!ycIW5%Y9rs=s~!>!QsT_>%1u6ax3l z9&)LYnThhMlt<*0mo9&A|F502XcA;WOI#P?ZDoadn1mW?a6CE~WCdKf{Eht{b`maq zc5j&46;0vd!DSuxX^4InHND)L*A_}o$8^;*p>7Mb=?^rIrTqU`dctux?~S?+;Sggp zQnC|=e2E3PUkf%6`pA?rT2=P!P~kCi?6_>7sEOZAGZ%KZ?U<#N^+qP(`sIAlm2;Rd zJ(u5lBt||L;)1ky=8?D;KjuLY`XqxnayN2cW7M`cHa9tCv7Pm%_M;a@m41>)b`Z!j zK>w?}BqsOQLhXsb0Z{BR=Aj_b_bsqAYwu>54nPgzpJ9^Zi)|d?1@ZCK3_CU(m-esR zEm?wyE5uB6-|yi?i-&nNFk zJ;#%Ri-+7NczwwjAx+xoKND_lGQyuV?l>7d+MC%7ZOk<*Ta#q5} zk?2%xX|-~W3OEzuZJr{L>YnFsLt*Fs#w4_ZNyfS%{V%|!ic$CNd3yOU6<=vZ)dP)u zMC3HoD*X5BeLIS$8v{NirM46&8YCJA!OT^wA>>Z%rO@tf*kMQxJp#_~)@Xew&kj6N zV}Tk%EOvu+;Wc?h}ngDj1WA?pDi_GH{*M}RCMh{(!6qOVc+RKo!|8~O*je#>j z$wotzr<)H+7y#Xhgue7olW`iq(n0na1?xJ?K~npiVaHr_qDLYG(?(Bx5;dm-mzLvT zsMztX;JlBJ=HPQZiE{2?7hlVZGoIbhh!cN?u_Rq;OT~l20onI^BSq@WooFuR#BGby z)LJ>WVyAA4qJtC){SIeORwduwndyP0+^jc$FSfja)b>BElaXyx4;^L41rat)QfgeT z4}5mTz+Y%7(9bMysR^DnbijJV&8W7!W#!S*73diRpd`#Mq?t|16y<5yobBKqLzd7WEsz0oNv|WM86i1-Hgr(0&)zPHb6zY?~|-Y zGi5d|mKH?@8!b{MZ4>z6roDVz7|J680hm35Bb{866!R8%;d#AINRrkT0rFE;tmxo|=4LEB2(cbYz2LQW=MK zZ#K#b6;z$f)+<4Qp|w}gq%lNZij8KD<(VTv4Q<8=9;h?IT2oBSgPVi?e&couR<{!J zo|a9YFN{OhT#aZTaUQ*;Ih2Q^$w7)Fjmu%bOMx^CEL|4P_z)si0wGE z#g7ncE!>}oZl@stZiP%;7#VWOnX6Bv&Tr4{{Sk0OJxIDBvK+BhIm7Nj9Is)lJEFg0 zMB)x}CL#HP8@l$7rN)-8kK@8u#H@L7*W?DRC}Ql-%`dR+G2IjKYU54ZngHs?W{G@Q)oRG_r|~76UaUVYOukPV zv}jRZc)Xt^U#PEtn}gSvpRcCDPs!RBV*?6i=R1tMZ+*h!12UIAymy4PANHbNUI8Gf zG$#kvPgs9P6=7GRb!z3i&VQb_8jU80`s1!1_fbM~TWmyzI1S(#!e z@L^xYU~Iw(+fq)SD@P6nM0ho!2Zvb~D-}bdUys^%Nu3;3JIXm0e$EZ;iB9@9O^a3Hmx2 z7*Kn2XVDuA`FA*(VeWyFCKB LCOU delta 4041 zcmXw5dpy(o|DPlzT~4CIQNLb=)~KpV6B%`Qp0!|9Mtp{IStN}rxlhvs!> z6F>Y(;sl|^CdW#zllE=77{=g_G|``+q$>T>%JLx_UxY_j0MMsX zW5u-ETU$e3k64UXIKd=HKAx961q8!3oEnNzSZo((#ZTTLDbl{3N0idbvseiFDD98OQ=ZW7VCU9tHtQ`TStghM~vG&BeusU=3ullRC za#Pj4-I@qIbM=(pu7h(;JxFYIZYjZUK=`Ws$>6_>J+*uOSnY^oMy3q>cp$bx05QuC ziQ5gK668Ea7;*b0@o#NDfnCVHev;iY{EJjU1wGlAE9NRjE>Go(^@tNqS6QVA<3Cx7 z2QjmHu^|7)(|vPY{M+aU?v6NO*^Q8fB;cJF!$9e-a_Dyw?Q)CEk+ zUP#u`e_Ki@MG-q90LAv6Gt|N(h7JEblyD!;)`ta`Wh$bBo+Q}LlG1(0YTP>rU|AE# zXeIhnY`i?_=>&ZXdBUh*=zQ`psVfCIt~A(3fv((xVvzp_P3bBvYl|7o0Xx+W$-GD0 zk*q9;_!wEkJDjY0u{cL=DO=uS+*j!1!E}3Zm>5LUYfEA1nhF{{ij45}1os?udkfDk z0=(wc*$kP7wHkn3Gv(sduDp-loiYVaGb6wLP48q2DqSQZgeQT#J=@*gU>M7Jals5s z7M$w+;RqI_1T(9KIKLZiZk=PI;`DI%bONmWvvzU{j+OH%MDZ)Jf5~d$f z_tq-XJFF`Km?1V<|2dt7?Lv7ONh zTK3bgIzwy_EhcNkAa5)WPa_k)`1IjxpoM_l3J*JuwG`8ejAW{mzdeKNXzt?6iL4zX z8N&g)Xr7^_@|HRucJ8Q}054<`|76pRkG`(mwis~JgCn7h>+e3`z)*UZ;YCk}B@6j~ zi)VoNsZ~c-r03wH{lS6j^Yi}xMfW}YcK@xno!HH{_H`xywsup}xY_BJr==B$s4cc7 z)WBgh;6b2;<}W8Ss&30(zuXhM-qO-?+*16jsR73|;gCiyN%$CUP0`M2GaAnV1T;^s z5ugg{trMDtNWuao|Cu9cd3%~%h37G!%)6f~EJ?eP$;yJF^}uwv>|vd?hE}5e*6&hDO03AX%CO_ zJqHg}SO;{|I0tFU!_btJP9w3vu|w~u!M<}C1ubK=-SVY&n??)kMx9BfmORnei*>qX$$Ea+OKSUc>Dh)ihAO76V7uhNzMMdCgf8pnKK^&M ziAz5>WlM?n(T(7Atp&X6FN(}6xPw%Wyq`e!EdEdXTNB5e#kOx{q^{ArR%LQx_3vv` z&2*0~gw4+WSO_&&ngs9bb&*eS8hwj?UUIH|o}RgwPQ=>@+T5n5&|X>PFk9RhBN6ZC zoklOeYm4(+3bK^wSKi;;ylvgmf^oOT(BAF=twO-?c|;r3c9TJqDMHT-oo$mb z#C;_tnu1`YajYZnu^vyLsrtk6yGhBH(Kp=X%tEK-j`F z*Q2;q6$ucPjDMQB1S1CA9m~}6t@gj>!2xP?{k*T!z0WK}^O4>LhBFK~2aPk=#+0+&Bp*5`A|XN`RHd7BGCuCBGQ0;8 zF$QLobj9+ahqn3Eu-2atmBy`}Yj4fH2xwO%lS-0pu!TI|T;BKJJ(Iq=3Mf^}`VW~Z zT1baM(GZ&|%>9FxM0)&;Iq>QCP$zC)q}K`wMMGV#K#7e_Z(jaA zfqbREcO}T}y_Or+ULd)0z|R z9nC_xKf@E4X_{J#InVQZs;bU3*U7hLeb7HPGyK3Us-*RPXZ|+Ws-IF z>!$w@NZ59*uVPUaCn7L{*I*3{6R)tu&|-YY{#&UrUU0^E>G*ho&1LKFQ=b{ly#pys zMIfL?KhO3NISZy5m83_`318K?$yS5xc-w-*JP~ij2ZyQW^?(Z;?LaD1(IC%|q z?zZlF6%rXSnLd*la~`*Zv9&+@Ek*{ad>k`<|H#LOyJaLd5!%I14t=6{B|@(eh8oIr z5tukA?Y)!a?H_l!EtEBTfS8!5&QkNnjPkNZc^8m+BK{G4OML_GD0%Pxts43_QsU?e zva1i=K_;B8ebJr}A83(FX_9HIRl}r=*x3QnRhR$0^HJIju8q@yj}z7Q&Y}`@|13u5 zJKg7U`ER!@8n8Jj(scWZL&v3;A;XtIl$SZ{8F-sw;w!W=W)gC2Q97@F{HH@Ce@aip zC$0$6B%Ws#S(jM_D2?h~cI34s;xAr#V4OzEoKdIK;#9QtH(||!MVs5y%P9o#u%*S% z*YfOW)o|x~{VC6dywK`b;DSYowk9g$b9)@Pe&KR;<`r0QVWx}6hjSfg1DrKV)bgER zgyB6oBYt*1w>I&jh}@4b1ISY;9felIGu-eQB&hPJT1#i<(e-Z%>Y6)WziDGZv(osL z*HS`RGl^8=_R&!f!ma3@GYQ1pgl-nSYljhWZng&%U*Fs7L)aQp?K?JJHoO2{Jzyg| z)(fZAphyVLwDLDwjdZ4(oRsm<$Z_j3xLn-fyGz7>RVNJ%XWq!EYg#*+_uZB6wo)CW zn%&?OFpmq6jB6PszXsp1$k{{Q^*=oT@ovlXQ=DDEqX4cZYl)jqULgyc5NaVc1?kAg zWOVT)R9XEsV`<8}gvoP5`tyZ2%u3bQk5LMGoTGqhKUv@!K%7wCHMsEe9b$nP*R&O# zsK=k86vE%Sl{sdlko$q792uV1d@eeQ)gsms56~M_p*|z{12xS`1 z^WUX}A$sqEN`tPeS`ypF71D#|I{u3NwPQWFQ72=SigFCALUZ9X#&g}w6@QzK7VUCs zn7=<`BX-inf0o^L!mYELDkRe)(J+*e|2m;}zv)1jiO)^Hm6lgu3~{vyoV|dWJ0-YY zoU`8v3O%_MFoW&ls2hgK>K{xsXt9^Ov}Q^pZ`#=zeGM(s7X|Ac=@Tm<5z0wr)2moB z1&evz)~gpX1`|A!ZU$(zHopkj@pFEo4~zOg|BqcE(b#NiF+MsozEwB)>ea!-q#rqs zNwU(atA4;e5^h|y%bWDiss6I}_bO3qYY$6KPF{G1e+iYLRlYfGjMK(-S+A0zH1*oy zj$fXYY>cmGFXAaDRIg>1b7`r|q2519Q$q& zcA2zn{-^NT)_;ac?Wi)-XCu6Q1TVfP)qK9_TQv4Wb~;UJ>o~44N@3!H&Ej3&7x(_+ z-?}Hig%m((74{>fKnuOCD|nL)1Z{11j-lukU|2B^S8~eB+RE!30Fb!ShPV2qC{&~< zRY|(?trl|tgxUw&gkiBWNnxU~tpiJgs%D$L&3*N&y;FH7MMbCFFye;;hXDg^7;JW; za~`oCeARG0EA;m<{@+l0hM;`;eSAMZ;D2TK77jM-H|suC&Hm5aSfMCU_fNb0^P~NK za=T0nw6&*74q%XA=hGk(JM}pF3M>>1uL^UV&4@)H=C)gIh1AUOR-Fv~O7e59o;D+5 zG=f~*dXq^M63fX#F|^q3Y`+hw78D3%&waq+tV8*4V%uW&$gzQ;@gw#8h7B!%^L7?* I&fSRlf65WWP5=M^ diff --git a/docs/articles/EDA_files/figure-html/unnamed-chunk-39-1.png b/docs/articles/EDA_files/figure-html/unnamed-chunk-39-1.png index c1aabfd701e912fdce473c918057c02e230152a8..eb2297001e6ae7efee2d6ac322c4c2bc1b2a9eb9 100644 GIT binary patch delta 12159 zcmXw9cRbYpAHOpzAuCxCiZipbl@Vu^y(uDlWsi^XQ>bKRWR^RH?7dG}nK_}%i_lqT z@A3QG>D%M}%KP(rzhBSyYd+tvKVOM9zY>)tx&ogtp3&oz`(RG@#bD94dufms9q(t!)EvO?d^4G-S|m0Lu{bu(yvyiAF+E6LsyNVU=_DUBI2E08~6=u_ zfZK+a%=*UyWo#Z_lis{Kcgu$u#ZH<+i# zf!C0d`@(Rj$MEpQ5;ESa-nc@OJ3s*$L!?7b>cnNI+nh8mln*{zA8kKa)br79F7npm zWP?87&hiS-*MHxd9ze-nFWV*!=|GFfB!ZH~Ij%OLd1>2>mrWs8$*aT~;J8QxnTq=++!-}EWk?8d@7^nG0ROio>s;b&)lKpO(v%Kq2l zh9?swfvWI)=*i`bBg-w>Fu;~mo0|nQQW=c(-1+tn3M9)32F(+J&XUdZwkHbP18ihLAjav z&{3TCixk`#yCrBzu?MWUpJcAZMXIw>(0kR-*7CFJ5_J1wx(?5SACfAOXcK2WZE1F; zz=R}|xqs3UD)8-hPCNC+h}u}7gck%Xo6b5%2e4NAZS=<%x})#RHN{k(io4vE2<8mR z4IXm;J!5QExzn&i-B4)`N=7S<7|Mnre(Tpto_(Db@d0Lts4^>Ee&5)-HE?X&s$A3= za_Q%dw$h1P{dIKqMsgnw^z|;exywEune*k=vxRqLyla##QSbPx^=B=PRhskkZFD+K zQ>8dPg|!HFTG&9Uj_+otU~87)T=w(r=P7HX?rzR$JB`qO)nJmaKh(qEy>U}!%K9T8 z{>hAt3+4oF>X553a$-f+DU?=60s?m=JsbjMV8$1f;AJq2M?8tbi4V^uhNG42~~RKan< z@A%QT?$i+m9rEl8{)@hJn~M@N(?+f3)!vP=zWnr+MdAIl&-yY%w`zWC@_|4Uj0ONN z>>cUf1sX4=ZRl=?lBZ29&MVT%U3BEpTd@c&X52S9LNF~-0&tB&*DfF7G`&|VGB#Qf z*5tn!b0!u1PUeFob|9>N!$@J_Ki>Bd?GE9t7f)+TOlCaXY=>i)Zl!W-FsH3r9~C;> z$`1ZvB-`To#_2v&Sx)w`#Px;~ov>1XD5uzq)luD_tW^Bc+uo?TMbM&dKRl+7i3}f0 z4*f$1Ig4(8vxF&Hl<3=Ub+UhpF!Krh`kBSt%|iTU#r|E?M6UnNK2L1XyGEJQOD;wN zWt#AL_8M}<_a8$?>&ea6;2`SEtRU$08Bzh`{iq||hI;RJaA8bifzMvx;|k-K z2xD4@)tM^hecNhpb+mdFX6pWDk^#s-+QgKILJpdLiPNZbU{5aCb8g5PUSw}1_5uGL zvwa&s7(BEFoYOYA*RR=u-{OxbUExF?kGD?n*L?eGQxY^$IjPKBBPrKg2e2|T3(pR{ z&L1Wlz7=)`kt|YsU}$YwO^p8%`~_ySKA0JN7id$uId=!cgt5Vl_NWbOz9ua_7r2ey z;l~IsH>VKS5L=NqRUD6x&R3U`gKmm7@VVM_E(EPPb`j;8;Sca*ENtu#4yePWjAW9n zWaJ`^f%6rGmc8Lz0d8Y!R&upP#(81?i8q*tP4?X=sr0Lkc)Ab9jq}yjr8wzkTgh@a zZ%iag4kLxSWFz4r^&P5(JY#8kf(l37MCJ5uy@41LbrDZc-`?U6A0(1`>n(TD!ua%+ zE7?9%Ube$JoOvhC8VyL_$mzvp@apj9SBdIPZf$?Hb!%)YD0r~yLfDJ)dv-_((3l{B zBfd&(?uKce>V1Pv?ioJ`KawnSbGBhxFI{d{fbJ_Dcv5-LBZ>T#y--+`Ba1)Ia=vRX zEH9jt<>2yL@Z`+Z_<#oV#9Dv5@6M$ZuMUOL&hcym3Zs+Fe;Zv|jz8}__BlQqLT6S12&v*AoQwb`z67O?*7#}p(5?dpy8u#>U95Am=Pa$ezZ=S}B z1BWVzg|#^0e1oQ#TpAO)nB{Pau->pUVk@d(IdsuI8j!!_qRLSv{&=f#AZPw!U!GLxKjy=o6 zK?Xh;(3ft_Q~ptiUF?~1Cw7O10xH<(Xhps8@*`%<$9V~B;@zL9#ZP@~O^Iq*DQj_~ z93fENTj()c*Qv2Zw#n^nFp#0kEnl)!8XUW;2kG%n`ma#F+-X(m6)2ywIK6(xKG=?qrTC-#JP(1#pRKI-!!>IKSEBm1{h-cf8lBft{ z^e3;C*A&dz{C?6+uITNeQ^$vJPw4UB#a4?t-1zkp(p^p4#|rDyzXw3a1YJ?aIoq^+ zZ4Tdte{0}Fvj(%1xvoEx?xZ(xr5qsYrf$2x5dPu?##?gUIN7&j z_bt>GmX&Zs2A8$ngQh@?AC8Al$f5>kUg?Q6@gP}>`j@t*({@IuRSJ^(d9w~=v(TO| z6yH}3`?)GwFNZ0NIm5Dc8ezbycQZedt5u|-Kq zc^L=CE}$OfX+|;(3lS?a?Gnbaj%D<=%03LfuQD$3L_jy;)FAqJgi%Z3@yVGDK7=7? zp1hE^(nbmH`AqpLofTP&>f}B%TI=M7FV3EZ>HR)}=Ca)hLul)IF+N?2tNa(XpkuSi#6Oz$trrnAU|jCOIsOqg!t+sNa%JQ9$iC-PLA% zz%bA!+NWH%$I!r|Rv)4mVQdp+1Ea~ldpf_m7bh=SXcwf(yK^~1N{FqrvC&anFd!?T zaUfYC=Zwzg*1A^Cp5M-Lps$@ncZ9|(3`eRXb>sRz$N|_|V>?Xv)yqfjagIF{1`i7XB`0Ex%d0{dY23d|Q z#-LJL76*rn@Wn+P65sr1?O$bqFkyX}h4+ek`Z5lFV(`YWR+J*HB!qqaKHOokq_S{u z=MKE_4f)|d7UK09z6P3`6C&A26_QYM?T3YXD1{f3+!@P5?WdL%h_&|(FJ$%G>7(!K zi^zU(?b%))v-X?pPhGL-TO8+TmZDK~#G2K)Pax9IN-rgxA8iuA9a^+j4DP%LYwj6K zec14OywlC2#x-a8$KY5macwHQwa{S8OTD2cVx*Wa^~YzG;$gC|soRwBF4^PyoWU_j zT_os)4|(&0pz7s&HVaEjUhcxy)3QI(`BvXI+<&LgvrS&8MY#)M=v%1~Vg;xh4OgSb)7a5t)|Yp12HV)ux?3OGFt~HJU4JTy?8~UQwl9dxBbD0OQInvs z(#Y%l_2PPiWP~@AXh0sjFwlRL;fS@8a*whDBYYmazqzHjc`W96w3eCGoG|!_Jd~uVaM0Pjq&6SN z)Vk`@WG?r9aOcgTMQN_Vir&EZ#aF+&9ayP@N&G3084dE)2|jt*c+W@H{`4mEutrT7 z(Fc~k1Irh%pE7S?)TWpvf^dc`0Zq@Dbg7I7-aoiJt=Do)3hO{E#|{>tuexdaBfIv@Xn!ds zcyMj;BQseoVAnft)oeRoWurN!O7^x;^!>`@DO%^H5=X^4EcSKC$)mSOwhJ7y?vYHI z^@puAqoJT6iC8i*rD zZUqBmTF_nlxh|$t`hDtbYjNUj2rjpZ*x&wOSzx@|LGHn+47KZ@kVkF&j`U7Ba$9k8 zDFUHEBE}XFE$&(V0+jJ3NP+t7FPy@l3OvUx=gw-Ak1SxbC}3V?%-8A1LA4YlHl)JI zsbk}U+e|^S%|r_t2RDO#$MmDKe)*XsNCJ8{lBwrX$0}E(K{i-^gViKALwFZ#HLUq9 zx_>aGe1qka;D@S=U4OW&gEjT%*?P1UEjKo$Ebx;Jd%VA0DjYXl{LY3*sfe&Lt}Y0J4LxY%^Lj)r%8Yw`9HzJhu?0QTYR zG)ZPDf}v70>~UzR;)|%*WOOr4M-j|!Yf(Z62%Z|4N?B9Iy?iW?|BP&CIAI@3)7qm~ zL-g2K9rrr=xq7g)k*kl*)=t(7LvJbf@-$$rPcJ_DTV(pncDpc+DbsX2f;)x=w;W${ zq9)1_Qk0z6pYQ4 z=ss)uygJ48JBYnkIq`~t{=*6%@wb({Po`uy6#C3~u~$<1O2TMd(53)+aK`!=0XfwG0YQqAzt?v)Ui^-Pew?b^G1{yuM!wcBmfL?8b=PW4l8q zCPzFCDXuwKLLeLv4VAkF@Z-;Evu&SIqjrw1)$)BD9aN}y>LMXlU#qMQxz3vqW>&v- zxSk>{wjWZEmU8)7zC`s^{a6+#C$iRncRZ|0_uY=V<@?hxjsdbw)FYZI8U=^$UiOyFBTwTndnf@z@ zQ8V453QCV>)E&F%<&xC>7`ZIv-O=~mu(k#$6zaV60=W^V54}rCyIH0_j1c+ z+JsnL1Az$+%kOu#N>S4DU4i)kr62407n}hqk=#4{CsZ5^k9)%IbJ8NdK}>s2T14v! zmVkZ=l1&;X>NLhFr8;T&t~$K04{IjJ@RQWv<0J8@!CRKk1VM;|!3g8T!*YGkMfSvf zuCj@Jp1?tY)q$zHg(s}9B3Wk`U4F19$cdl??@*i8CyfEjHSSZS{Aei54J3Poxrwl-DF1EXz z{X3}(dEZUsOS%nW%mmoL6{-h6sbrX=Zt^(G2Momi-SfdD2tnj+uv0$MY)`gL6+EoH zd@4`c$oRgM?~hZxHY?kiZ)#;S?GY zJxOqH3gEuDI+sc>I!+^@;~A$mi7zMGN$)saU9op*b8Ao$6WwYon@6~W#OEobr3Q0x z&5wrSOhYW_W0a$}Cs|++-&-As$2azVEtEv%xVxuqSn6RZ&$k#+0J|)wpCDT|RUzWZ z5~CdEK#O%oxXcI`|16K68@YSD*L3 z2=Yp0?c4WOsKO#jNi)qZ z=sX41mQ3KWttuj}*|b6Wc7t9SLF_a*#a7Sp5JO4=-3r!+b5vFZDM)%(O0kygwiXm6 z>KevU#YrQED@;E8BOTURJ}SGmMmIa){=Z(G+fltf(wG?vHhyzP7|dMiGaX*L<|FcQ zeY?-MDijr~L#6~%aU(zUS6^K}SBp6iB%LpKf$UlyieY5n+*=U8exi znwoMaFCgPy2=0hO8|q6I$k}1d(OBcwJ1MNE8RY(!>z}Rkfh-neX#5>RZQ%MJqJzPE z<2AS-80{7I-qOCAq_YJPo{^B*FF8iA{Bx@~1XGeqFz$clQPboy;d`mpW+|K{(e3go zZdzB|bz+!ckNtp(x`y@QUpf6*GG|32eFBDH@};2W%@=>IPNyLfZez&3hV0f|78Q~& zebkvWGQf+6p4J2;oUKR-)>q#y>ht;K{O`_(wd9v2R_?zThDMLy&TbyV684?Abp~^! zkA64kFIdYR#~^#8Lp2uvH*JB7QoWN5xd3mycj+{$9cYWfy!39knl0&$?h6>{BlOd> z{z(#!KYDWlR_>x6q6#^&D9YqU2qI;7da__^P`%A_KDC8$#%cOdofrJAZ(ky5Y5!uN zyQT+kSth-MiXFL~&w+8i4K=5Iya~}OUBs@mC7T0nLSYu3)J_y{z+dCM9$)BHj)YUd zxevy8TGP5yufJHkIGA~I7bAa=e5RXQ{e=b@o8dEsG+*$-cA@xhxRvm~I{04yTKi2& z?aFn|tF;2=;`|W-7j@j$%!2)7s|>j+38-VJtQ-wqo+&&I%7y;zUmDAl!qi9OAa))m z$O?_GjxYPYc(xk(tp||!AMWp=Pr2b`urQQf*=8jGI zU)f4(vr^dhI0rHrGSYo0*^NMLUh-8zOE6G9{6aZIGncJsP|>fxuF5dCHe* zk50%oqL~N|IezUWlOw%m!fSF4G+pF7*@Mjy6kl%K>Kc*v6LtF3}=rLA*RhL)_Qhz*tm_#N@cb5}g0Eu~~dUH$T z>kat~2290VPPw{(jW zjV<>Wj8?ADla8GER-f&17QV^Z<;vQnlii`2n0BmEe1{1BdY&tmJDCR0b&vfSlsjBG zPOrrAySyzHvfBaphB>2w0;%*cV8XqF9Id0j$cq)K@tGQPX&ps%;G)4S*O?GZ7Nrh}mXid#39k!$y`yvhc;bfH+tq(k^ z4W*E=(VXDlXZinol0t?AV;qmlY!FxnVU>4yto>J?kE$;Ius8+Uidzyeb~aDqCR>sE z3sdqI(&l**K~I0JS;N~FdxVQQOlVw3D@*e1_i=jHG12VzdnvNluC1>;aLVy-Cq@yE?2qF^DmP`alxY&T zp%$kVmZRM ziD&R`q_!7Ay6mA#H^$(92x1)(U;@L76@+rkDw4_2EwU<7&B{aS?`?GctBoA(&X-)Z zAlpt%8{b;B-DT?53hiGSgiKtSOjHQikbkR9NLqTXl>}ijJ71272gvl)j&BcSRsvo5 zql>LReVnG^Rs!r|3b~7%07k3zHs} zMWMROJNQQ*&hv!F(x2+10d9`~pk6Uv`(~RiVap~>h2<0Jw&if57*!a0Fxo#itz)#H zyCt5jTBf%dJM1oi{NnQ`1rYq+cGfyPgN+$UMSDR6 zXN~`_R_2QsOG0PW8|=RUAAS#q1A9vpKr(FDcy~9O29~v-XX&fB(PO+8iaGGJ@H56O zO*-ofxzZKv?;TDW0qQ*2%{6?jGz434N(21>OKNJ`opZT~Vc+|PF(6eRa)v$o`MsfX z*WHXV_;Y>GLt&baDj!ZXgV;_wM>{*MDV@*jJ+<7=<4|smYKJAuEZgWi3}Kw!LX)kI zk@IU?;A_t?DkpqQK3U$&{|OzTToRYTYeDAP$P>sM<{I8O{;|(QG(H`C6bg*FL(QSN zaSC5Z!nbSOj#YRRDa{a7j7mx%J^k!|7PtJRe#OaPLE#53PLXa4CBcUvUpu89OGkiDG zcNWnLzQ}QNAbU9E*YymGRyz&LSF6n=KcOa)?z7w0m+$KkPNgOT@+oMFimmn_;pf}7 zHo>u9`n?+%L*t{XP8)1ftqz5$7q6e1Mo>clU8Id9tfP!P1;3FaNnw#ML_^QjNxQfM ztZ)bZ_V0j6;5`h@0Jg0&8e?B_ZdQ;-{^V;5h2qGT!dpK+miY`4(?Nwgs<(u}=@spNy)O6bt9W{z!@EJ&etxqVAk)z;qb?)8f|4Y84V%pr zsTc8MA8WRO8%Ca&=dU@zKzAtd(fRjBK;HvaCg`E8vOx^C5gV(N!`>a);x`iP?;f(1 zX^K=VXEe&@8%bB3Tgj(*LJl+6-21Sn+Wsc|F{i?~q~pQ?iUL|HVVE5G%V z9jLG?a$3ChnQiyy>Zy}M{By9*M!X(hiO=6)huXI=%fk&I0MW6Em;!a4g zoO|AL-@VT6C|krQN8|hDSLSCY>J~Z36){)3k5g7r{u0hQeqE{h>(bHpxkj|J$JP@X zr5b9ShyJKoP`IeIzXDBwkOOyK+wRh8alVPL!GA zx-KeE{NO=1)jW3;JY~`(Kw$`yG)~i#PbjR6dF@+?YM^f4IFJ4wBz-*D4RCId?PQD? zB<6vttZxJ)IRw{U@^l8!8=5j*^WM!Am|vCt#<%tj6Sk?NvuIa{f22;sX983oeblXz zlw2sHHzsW0_@fMCsO|iEbmjNjlsow}v&V@3#F&(2i?RM-=VlvP~^)h8&SQ5X#-CTC2nEdAQLKHU!UR2_yBOR??+*Xa8#g@=X_a z$-4C#YJq!Lf(e6VTqOvsCL$+A_#L^-mipcrj@XK7a%}YW95q8Mp}kAwHp~RC*Gvc< zfEthf@dKown@@_*{!*s8uzOsE#8mb)h7p1^VHmLJo$uNoM{1%o!$6~^&md1j%wiq{ z^0%dZZweZz_8Bo!wyAI20ha%$9la<7X!BN8(Ld15PeV};As0(-)qPU>U26(=7Dc<= zl@YKJLS_`5AcZQv&3l>r1IYAh6EhPhI>46`i#9-w?QE!g~z;Q(J^9)M>^2Zy}&X3s9qzC`V^ znC>h_&wkswHF&t;p>|HpCE^QvwM@KQnM$}p*B^z2nbTp(W9k~!3wwE6VCuu+V?^;! zT|ovDK=P>(a;!$86*yP+`VMGR*>o^AY5{8W5I9z8c^5w9r@fqb(+5n=(idkhb7;n- z)I4We9nlatw?+J<5%a^iX3x9IDNig>qpSc~+$?Nl;RC?UU-xotH&pA4j(jchU zD5gW&d%~Q<4Z3%-MRVUr)0@gvKkH{;c*TP+^uQls8E?YAs1iy;P)bOqu5|~@I_#Ql zZK&a>!$X{*T<*ED;{VeFXSS4!koVwfNY0o|53jVvDbWz- z_0BAt+y6mEVGCYB5i)3~Dte!Jy^yjw2Qx;(Q>&dlB+>WZ4cvGHt|`V>HdRi&8g~PE z5LsNR3jAKy@Z;m-=h)f=Jp3-Xm-aiswO0p!e1QE4kudvU!-E+Ubui`^{o^>?1Uda0Id{G6* zsZ^z)M|Y36zpZw$h8|dH%d?m(d~BS{r9Zy>iC;}-J>uK&nZy2<|2EV$T7>|GmV%Zq zsi3>Wrvu|6Vv>eyM19U_p30Y6NaB(EJsx(+=gO;rb}RpX5%Wkl)QX=x}ozW z2Pl8|$-7j`2Ir11=XRrkAEC1jmwBkfRw`v_vw5P7!2A5pntq9 z=Ta)ET?E40E+grwi5|R4HRkwd@8V7->q{LbRAn^^uJUQ`FVv8!o0?h0JotD2PrZ%}A#u;LN>AedV%4sK5 z>C0m>lv7!*G=|wm;jr^x?*W(&%D=1EyHf z9s=1HzUF^GzN4M^!|bD;^RNEb-;j%Q8bY^BCyqxg<-27d;J<4=WLCRwMMvV_)Dp{s z_#bFyGK;fha=4LpYlfv#a(`6_3!i`sU4EOnS0?w}($EO_0a#zx!fhwko}KoX!OS8Y5rq6S3koAz__Cv_9w1#2zMi9eBW-O3Yl5w6PGRntgU z_Y(b<`Y5SLw`B4(uxbSVna44c|1ZW9WQRF6x&BAy1XfEsVCv++*(vmR?eI|z6kLM( zB)VSVZa)ocmaCj{nbBI>N%n$OXX`BOaZ|5FnLr>=Bm5&Md*b2aM=Jv#^V~=(6LMvt e37CtFaZxiQ+I9&6Vp}oz%`{YXR7&pIMEoD#)TNC8 delta 12160 zcmX|H2UL?w(@qFY5fG&)MG#Pm6cH4q>jmi|0Yo|$dK2mO4RDd7i1ZGY1Vno8Bq&Yl zCG;Laz|cZ(q5N-x-_Hr>aKi5F?CdkMGtcbC4~pMED2ij9fIraaPNo=?9S4+6&e@yY zslSvt6>{YNtXB!Y`_0)X6>9txx%5(dJI;=xVY|?xUY52hL(y`6^;l%;%cdJq zR~>x&KVfzNjMFB&b)eVde;T&4zPKw8;$I|*dTUe7s^88LTN*F%-_QBfWj5jcoBe_g zB!BAAMf~!P<+oa?!aX}nSzLC`6^`AQ%GTDy)}hSlyR%JdHM@|!i*~INlNrQ!Pamtt z@~hwO4K`%|2R?(_nETu`)s-`g%eJ{-O8;17e#*S$6#%CfrtVD?ueyx2ROTIF|M(QW zlk%$vwU`>HGhD4KbMB*>%>G7p_ID-8O?Cx;i(ofMBbD(N_NJj!mc1|hWCR#I9ajt9PC*Qrb6 zo-8|36Tk2j63k8SDcxYNCR|8-HsbQ;R-#km^T`9Va4fp$8c9K(#M{_QvGD!$|K1HV zScwG>Ly%W9C55A?RQ8PV!U2^Pe!qZBSV7i!zt8!IFF_B)3=geCXGt2wKD_tI`EpABM$gC;YrNSm;A937j*f)}r0}Ie~h+J3TU1BTuLJA($I-naL(y z+GnSMk5!*fpfs$54aRzWgt~1~WO7n0TSrog{)t%yOpX1Xhr{MHfx{5krN?1vI$0YX zrhXd@)88$(|1J>3b>Xl+Kx1?AX5P#_RB9~zl?_ohKeL!GhFwp13XARcQ4xM<$m?bC zyPav>MY$^y=Y;z7bgxv1(Z8^^$v{Zr*?vZT>e@LZ;Iv}2_GahJD4Ko1v^fl_c6?JC z+#D8H69Ph_=iZ++0YGoY9igxF_C0=e!bWe&BvDL`bMM@FAr>81)s*sQTz*xB&o@~J zJS~@%#G5|FV69s84^^1odMP&_BC4Rh57I~a{_}roV$Xp!8u`Wr4&PxirBHe~ojx^~ zz+pQ-Vnt{EPqQlIGbWVfy&&mKm`iX8t;reJr%ya^8kXY#uX~k<*&Zr!l}h#~;J&i` zig~q-=I(bYq`L&luPk8k@Xe^Sp+Jc~hs=)i%93rehq2kqqW8Gj^TTo2Ny-zpR|d$f zn1iW9XD&VKfKKkjcY#J`zua*@5mipoLV$T^#>zH_iJzm+f^+C|&)daD!970x){_#i z)k%jjC<74w6N$RtPr$QFum5axfwt}V?R!z`+#iczmQAu)f+>tip!VxybcEC^R+2NR z`Xgf|A@4NTHhGALdgBYu_5MZK=7<;0HCw1q|JCC7J*i^RrjtRIC5|2^M`PW|-=Mie z%8v3Z)|Y?By&th}8(z^}5e)I{R=4;SBTJy(18%M1h1+7@gxaiWym(w=de?as+d_A- zMJM*|C2s?~ssePaO6~9?L!-a>KbwTS6oXj%!F~EN7v~0_zVh}NKd8%_nZb)$B8B$& z)x(R$MkN?Ap#)&$%3=7_!RW#j$C?`?quY}F$#H7nauo$ZetoF0+pw@3&3o zDQSCkuMLbL{uP_*@B)XdJDZiG(x$a-^J#-zIu9k8ieN)duK3Ws>Gr*zdRS`F?jHtF zrh0D}RS|#B7~1ak+PM9~2V|dZlPrVDnRIBnD`@Rze+}`xw@({nrip)AqErio3Q`Ta z!@+5>_Q~Kpbu8_@qEGumIM!TnF8HmK@5@039+F(};~N+ka0#cQ?JZ8+ zeA}F!PtId#5Iz`j1PjIXQ`JwnQ!o+g$_b2LT@tsXP(lR}#^`K0IfS`|n;!BDxUkl^G0Tag)u38?^Bd70q$j;L zHQpIbfT&W?-PyP-3~DZA-ECIueG<=tj*o79h~SB#fb(B}vV$E^T%6kbgTexn051aG{B5mdkFZ7vurab_P;^Pg}v};?=1oi5s$a-Ik zx>q2d;dK9i^RX7PsCBHis7JOMpMn+-S5x&8ckY6(13WA0pI&YDNsEpVgF~#3YkYIb zaQk8FW?A=aFP&no3z27@oRx@v1l&9JnVp}-j0+}IERDax-mA(B+C-q8e>(tFD6EI? z{=PG&=%C@`AaHnz&}Fv3h&kLC^Xt4fyh2eZ4g?@9VB8DbUbIF1bpGMkEGLFN8Ppf< zawzBot?^%6%>P?6t?B%o#_RHH*r&KL7>hyt&$%JXoJFv0{iY}VvTAz;si6^66G~Q2}A?~u01Lr;99$H$&TVkEkJ8} z=_TsPDDEC?Y^q~yIv52f5l(^oNAz5fwV1pd{z}(+>n!xb3Ho;Pb=nxd=4II7t`~@DJX(@G;0Xu?p}fDOQF#wTN66P4?Ao)bpMCsC;NO)cYEWkCh<@04*)k ze-LmSjWEKL9ZgL?(?iEV-vQ9FFJqQHgbzsFt4whaiYuHQrdO++1I}$3s+z~YfBL$w zvcx`*TL7CBy=?}R4DLx zEI@9g?RH4}?dxD_gH4Ws8?!)_$DXUX1?-EqTdhS;huc3GkG}pz?*$vE;DlU z*-F3lRP}M~3+INH3(pmX8Ss-4d%6z0-vh>Tx()z?a1l~K@jV6t2MGsrM}>;C%La{& z@38d4cRWMNoQP&Q&_?qs)n$i!&wX}Q;v?s|1T#wf1W{=y=!7=@joo9Jsb5|&|3>O2 zF3<_zJ&=%xC`C4e-7+*x^3&Yk2>R8dZwKl#6dN28gtiWy2;>m=%YB4{lE7gC!Rtu@6(Nuhd8e^E6GS zEGR9uWI?*e`<333xQo5;@3PyfP#~(gQFJnc28dREL=LURBj@gZn%*=anh{0_zT4Lo zzFgVUM=va8`4O*cNW04Z3ryha8Wp$e0<)*LPj>2#c~M z*3mG|(mTO!P>LRMCPI^Hw_-HGiOP~w$j~%3#lQPuM^tYh!Vi{i0?ETSXCs?{uC6Tq zf!7_t!xFVyK$lT(I z7PA@(wth_=04+Xv8+CZ;U7HX~A=-kltq89z8LLgp2&g}NI{gz<)wx+mLBG_%9pAIr zz>rM6+}#>2Sx>#Eb6jFe{fBBw!;WSxe`DCFJf_$C>!HV$(RSi@@KU%mAmK4&)+Sa?TcrQa^AIo7oo*L4M zCatY5A1lML&SSHJE9n8E#gPl1bLPg!a)KEFe!{OHsBT4_En@oZ`1iN`=}=g2hG-1NslM6vY->O6JMS+Lj3y(?~m!5w{X@UZ(_23B-=FIu+x%3yS9cX zYuTAq?r|ym3u;W4Ux(g+YcMJ^7iE9w&KkbE8Q~%8W#Y%$AP`xSjJ>Sft32bUd?=zh zdN$nbYJ)5t$wKbwLQzuLhcM~VmZxU#vn zSALi7795Vm>m+h>T#VP48@I5`BnI^+aQkMGE(VMCl`^1}h7v6?1P(%y-KEOVfU%TZM%u)%Cf#!ir8^m8MfazMTO=wu*oPX>pnA zfUzzPn$&y8V-9Ua+B#e&fxcFue5C6HOr6`)^3}1BY%hm&FT5_Dngd2bOry7batr;BiA;Rvu}emjWDT`8y# zs;pPx_lJs*lu^5lfa!p8zv!a485U7_y6FKZ`s=GMdZ4y?z5TZ6B;6F_=r(4FuhgQ_ z-K+F{#AOJC2coWgU*A08!Z3@TTsq50s>n)JWs)^~8Im8tEV*#IYtQKR#;K7$xzZHz z)APhkK|Vy<{j{_hgPTa8sxR}veP4urrq^hTAB`SlS!AT0apYmFR}9|K*BXAPk)*Pw zYYBuQOiJ5#vW9Oi(F}Hxvs`ck;GH7%p?Qb$@iZ~%(>tm|Djt=}0F~GDO*K*4HxL)! zo0qOR7_}1BmN|r0l7nq7;v1hM^A@!C*PLKnidRp~YYIZdj)w^dDSvTw(VRl=*1t_j zO1$v(pOID^pXu0bj?Uc8IeZHAzKeO!cRGV7+V%qyin4$rA82uGsVN6bv49DNh2eGb z4W-V$M3M**n(5dWTqhUR$tg9HZ*yRE5JrMKroo`5DU}3Wb@n6jKv@>AV}*!miaKro zQbHGYbt1~a$P-^E)G`WDmT3^JU{U4G;RnbQ{KylWqN4Wo)!Y!~IJB`ZtJ%ow7sGcr zjK@nI`(8%Ym>`lUq#N?9`$PG_I+?Uil<3q;?O5thAb7`(lRSIEl?7h$&l0DGv6K5| zyn(DjCNbe=L0)?AU{DHYp`k(GtCPly#@e6cBpquz&j7*?3GC!{8!Ep)LO6qr+f#V$ zU8ZSR;~7rc{K)2{J0=qA7`k1T1C!gEr{~;9J{ihQ2HRsr-fXT0$3C>p8n@6$1MNll z+Csdm=H%Gn?FCNvy|}@iQjNNL?O@P|H(am*q7}8k}3m0x-{jT+fH6gXzWT%yV100{TC5l^s+I zULf#d-CU56krZaV$k2%#lUlaG$}gYx$B|f$zrq7R;e*8>XXn+~+QP*@MJ1P}W^vUD zAX?Xae;>+ObPfwpo6>0^+@Cn~&Uk(X=uVvpX$;ya_hE*&!|?o#%>YG8PpEU=jR9_7 z=NJ96OQJ-+wIdJ%3d!M`A<5&|Ngo%Q^m`i-r)9U)#6;7L!LJ6PjTaFO2tOl}lS2CV zIzZZ`ql=&#X#_!TO^X7Pbe`;=lK(2n1MZ5tLdArYi5tc<^Y8nRw9L!4*5*I*xhYMl z9GQO4Kau%zYB^z$`22PsFs>w~@n}8V zw;>U-YC_bqYz}3z8ZYW=AM~9LkO~Gs@`PQ#Yvck?Wd5a&iE7iyj*Yp*A6Lld&9Bba z11_Ty(FTFfB>Z!EDX$m(*}tZbqxAF?ay`Km?6&Ph>h~2TrjZjqX|vKJ%LRDQE`g$4%qiR2X+Fv-IMX6R? zT~W8W)VAaP$P}3D>ttQ66P_NvxW<5s$p6sIkGiyu`Kyqp2gt_Y_m^yKk9~oqQWc@# zBFc0)?Ryves;Ne#qOycj<^?~!m%Xpkh&)ULdD5L{Krec#;j>u~4v8q{75Z+AZc7W? zbxY1QPu_~`=4Y5pjAX=C!qfvonoM?2ZQeJZzbMEDQ4mG3pkvp_b$1Ue3**ijO&{N1 zX1<&kvFs(H<6_}8KIeCP`-$w|qkWS_RU{ReK0dN__mxV8n;KbbyO*HT#HGIxj&pir z1pfX5kT=nCt;cpW`|d9$9gm z_7GA+9GLH;fvQ6CB9SoZ$Ey?{jAajA=X5FZQMJWe96a*>VigwCA!IP7tI1j~leJXG z*K`&08lKJ+!}Vcs<5dKHT^pG7A+xoOi?ZwkbM_x!wCMR}6J*kNL3Dm>U>*U|FfO6c!E>H1p0&E!~_n(Bv ze0NBO=HuF*#u|h|ty|qU?nQ+Q7>HIHz_szvBez!1$V zNam1?8!smqJ_JwRU?vgxu}G*9NEbgfvpAAhQou#cZFI7!nzewv>w-_!s4(@jIp;;pOgLvM4!Jf(JeeeH#uyk+iS5Zfn z&+pNF$pyKmBf=(T?TaU--rji?;1?6-d-LgWvrA=FoOrEGfnINB;OSY%#%%Eb|C^Ge zkVmO-_Wau9*;aD$Y!|oqjY|o>J-AYPIPm?4i3`kCN~pV2v3{_P*dw>t!Q4XBOC-5+ zDDFRII~pFH<`NG93wMJGw>(c}6O$(s2hmwV$_FC70R%iO5jGBWiNJ}5<{$rVlw6P+ z&XNOuhEoGwSR28II%gFI$IAZf?7T@)92>!2bXghmSNTM!J5#A6wC%2yx&FfT%FlAr zsq!CXfTUtfs+joiN43RN&+n|g3YNdHeg>Y(#{MlUmOu?irRPK+&+%!8jp!gU`S2X=!?Vr@lPDP-8 zaQH$xWqwx-ao2sLp7>DM#-!XTT4el)PH0bSAH_nc$=eblR4S^z&WfAvARJx2!93*` zIQz^iT3-QF0N-LwG(^vg{uJOU8GK(f{$)&;dL=2z{HF!MZ*7RCj&S$mm=W?9h$HoH z$$K3o7wKk)j<1Zc!u2M9vY9vj1h(%Br{A+-ieQYJiL8wiJHXMZ9MyrjNcMyDOv`^x znyS*77q;e!jlQn4F*?!icgSlt2OIjjuAMVihqo}d6&;;#szg@TtRnZ*M7*GI-kH2~ z)338IWf`eP&t~LS#9MCei2S9lv|DaMH*2g$QFRX`s(|1O_;agI$-otF>#$m@B*Nf; zY^)E-r0QeLU@ix5QAT<_Pq{VotJ>90u5;&nJ@0yGDJ);beX{p= zBF%`U?gXo=SmEnTMU;Zsd)traKi4auu=S_nZj!`Zn}eve9Dc}-j1fPIJxse!#*$Mo z6;Q;V`<&tmv^}zBGVE3oywVRpyr*~VHCe2bF_@TuVq+2^=hw4BG9ujGr$N>qAxuAc zyIIAa4v{$>LMH}0P}3qD&Fd1+Szkw6Z|5MKXq`2)s`rjNu9L6B+)6MWfxh~Ee*0*`y}b27=HSi7a>EsD%* z*nliyX6L;QahItu%hy5QS3)Hh%B_6Fv~qeZ8lCU-q?Va{x|H=M8TLUfXAoSe^xKg& z*$Us7z`Gd9hMa3Hbh9xAF9k_&8E&t&ut%sslh-`yX0v~Mw8>Auuhp$F>` z9#|jzp5nH8*87g-!h;z34$1v^Y{X~;Tjr0SgG70h&G&V}| zqAms&cdiPU?r%&o%AFK)tl~{F{5(2PPP{B9@T~DgY5c!s!%yaA?(!UtatM z-F_TG8j8O0dlAU?Tvpt4;V||ZI@Zn$imu!eS>&7ft>*6ktccHIcxYs=jESC{!(#>G z4P+7gxjS0u90yLO9LVFBs~|(*R6KD+lP0c6zsI$fs#@B{P~iB0Y#VaPg8ksM`_ctg zEc!~Pt$hAkND6+Wt|B^o6H>}dD0m4vFsX6YdKN?|_JfLsACz+IoRyenZjM})&Hpes zL;~0wu@Pz>KKa}6C5;bUCv_PvhRKsdwEBw=V5bnj?@hrIuKv&EZ=Iz{3F0R*%MoNl zvXjVg^?wqZdOMS7DpbZlqLY+oco5#sWYUMf0m51j#3HYz4ZJ$Z!2E*|i*_d{ytpX| zvMNq6PCBI-VuGdsX)o9jFrijwFRdJS@{ZX8q83rMuwz=;c70gf2+lT36oYy~61&sn zHU;=%^hl0{>;v=t*sc0yx&5HGSC7soCx3pmG?5v~&BI%OUj2hgI_~^Zqgtf7rho(R z%w1RiKdFv-KuSl|ziB(=7I;s@7S1=CPJ3PCjO8`!D|K9-bQiA|i;?GSesX4q&YR{j z9cwGMyZYEcp(S z7}QqIIt$CDjRY?Y{>%=v5<)TZ=A(p4x}=!&YU2xER;@gH@-voLqy!k5v50w3aXCPg zDv4s8LRy7+df4Po#z@~yNyBCBxC?f7kQUH7X1=--RF0c(0-q*Xxu`R_V^EMiuhUQW9pCgC%2q>^Xyx013w-pHS+ z`4=WyHd_k)LOGaRDt^2AjSIIw@+^9iRnc{tVDm&aOv<$WXDTvkZ1rcO7u7QLM4jHT zl?}t)5AcC$_n$ulW)~T#rlxAk-F86=V%JdaE9pRU*$V;4DylVdN??_EgtfQ%@For< zv7>~)%U)E{pc`Z7*aUl5q*~Guk3VE;>T3691B(h0*1z=A0pQDya@~jl*m;#H#gP=enc2PYT?!;7Wa+fZ69#EQy8$wTxcg{t z{5S7%VvN(1e^r<0JgP{goOeapVCr+1T3!w|n^^DRK522=YRj?Z%pmK^@m#`JT2I)O ziQK(X6IC7{o2(BuIRVV!*u}VO@Ubg?ZG!>A_vvmvJKE)QeUVtIQ=yaTYQr)!m|r8G zVWHJz!*eBCU)sa`M;KxJ&)BMp-bGjW;>%3kTzWR5>`h<)!uUN^(ZkR$elpYPEd2(^ zk(w=y1D0lSilJ<*PqALmx>8KIj=Po}aC}`zg@teUU83yx(u=_-ijSJ5aCqhPJI*bh zY#9OVR{`|8ac7j-c(KuR8?6HUfB?3B=gsAUvY#sHWUbGB+!aXe2%AV$ z*@@ZA>Dil8%*W%?pVBJOrPH2oYMa+~I`(9l8A8q`x@)&D9I#@hduPm20Gy2qcACdi zqnPorh3}1kC9BX3g{h&D)VnCIR zHFXx;gT-)wjz{PLAYWBt*Mg9o%vhjkqcHT;vO894`RDxuavRk`c=e1{S2+6NRic6F zY?r{djMJUl<(J?Lv>nW9|3s>-2YuqKc?Cv7^?lQ6KBZ@e)g!-_18n3?e*NWo;3}jy zAr0qaT8<$emlfHUyFhL;nr7k*Fi>O`H)UG#>MvwNjn=+dYZDebnCh7=+YURguy;5H zD<+CP&pE4ndX>aJ{1?=JXs$npE$B8x$N9LO^`8{_k;!vd1DE1 z$S!PaXCtxcJ;*X8TDl-aP&C5vk4~5Rc9+h4upCgX&GzrRHImZi>j^Nf!EsGHZ|0}< z1y8xnSbbO4`fqkMY70;YKDeId?u-{>`7w$43BVXZ_^eEF^l7p-$|)AEQsXQT7Vj(+N&=K0{AHV1VnN6QzD>Mvhu+WoU=fZ=***pRj12s+wwE{)Yruvun&z#CDdzkzY z3K)=7`G&mLDK_z~@#gV|c3XaLpAQ>GGfmGUIk46@To%E6plIy!UmX^}hX7ynzz1GN zhZgt!uZ#rpev^`Y;`>F&t__hDFjh}qpbrFaH<@r~ByaD1&yDaJ+ zms^Hu?5?lbLoPURfpHf2`uyc-DWs}mZ*nV%aT2tej6!H4jd$+=okf1Z-Wd# zoEv6ZS^PL*%eRgBgck`tAd6c#18%(>;cm zOCDtwy0Xxn(tiB(lBA(R5==ZyIt*5Y1tk&yqa3XGsNbQoKuPL!L%F;n-nZ?U%eMHH zFz^3Kxj`74Wc_$Ia9fWhoLs`k@*99&@Gz<(?<|^Xh{Eqm719A~xo};fPc{mxNay9T zJUM3g>950Mi_1Xkl;F6+3eHtuQ42Ml{u#m^sTPCM(-=0@1>3Nv&!SF;U5F5;piCd} z-TWLvV?2%R-|u7QJSV63wdmwg3+yj)e+YsprqqOS9b3S?@P0&v^1&ZHps)@HJ}!N5 za+~zRlIezkzu2`$RBBAz&RH@`bp~fn31)tI9oBkwkFn39e&sg1C(!qzXm>@V9XB$Z zsHUs4<`RQqys%8m928B8L0OB}{(4s?H)t~B0{OSr%FTudL&rZyl!^j(a|7(%c4<}r zhJ`nwpg}4~VZ8sFXbvUb>4WEc=KcKk5TW(iO%Cg+`x?3{@8Wcma{(zhSPk2{-y=N$ zd0^Hk!E2roEE?2y_P29`Wk*<`COFXlFNSTOH|0I+D}C9=5OX6?EXEkIep1hSB&_29 zEx>-Wg73=TSi+7H@!k%ua2Mb6YA>WP2kD(GR=tUs3pXORG;k{zPt+jZ1Z;$ zC?MSO7l03=z^8AIog8ZBN)2@dCn&Z4txmut@8p)PE~4kdudzAZ5tBal4)4FJP&tWg zlv`V02ryVUw5md&*nu5?A9L+a17SaZTWUH!SRC?Fs8Q;||Gd1fE7-8tgh@fa z@zAraNxS!)we?`?cO#63B|6b6Y1R0DF&lfyvMFyt^x6(pJ8zwHu_WD;>qrLz1yNot zV2S*T)~GYA^}bg(_g%?gZ10?g9*A1or^nMTgu8B$N=bBq1C*{WF8D8E47MogLLN&H&4c^{06>; zK;HczEOWCR+U74a-`BZH`7iRqxC(PgL|T3Z+xdDx>FiaZ2f;i>%-htgvC3(bBK3$7 zLE5w9wDvoSnLO+d6xuiBw$B|dCZ+IK4DAmX@4SBDe6;T#+o|3d)#zTuSjGSWf39Z) zB^?n515$sh#^w^!evF=QaXT{f4nH!}iiMZ1eH-TB_T(iE)Vc)|CsxY!b0oxusl(xk zzyZgPCTDRUA|cbv(P4_eCiVAh%KSjw7e^{^G(x>R$7Op>+>OH_+M(kMf9}sGa6@eT zN_ls0Pj$n9=UCb`t2;mO{8_Eqg+=CdoBQ5*P;eUVx8&Muo`WTas(vB5+?wL?l+=w{ zBC+>yW~+gqI!aAaB(4L~8RWAjx-(akVZHDK?t+ZJk-O~(M_>2J8er?x^HSvW;v)?- u+i=A|AW$_@N3`tIM;T}gj{4Fo-b1R$U5htj3}UZHgVa?XDHlGl4E{e~qOgMi diff --git a/docs/articles/EDA_files/figure-html/unnamed-chunk-39-2.png b/docs/articles/EDA_files/figure-html/unnamed-chunk-39-2.png index 12e2a822ce3fcdd5c093b315fd9e5a91a80a87d1..769b2a4d6230aa0a599dd7c9300ec16bdb2ecd6f 100644 GIT binary patch delta 10098 zcmXY1X+Tp)*S<=X`l9f*R8ZNp22u)$iii*(?s{2msGuNA1!NPDeF<=}*3!BmH<8s4 zt1NGnfPxSqghf;g2q;UCB>^Q6wj>ZXldyaf`~A>AnLBgl%$eso&og}fu!p<$-{&v$&4}(DDW7#m_^<+2q#u>M_>wnyP_0JnI$DReAULV-= zqbtqcGvoEc^6Mr!mV(vQh(CAih7GdWIcW*3(y8&NOCq_Y_)3K5Ch_20f_tGgo^2W| z;frcK()(R4*QKty%yb@-n|kw{#EsuqNAw~SS$E=w-ru);q+e|e@3(q9yaDp*+(B1T zAx+;Ubm$x!>!J<~$|Bzx_Ub42qTQV~MI7?q?cYKUs{irYAvmJeGC#k{)v*-plc!() zwCF*?6vm{}DJl?DmFX&Zh@l0UY!~M*=GxSg`3$%(iu-q(ZP?3~>mbsN-?QFW<Nc z;r5Zo(4bSvbMwlV**y0a9^4rkgD@9J>!1eCFQii#_F;)|R%CeW7`IzS!2}gA%>3Q5 z5pviA0-#|u_2Iba;ldH_Tuo1tnj<~kKC*TE?OT6!4OIwQUGF=xHP!(gjP7dlcwSBB z$-?@ALImp}1MCLVwqIMypCM1`i7PioM`TSQj4`fnmLUJ2;OPL?U>gK2``f{e5!AkEUn3*XXphm?BU}PLX+{L+=lexJu#r*zzVUSnh}VvZ`_)l6p{u|g4l`!A zazxSGmJOQu((Wz2TS~1)R#jZpOdZ=!kqQh{G{wY*4n~3x1bzJ8JOB%ujDD1{d()?| zoRc11ckDZzBt4QhU18a8l3pX-d_&4WxL&CqE-@^jskt}o z^2+#Znoc%<3mnYoS&@fk{Q!+yVB>?HzphZNd+sUu!+q`_j77oNFZ!bmx!SpYC(&Fq z%6^ih(UyM| z6I$mj^2e^eg!W!1rzoe={b!gri$)hIRIiZa(=>l(|D@O1u)GxZXF(h5*-#$@4VRva zTh4F}x+fBltoOopCRsh5tOJIOLjFIr1XolC?Iz4Ea-J2Z1WxY?h15lxmWG5#k#n6a z2Z#3+bLBezgNq*XJxMFYZdkUQq}?kx^z`hu4-MQmpOZE2V5$SBH$c#Bixo%vwMQwR z?_%$i>ckUa4Gw`yCSYn&JQL*pDyMAy*sd5;8_wet1Q%0J*fLD{cb))1K`u zeYn_xY?SGME$(?zsV!Zohz$?#?R(Tkx8TN8g=JQPXHmTiI1LDDsCoz%+#z^+wpENX zc@*9<>0id4pFSI6L`SD(X&D~MZd(xgy~Jg9g=)=-h&n1r;75Vc6 z;ADH0g$`!(C760RG96IPF^F`V%edEV}DiRJlC%Ov(;$%)%Or|g)xechf+@- z3VuD2KE*M1M9GpnC(Kln5Ifpb*?B9$10z!H-2d(cB$s;B2(SsOJ;Enz$S!uofbBl8 z#aB_kYeIp4^oJok+4J3zlb>_uc#PkwnRTQ9y)P`n+~hMxvu^e0cgmr8WC(%=GQsfd zd9V75QeE?e2(*%Z^#kK}K*z(rIX8XjWmMR&@&(#M0N*vxi`h# zB;hdOB!O99`>B5-3&}T&3o8a?7I^0arzQZaZ!VRw<+_o=_@#T@6(KE8g4^cMq`>vN z*F(_!_208L?Ter7Q?n0<{>iY+sXQ4*y9>zEHO+6unjmS_gSNsiuRHRHzTVf?zyB}Y zhLr0n@%DHzduKt7*Z((&+CXXdj*pWXrCzZGvhdH zd|$8^QZFe{<L22?s&O$5!C#JWOFXDL^NBw!gh*yS|iw67ThU)~!iKg`pJ9)Uj>j zPHQJoGT-u)*VE|~kEaW%7(;zchtqo@DAm?wro1QGZbgp474QdNn+cM47IxpJ+l03N z#z=o2M$O{iD6oy_mD7oBRrdcm+?5oJv=0syjopN+LLAHVwsquhc#_%X)Mi8)FZ=$Pz?Ml*$Rmmd$ZnrLQs&XM@nV1j)PzVW+tfiL>^gxi-N zWdEk(rdq$dGAz1IH2m0X)fu+I!oloWdx3WJXjRK52zqK_7~l7^D1rNSgfxwy{9^k6 zy_rX|BCXI$TPj9B$MTmx=mqiIeqY{b<=9^sn!fn_l@H}}nx)$Lm8;p*#+yz9uuy=#0#|fB)h##+Bv|psuh}ZREs%_ZqW!}${is{tN zsZ5f7g+MKfKMGjEyyJ;JVid>q<<~U!G~st#sGe?#9;kORY}W6qD=_X8jd8tf4+OLa z)<-Gk{sGJlSKGkB?gQcM(tlJ;FJp7^3+{-LR{H-wy|IDY`tbZ59v{jbZz4=8la}|h z_s|l4wM+IvPgHLP=)V(!k01HfgAf_UI7@vN$f<2iub;V&q=W;o5ODwur83j{h0C?% zSi4E}G}n@C+r&XMBjwVRi%*K~@o&7A8*AqbXG4RINs{Wam18KQki*c6VQ*h*tC_al z&tes^xNUCo6>#CQ?Gz^lvMOn9JllkaC2nq&WeMlejynO~MwZ4fVbaZDuPzkl2I>qU zg>(@?1P+!b4?JDymd#=eX?nJw(NSh-nDmz?e^N7Z8!_hGq{x?ZU=-BAz4dz*eM}~I z@J9JWShsVBjB>W-I>R zP3Iw2S19YnJwSvN9){JWc`~Zdb;%wpCjO<@1E3Qc4s&j7b*+qlv&&68W_H4vPFb8V z?=#gG2N%{&Wq!!;V-^?~n!}wm_NMCQHiS{A)|9}V{DgSo*u)x&u`&Cwjy#bL!!V;u zSLcFFZ6J5NChk7yTC}Pprr#;HVXy@h0QciWpQd(oWM74cei~-sJgj@y55qPMiA=F0 zen4}Sm!s{)tSh54yRFQM3r zO=rc&Q8$xMRH9rxPt7$GkKsI!ILZBEDPLq;TLW%Yopdec!@~BOC9LJ7=}Hm=Zp&`h z`?E8#%-Zszg>JNl7#vo@M)c{X#yK$!7K}I4ArN&u9kda%haz9+s6D2oVJ8Y)#*%~E z2XQ8G;u)G{RJf?f#uT=w)K2KurzQ+n!T*8wR_lN`xf&(ftB3=WD+?mn{z~ws__^A7 z5$t&Gc1xcddsM~Qw~bVz~|E#WMxPFmi@zU4Y;q3lLkc(`h? z5%P(;6^K0e&W`TvgyxER8G+uBN6@T$WUMm))6_o?$vgr?<*@~Gg%~x*$e?~<_01)l zVS$!0ZfQK6V);DQQ+gb|MiNOjXsU^senZl%Q28qex|OD0d*F34ilIjeHH1G)sTf#i zKn>b^g6`RCwZ}Z&&JeF1%3UqN8OD(?ddS+EYE97WyM!_mb`UJeaMD;2D@Cn?vZH?h zvn;@bVAhg`aEDPWlb*=^#&11f=q6A$f&yI%rjXp^M2UEn>lpS^VHK|HjuU&0%nwp= zQ^OPUz5#mUreS>04LuBOkyCkHehCZH7ScRyzJm@Qd(OlG0iz1D{5~MJlncQ14u-;942^E0<wIcKmWF$- zJ!y}RAk#5r%-9NtyPtOK^2mJzbuRhPYQQJR}8l)E5o)t%GDV za%2$QTtC4p*u=09z$YV?>PA4r_E5%e0bDb8n(6%MW`IsoP{@M{XGdukW}uh<-hD2o z(?n26?h1|!OdJ(ig2t#g-&)=vUa;5)dQnI3sIskaslDXObxleoG6eDp@QRs5ZUR?6 zC3gMDI%r1o43Lvp{9L7*Nsf8=T39H)sHo0{-B-yULhpOJ4Dsl~X5)NwM8xh$5}sXY z2RYoHw0zz4LLOPo0H!aHZ{Mz|X;NgJCw!hpn*NnEmuWrqKzy0>0LYMiyLSYZ6jrEx z`32QO7I4bYVf71$_-eW+mOE}AOgHnOa~O938QxVuk#AGXsggq@pOkuU=ev_~;8GKM z`;_dznow#4VFt*KAFe2HU7n|6J9i_dOWD@jj?1{0l-&6EQ+O7C8BL6#(~0*8OLVqM zFkJ~Qb*eEvZ#{C?NJi0tQg6G=Ac`qw*@C)7HBcSPeM~P4*;uzM6SX#BcLm!Kg5TuV zavV*HRil;f$h+@X*9${@An2fdBap%_Z!Oa)%sp(ms_oi5(!Z)p7i76F!sSG}>SxhY z>HXXwZ`bMd(1A42sX|2$%ocI{Obk^E(B1np0J8u(LXgsM=`W-s7hfYjc~5R`EbdWP zW4X}{SK8OV_fuK{QWr4emW8HMwtmlhl8?a&uwd*%ngJbESM|opG9*G&)r*Ljc>aX{H;Vgmoy!yUB<7k7(r z_WMm}uowwL;BsF=0LSlAfPj;C%E@}UAt>B>A#cU;U3|&FZ)w6kNW(R~CAnPKC;n+9 zc4`lE9=HB-%*g|a2-Sgi(C*}BOs}lNvJcy}|BoiG>YcVs9{%VO7hEyF?m-}*)7x>iYWwi65>2b0)lF8?E*Cv8b>dRM`S_hnJY}w~yJ`C4K zhv`b=2^yJ%)$08CaZ-zxv;3_0QKbWasn>$<8~*qo^$?$DK5F9|uC_hCi<-%tGE&h@ zf8IO2AS+0+W!vDm93sQfF7=WNs1^|GL!!K)7Q@6yWeq?w#zsxGzCXk8oI@D!Ns{(C ze8gK8)@t|RE<=T4OWpK~eL~~M(TNeR3op8*%%%Ki_(?_Bu%$X_^RVccq6Q#`zjABh z&}fo4ysu8Of-&UsQlNuQ|Ne9f4TAU6d)yf(B zlRLQ@Vl(@mWl@t>;%ToDGugg&AaVIqRw2JA*ZKuXmi=s$LTFhF)rp$K&LKs0Z#D*Q-n~Py_@=YG z`2H=zyv3vlJ1-KS3CEsho1xQgXfvkT+&q90vJ@fob&?)8q^&q^ey{EH@5z>K-V#GH zb}p~YKNP?A!AbC4;Uz)X#04BZrd6%=8KT_>Jc@shHS}?9#H=}7IuWOu$^?oGtVybH z3H(=!L*wZyS*GFQ8u{B2_i}H;KAe76Fx{=t??m6H%sEYQ#SAAU;2X%NOOe>U8%)lb z*Lt&S)Jc-@$Y#wD0s+l^6gA+qRsl>SoMu}#1E?v5xb_*j6$rLwc_R*4_+gxM2Cn762Z18}9|w9W>OlBamvR zWJG8Adj<4}oHcr6bpXa=4%1^`f@)1o%t8#jTBVn;4*GZi3rg7M#-YnS5_u8X83Rg* z3-tTYT)=1;N+xKw-H&rMimAu!HcV*x{a%1glorwq!qon{trMHc85Wp6Lv!!*)-KceArzJO4kT`i`Wq;4MfB2@`>||_CbGz8F(d2 zVSM=fXWO#qVGyjFSHOEZ@ciruml5AyJA@rohKsl<#MR)J>(_rBihLbg9n(v^?a8}R z92I9lTipY@3pp%Cq%m;)jw)&^d;Q|%;F1hu&SovvCrRf`2J47uG>(hEyx;@Oy%YbQ z%I3Blvs}U+XF{x;J3c)t!YQ&~kdTCCv^VtYIiEWWG|%^nd*<+6VQhyZ`h4=)2p2Ik z*}Y}~)7bSCtC7FV)$eTq_u!=Brnwv!KDW*Hb97wPx{xq7bUAG0_p_~+unG2Pw`+38 zae)%#)2b*fpBv|_19;+)wkZ@-m~`<<&kR$|b9O>#alzu(GxF)^{y(`Y@F*DsoBJlon%qYXK?oqp1N$}9Pose81A z2wxA|m4$^&TH{u8ACNS~L-I_RrbViCBMk$5K0*(aDpi_8d~^cI=!? z2lT*>XTGwn`LBQ0z^>^m2nyV(c3z3J&(9G_ZKDAnk@=yLVe{zuPdy40C$a;&a<7VYJY2Tt?(X&RKUT|CNPu_BWk#^uE))xaqoig8>Ul|i5_ycK5pA2{Z`VA=g z?C8nAPubRV3BB(6Wnr?SJr>3%!k6a@k@B%7Wic;kOD)b&C8Q00gw?j)f8`ymcpeMf zCukmY&5*;-G166G7(?Cx$HFv0Rc}d7#c#k58Ep%=fV(nXoc=SdOdR?SUeHrZepS`3 zfd7?(VPu03VdBEGxpn5CzPuT@M``4LqBxWf3ay(|at+kkmAyul}umXm>@-%5$7^-!>0&&OjQ zMf(V1>8nkx8^KhhTZ)`MQq@6fl2M|;cD9yted5hUj_e5rSfwl2oeEfUumg9-AcNJb zKY_`~OxLqXzFAe(at9`mB5uck-vRuATR=Lwea9pR^~SKr-?lk#7uQ)GIB+)?i)A+i z3Iyu+)WARkEyXzdwk!bmk^Fc@bnI%I5jyQoqGlqDq_3Bxfec(xAHw#ZMoI8V7fF9c zy0&dV)YMe7Dl?pbzmEZ33)Xt4BB&n~LEQu8fq$aEmR)cb?YMpa%9lBds;ZReD;=WK zmUy-oT*vK?7$%2m{GeF<>Q&G$rEb|`9oUA$xrvtFcGuQ)-^VAu{IrH5?)WaZ)h7!ip z8@INKNUmP@2vidP2yA6o{UcXa`C+j?%2}bp6r=QS#`S*c57*SPkLB-QOv^Rsatz4m@lt{O$M~~Pf*>LYpX35 zaai^6wb9lArf8ppQ&4BZc0wd=xdr3|C9W{t8!*(16J}#3uwkX?k#$fiZE}dT9C@v* zk~E#kFYClTKrzf)^yFVr>g9^)dCGTN8pviZg8MS)6AJ>Em(LqQqN~sn7yw~0nYMN-(=#-~R|>fYS3b*Al+tBx%De(adjZl-h=T zIHMyWVikU#4u#*a#Vd+rZNa|QWfa?SA$%o(5p!79y2;DOZukG3(1@=xkm1$3gG0FU``oSvpgir`W34sgF?f?JvlbWi>k>dXg4ZrziyPK_spaM z6xZdG7VKgUvEI4<_oqTbaN57EwPraxPi}%y_n~q>&T`kmniu4nc+T=t@fhL@ZzSNb z1)TCww45Go&&$OaN{2gh=GJ_prn2508aJYib^&Jt^);~41AwIAjyQ?u9ZLpwv5in; zI5G&$BMoNqi{U>>)6_QnF#R6i61FAr1-|k!SW*UiQTe=)cgqjvRnK`^XO74)f^_ak z{zz>zxp;U((H}&_lOdAAx+ov3Hf}rf2z0Lfbt^jX>Roccp4#zuSckyFRkUjz_~ho! zJh!tR^mcfJ>!v)}Oe(;bo|OSNl=RM*!(8Q^x$ zGKC?A^L3e+YGd{WSQVDMf3`xz02k8PK$@J0`0hSfL;>z`3W?8x^DQ$+yx@F%Y&sre z8Lz(N1E4kgd%G4Dw4lgXE7vR_+M4*)>2L>IBZTyY|2X$7RQNP`>L0kMn2!Y};M+>j z)$qY7Qh~%%+g3Y#-_yW&CrDgopRII=dSE#QrE=N10*v%%;)%%x7+F2Y?&>rO)Fbh( z4Xh?#7Os#=-cjSy^x4;8UHsyz9%^mFZbGepGj5{$4&hALB{=qn9j&vRXG{3gl9u@~ zWxN%u^GnOT-EbFanR^oH!Td6_-sJ?~Z`f!-?om$fzL1GAAKj&X_eM$(LzIIl%+sn0 z^fokS;lC|3e~Xx#KStjplZmIh(bF;eZ7Y1tnbXFEyt z{K@0XhuGUEw!ZP!^_aVgNv|cz_g+%Si>lk5NS@xWX5}Xag15soxNmxS*Ny^8yVxqI zFmn*GU)+)s_u=_qE|*lmoO2wpl>(x5u)<;bLX8HCN&GkTD^y1*=cAycjDp9%kPcuv zoXSeL?`^vBqKF4e*u3_aI9qFBAX`TZq;y0KB6j;9uFL+ObEj1Pa(;1Mi}Y^Cg&59FjSj1s*1Um= z0o^H$ZiJksFCEo=q*fF7*`?g%c5IC}gyEsw!+*cQD9!ZTe&Xs(5l5}mYKm@{;Dl6D{IyV zrfWc9TuW?|OHE$60ZUr#twXFog~r`tp$Jduqmzz&m2&&)IpkH7Th(wBiQhPJJIO~0 zs7aTXK~bvAU54T*)>M8(cS}WnEo}ij*y9;R%Pwd)UwABP?3PoKT~(pWnD%l78tH(N zQL~M1s%orRbQD?KjZZ86GSAxRriT1jn6eWNrlnC7o_Oe#LW^ttLb`zD^8cQ=ZGJjY zZU4Z`tEoK`l$n(yiE5{auB*=nS7H-=)x8)w9XLFjH?g%^t9@gNE80c6kjGc?rB>I; zFOTu^_UEg=bV1c?8_2V%Irx>gJx}y3chgLTnW7Uat`sS+JXTh$fe#n0slLKbe(s7B z$8NmiNN+B(c)L=dUxAEKx%J%+1t-kZmR}8@2oM5}$V20}`>iB0pg_FsCeuSY_Y_+1 zF*mhqvmxCg=k}W9$GjKFD4?Amb}E4-?DUO5?=|~uDzQbDcN1gShV;>hP zVbP(F^KK(wO1z6L0^)u{v4s}A-&Qvg!J|zxteeSeLb#~kNRc}|j)iWWYULpT)*aSui_%Es3@wn1@TF#lm?$>O& z!Ya(8gAS9whOsm@G=#kw@KGU~s>6S1#CGo^ua%bKndCT(bZ$Wqm@zo$Wytb*sA_{qP1l&AB zJ>-*0uYqM!M;qw{9w94dL$@p=1B$nr=R?~;Yx(9=#+0Xb1#h9Xm$}NkTs!EP_()gu^izDV zg?>&3@7SPMG?o~CTDU7jPAt`R+b)1Xa27!cQ7T z&uD*S$1XLLt^`&u)PLoz6u~1kJDNQafutR6rQlr#$xZ@H`R4-9yPUVM!eQ2#Xjz!B z2YQM1p9Tl8#Y_KX6vVkN{ds#((6Ue(enBkLn)0m2vJK&|q2u`#sP)fm=PoVfXU{tF zIu(a^aPeu0{Xr&pt%VHAl(A9)h6&0c0;QHLtsu_f2H~i7KL1)=WO@*6o8?!wP={2F zYz(o@@#B45_>58Jw>vB8v3Luzj(ydZtcy$H=JGwxl1a>zh_73w$3))Ll?`&g{c4Lr z4qnYzX&)sic_+Ia&PV+^7V3D8;Ymk5#Ua>Yi`-qX?Oi{{{2PPi-=-5?(GdkKu;!g6 z4G^nziwPUDa2X@l@53YPV`!}zD`PWdzU9+yRJ(>J>(LqVc6rEY zKg#=?dwrr!^~NtBWP4+!uQz(H#U!e^GJQ2fdCgv0RtMRq znis`6eq$Sl$|mkrc*Bwsj2vSbzWaRLecr@iO=BpK=5u2*ELw?_1tGaosFEy&? zWS#SB(wY4rfzV!QjN+<)#$XL{DEzDN9sp+k6ZdF(4tjZP6A1d&OYx8!nUIJL>%~aj z6JLvxN%!|IE>yf(oX+FhY7Gh&6^vN0axSrB-}x-w#6asC(d_eiCqdZdI#DRB>LmW> z^c6829{pM9OI;yh>=ljkG0?zwt!?}1U(@;U+@Smuk$Yey`&eAv(1@yrtJzk>m7^hx(@zmAl&7b>m>Quq2} jq{bhPSE%{3lr$h`?MRJx7PC;5VjO(J>3Hc;pWpuvVN`EC delta 10106 zcmX|nd012D_VrP#UTcx|+Da)?tqGJOpkP2|t5rONL4$%a1gdBlBtRHKm=0Nys z1Ln}!3#L(h{Aq>$<@*}!_(LbRze(RSsx4T_a@iYnVRwyRFz?^{{k5Eljmtwq!`)1yb$->9qe`x&gc*D$6jROS_ z(}wvVSIW?2GD+J3Me#&o*uG1Zf9H+gMw4EOpn+DK@%U5W)A!T)5)|v>(_3mlA{bP& z@33Q)tAhpxotp=1FSVek)~`8sG)T4{2lI5VRY>);>Uw_reFvcX%}(P7;r)>5 z^msOZ9W{`=Ia(zT=^FRwxJ@nK%xy+-^mYJ=!B2Ek&cZkO8k1btJ9ipOq&Z-}v*7*y zG!-Dz>+9xYIM4`$MIYO+ubXCSgYM{Ld&of2(#JP%ruHA$2LPMfuTFjw!L}UFeWhLZz*-+>UQ1*Ix!ProFFb%+M@m7C5@P-vYqKH3!g1 zVh6%a^UX3hBF_p8yi2>ZBT@h43+y59SZUkcf;e*){?Pox>Xe3wTUus}gwU=9L6C_Z zYrTfE^*kQ89catDKnj2(Jf}`ia&dMMZ}P$Xbias4HtSt~-rWT_8hsAozng7t2)CMd zn;8O$KeDjH^Q8G_JJo24)Ca>V<+g%^z3eZHox1Gd0^Pl8V)8^!U92x+-0v_mx}f1y z{d(o_1A!jXW&m*GeC#})CKAQ`3k~vFc^slfxsJ_s zB1ORxnAIjM|MpVVL9&jjMP5mpgUY&S%Y822Nn-nwJ zp$9s#L#9#j>$hb>a%va{>dTO%(Y(@7Vk{|+HrZzO>n}UV>i1;c$6-EPsRjVY#+S{F z6e%$sk6pg?HeaZN50@3%9@TeogtzEn*p^W`eX_VUY<76*_2#vm!1}2ddja6cpJ`jr z2nI|pJ(Z+o7b9cechggK>Ts^TSb-v@@L@^1Y55%a4Dbm0x)}ffm2-Exn+;i~72Vqq z7tyZTMeV!N1MN^C4jo!N_Y?pW}f?M-P;# z+ZGIx5@4O#2?8i$_>2TZ@gflKu>i=keLNaDJnAxm?)Wk(O{}4*=A6 zN_4D&6NfaJq!C+gb|DDk##{Vf|18GpN4~^hXEZl*P~zh;Ll!hqy6AT>pL|jN41&&* zHdb7|K#aMVtGwdlI*!=I#HKd4GJ3jMM)VR9Kh})wjxQc;4iwIZ+0(7%H#vG}r9}#n z;kwLWx>p!4yZJ{}BfIURXL~iFPqD;3A5r;NPnmYl6> zXdYM*E%o7`$hdrqyBq@1%*n)J#LfJZ``GIQG#azk5g^xEZ(0-?l+3VG-PzeQx@!}k zo%sv^KJMLVy#LBVf4EM1_s4TMe41Z7j4A>3M-(lGpi9rMuhx(_HTw_Pkwq%;DxaS? zRkPv{=)r=5r(Sc0?fgCUkh5fdao^uJ$Fu(W+Rw8QEwt3z(0~DX>k!MXn7@Itb0JmW zmR5vEB;4PFx?@fvVHN7m4z6`*HANoO5v3PBQgooq!5`Y<9@c}VYYPxoBi)zcCNezZK}EfLjT>-`vunkhKZ6)`pCsVX1wB?{a=0#0FT7E z6W4Mm5cgTQ_5}x0ABx%E3V!g;uz}#PD_iBML3j`-Gd%^jA6Dw*0Bf5@U~W%inAn7Ld`yx z8z%uEar4|lm6PVe?QaHx=1LI|32u!KpAyY?XNK`dQ95T~kB*H!$^SX=awv)t1V@7V zeCh*N=Sw1~OOda-TJeajnT4w5bN3ouPI&*%#h2A)noFk9tSaU%_dG>@L1X|N zt0%>(e#_jlTQ)p~c;#oV$XQbd<#T^x?C$d66V0d^~N-VsF4*GP;YSABz7|t z#HaJ`;FiWbpsGNbJlV^t{`zXt?b7ruUG7Q+u4565I;@Y4st-uXQ0dAt9Tkr$Bl({MU} zd7}c59P>Q@{_^t${&Z?CFLe>s-9hD`ggv-k_r%yrFn*b4V_(D=t|Qma z{?tlCPU`w6V&E&Y!c)-E`k2*raC5F>Wysh`QnDxvLMQ2g4vG(-z1}fV{wy^H@{lww zidifi zr^h$VOAUU{@+g8xRWi-&%?>)+M@7wD}#Fri8V*w)}|ee2ki5EgQt2u1n)r)bi)yH(^|dN62;!9 z@kWm`L;AN{$7E2Kb|HV1I0w~va(ifXyvGR_5c~iVo2+*la|S=CC*i}E3p?|1R`b^| zBX(%Ar`4Nd>z47_h&D^=AXe31ZZ$zNE}&zlXS1tfr>C!-rWXwB#{#5CjkK7p5ik~wzfxXZR|VN%?A`3hj81LfTD1o{NmrT$ifDc)mT@5ISBKa> zIBWN&Uyzs?I<#=e6614L@&^i2;^W}qLoaDH)|WXq_BeEGmaOH>&d>JPkftshTgOA) z2kp2;ttXTlWTL)qcFZiSo{7h>+^MMAbQGu`Y3gYvc+=@7Ja2E`lF9!STqBm6#w-Mc z?^A4^>9mbl?zkq8;OrpiN%zc03GN{e_aUIz?y9Jkyb`_*S<|-)w@?+ovGZTi{H`1YdUh%-g2fWHyv%Hq$F^B~IN{e?otV(WhK#s@{wTlQ*$;I>1CZ|4kaf zrkQJ0@if4uut1cRtq~~k0R`3A>sqU|!HYBIh*|KZyluYL$sUxI9YJ$nftItW6djtW zY+omr6Cc+-meUx}gY9=RwAYFs(bIVz4{rw?iJu&7XXza~XoSc}fKye|2i?(GX|P%b z%t-BLMuc`rhV1G1&D8|LPQbSlp`<6({h27RX;3oqZ}_yr-#RwE+jb!dv*rayks~J1 z`*Xeod?gyq%VSBkh@~z&>~k{79;^;xJ?47kdk5mP_ywq8R92sZVsv6I9RH5@3gKf2 zFhR#omPkPmH=yWno5vbCNcv$(!Ja+4fZi|L;}k+J`$2>)jsF;I$%~2=eNgP%7&+6~ zZ8t3-sM0-soI%pre(%bO{`ZP>q4}0%p7t$}xEOjXqp02;F1VP$xY*>dsR!cPS9So7 z=LKv=vP;(!T!+lwlVP*8uY-$Xv7jy93v;7<3o!<5Vanq6v;N+S_eE$vHCefe5$Hgd zjXm?e`Y(}ju_79zCss^vj?xj1*xP}b<iVa7gj9)Ai9Y)b8M_Ok^NS!D&b*M(Q4 zY+>mvJ*3b&YWtOKz;hL(g89vr(7i=*ve9ELM{qj#t-iQBo8t+!sk%9akgE=}mf^#8 zk<%Nr5E@i~+_hf>!lR>&l^40=nWZuE1jMPdkTRw(pq7`(pF>rP!@55H{)u~#YeY}e z2zH^epffGGR9*E#MK& zL7!J%TZHOyqN5837li`0C>-n1-^I{FN;QC-j1csWPXry)JHja1z`|NVq)YTQzuEM? zxQ;B0#bG8%){GD%SLdAgUh;a*x4@&Vq6%hv2WnWCGWHL)djvu-H@PKZBp*GsfCA~X z?6zp6MB0fse0M-kbXOYodY9EBPfkinNeGriG+bk#X4r#_$RPPqgb>nVM@{kJ*IKKQ zklLl!Ij{x9_Fw^gXW`#ST zOnwriWW&9m4RgaM4#j#|t$*+kymc#;N}sqH+C|I?DL&k2?n8r~nANu0Cxk)2>o70P zZKgKohHHZGCnJO}|hy?9fu>D_t;0*el3<#%9|%l*otp zYqji~D0ehh%{V{o<2Q=#eL!20el&zEad-7yI6k~?xoWrpHr-Svca4 z-1V1H%4f!1a`(_q?ilaHNk94nNiqu>2S-<-a<_evnWf_oQGmJSbSUY!WdY ztmtN~ZnR*Yi|&zmOYZLT(m!ey-6nW<{@?a`4fd_!ZFR~sBc6Rh>$|{6vRulstd%Fj zj@ZC{IV}gG3UdduFj*rbwbG)8)a2v-qZ-|-9?*VMZ2@^SAW3Iz>u34Kd)rv4RYyIy zibGT+1DxEiRFDPRek;KgR(F1b4Wf&kP5y$b1LqRvYh#^sj*ISlj|#}|4%K!Wuw<~% zyRjjf|JzHMm`qG83Pl771aXdV_p93JqLU!K1~jJPJ7kJ6aaAEcE;q(Yx1g5?mZj5}Wq@--3a2h_I0pM;5H4 ziFLu*m6aXO1CS~TLB1=gj#xN=&R(aFx(9{Cmtx{MN!#m#&MzoA$^O3!@L8z5Q3~H} z-az^lgdhNu^aE+zSlW+>R|AQA&IdLe2XUPSubYY!A~uO7Qw?ChsKz+|FJFLs@P8Ye ztg+-yftKKOg}nECicU{{-$SkObid((GW`&b^?Q3%{u8S9=zov?3uP&5D=+n5aCF{H z<|6=;Y@)*j_I7cv9-}E(*kb@vG|m6_zmMK4^A+-|7X)T#qzDGRX|Nv;;XPg5d+arN zfpnWv&De1|qoPDlvw>X9p9gJzLJ$HnUwG}}#b)#ZD#|hy@i9k>6(kyvT^O#Oovus6 zwSMP|Me8n4^fbdL4#YCnZOf7rb5e2A+ROQuQ=7(hP8>NIKrN|aAH%GEI=oAUB9qk#r)`r@ZH3iUfT78n`lW%qbuU$S3z2QEka<9Uf6xkXMjD7QMpYp=g!7Bs^ zgGeg?a01eNe&uwm%*Ouu5UjwmZo8V$*)i7~+|u)iEujbt4w*%2dcf?{Vy?ZnhF;1u z%Ix&@Q;Zl;r7jv>Vxh|rN$mCxf6;oi?>+^KbC@T%A>)3 zqq}=zg=12v>M2`h)XdM_5k$wrq=k$0(sCyWL-7X5j?)&(%euaLU+O+)RhWwus#CQ{ z%7$dLv?dVe;C(E7+=4!+px!UwOZU3vE#04oG!cz3>>T2rZC@WfcLq=M%NUFcTNG06 z)zxe&g#{0+Z6*rMWw=D20D!t|Wds)efm@QGO6a-AMK({S4uOsOl!nEByc2u4EX>K=Zx(V{L2#!j)1q#87^K`dTaK z;Iuh^U){bu@97Ny7_(4@TILUd#gQbq7Bd2c4vj$7g^0zBX?grE5a%i7?$1*N66wXC zu6kuLmjXS-R5-z@q>hQX_hhX)$$l$hGx6!Z+5_e4wlxL#zx*EQ>KWyQEetEmX`t@L zBPA3h&J!S(aP1``@HQkv&rwgFCHd)3o+F|k|0 z>u-O9kgPkOo+0z!>Sna)R*ul8gi%+Ju$-xNW|+Ia-2Y6~u+X_e-@T5CRjSJzF=9oa z*99@7E*(+VWSY$233}ecoZVQ1CS8z@>xEc zCZd?b{Ep{RrL~;hG z4l{SXRm%_u+jz!Rx2gFekC6~A;Izko7#v(@p$07HO=`SPB6+_Jg^&SXQoz(Bls;PL z#}G@w^x};GhTxp|S#w!_ber@3bS0+hsw)@8cHKt>Tw4xDH0JTpY2$Y7f1(%d7H<8%nc$uDAC@V16oU$CEso z(*;}QZa0+UjF6%d#&w>bK|0B-rAX zR=qY=rbV`P`l`-Vrx2o9^2iQbk;E zS5pd@2%UUo<@@j56_HE}!7yI7UxwYtxF2d0T~QSGQT4>)!x z`}E%7+-m=)`_`EIk*-O8GDzw@Q_%qCQ~5v7e$zw)oxPPta<`>=eUG%s9OMWt^*;SHtwfR!~wtPeU~NiG6e@NjAy_6#pW= zI$$*<&q=s*MIQF~o=lTn?#9sNz&mh65NY+p$dXT$-!!yw&pF}6UN)NbAzp2~%741K z$1pprSBPqtMGd*`9?o5=Y5D#7KZm_A)&{KeAW@KR9l|QJGa$!0lwhy-=#R7BWquwk2Rlp;;7Kc!ddI%! z3>{Q6;xsHzUmS8P4WEma4c&|(!Kr+-1B4t1ro7!X%o}-?t){mY4=)YK|9q{djN4>T z`=K8m{sv4))W1MYWE&u@z5kKE`T?Hx4qP%CB;e#u_4%I!p3VJ>PbQ zrJ#B=n%XhozLB>!-#$?u5|(VBO7uIErr)Y-_2hqwvGk1~c+g{o_9pIzkJbFU7=L(H ze{J#q8U~({`xKrNDIAuo;v>e1`wx7HoKqmo+z`8bxA_yxMeN&EO^q{S{vd5cAr%L| zWcHhy6j1ykc+0kKB>{As>S=lj^FN?cG-9_@k&YswwrSg?zfZ3e=Vke^wfO!IrlLFF z$;D{O>6oS4I(hhjjhtnNiEH2{k=hyv{}_F<uy2- zLzIsy%n>jGee^L*yZ;nodZCec&Tgc@{FVXpiC}&{9&9AQ&afJ~M1vlTwul$TpqM7o zCtyp~xPOw4u0@CtKl6ajF@O$}LS*&J&I(=T$><+h=I}<`;g=w|GUBUf5`QoI6~rHj zioXKu>8?e@9Qq+4m0z~}`K0lEIt7C5$6v&MYpUef9Q#?QOZA!h$g|+u`vrpqH^Mf* zROxq~k>%Ckup$OVzN@v?--F1?2m86w*I~2`q^Qu%%Y%iLDxv|9^wO-pXF4uk7;ZM$ zP170M2!;uT?rfq^G~3m{#IQgfqm#DO>m5;x&NqES=Us-FX z-8rHK$;WFddtBfxM@f-N3*)gA#OICMaiU<=Li5d=Ruf3#xagII;*L8$UJR158G%Tb z-K0-1Pb*}N0t=`@rf*ln0FM#&%bc|Vvhn6WH9?XeT#QnG zOFK~S(xamT$dbpx8e*Gr24X*Y!p$fqF5e0%>56{Ckrv-=wO(nC{nYgL@L_Y@-JQ=J zTlZDU^bX?L@_?ak&-U69HqLcC8#R?;SM?bpJG>#vn6mjN!|Wo+J!Z48f~VIIcRk! zk7Yo$Hf6fjY0&z)xwW%hJ&OK!a=9)={>}iJwMm@6Un%DGefx)sy>(oefvq{HojU$z zx7i2e?a{eP<((=SA8!&}wy&_90dqWCeY+OI13T={pwqY+Qeb?1RqPjQ8IK6)hWhQg zpuR;AqPzEM7?GmuI$XxCA|DRu>q`|#|H)=!nedhw6+45t^1I)%`49)p|7-lx z?E=~N)el^nMd{;vc;Z4?XboZ7rIQ;{U~cxl)^oLaFV*@u^9ScpO`LRl^ zVDk|S*~J7Gh;NE!zo3c8h>Is$JvU>u_vbvwL50I{Bw@_=tZSgQ)yk$CXq(Rux;os7 zCCOhDwSL!5Q2fNSXhLprl)1QX$$V7)0cGbPdA_U-iPBLTww-<%87aqxbY0FGvgSfnnGE2YIKxe^|ixhmy4^)I9bOYI~XG`8IF z&dFv%sIB3ZVHh{=4~INpj@#79D6`*m$s9tGMFx`gq{4VR=I$aia&|k;KMM8TI}tjO zyKzgc3`=@-3-huQE2$fN>&$AwG$@Z{C9Q|$;Vti`PwwfYD@&3z0=JhQxw*?u&p$hUyL_^N<8JjWUBY}QWY)2Kq*l}&pvq4|Yu%Z8cN43d6C69u3_8GFIv9KZPn>){DD;pm$lxGZ6*pg)#WWD^8Qa> zQ2<9Md4KVX$qUk(s3u(s31*tD#+Wk~_e9>V$V(shzk@=c#-?8*C$#IGv<%f=Y_2A= zn#~(@+KkW+>5u)9^ESbEU1S-PxU79~GCX8wR_ z7Ucz}+@I$eu--ms@fk26v}W?Nz!fLb3*D-?gUo@3$R`NeAH1@Y%Tn#P z3TrZBWegZZA#IUYl@&D8IzlT-Hu}+)fu^{{py%xeVv||x%g#K!ZB$Be5!sULx)d4W zL^>OzdiM8Na?F$cAsTX_j^5>Lz6GeA%~#9WYCkbcR-OUKp2=6`$zQ9tYu5?lS15k1 zPwsQb>58C)EvgUxQ|_(cUH0`1qgGyhLw$ag_5c4ST)l8lm1PX_dqgQ;o2`gabXWE8 zZROT~^UlAXf7S_Q29P-=yraqyzNVz$0}G#JW7JWBA^Q*=9st18&cBqO^u6`}01b(W82|tP diff --git a/docs/articles/EDA_files/figure-html/unnamed-chunk-42-1.png b/docs/articles/EDA_files/figure-html/unnamed-chunk-42-1.png index 662aee6cdb890676eef2403633770f89d2040135..d03f234d2b50b62ffe65e10f66f9dfd8af7070d5 100644 GIT binary patch delta 2583 zcmXYydt6fIAIFcCvvSMU_L~bYt@henE9K{}5QEaK%UXFU6~P;jvoyqOiYAE1T>Wgn zGS)WJRJ7?71Q89<1VP&x)(rin;yo`BI#Ey}G;gqT+|GaJd4Im2=RD{6Jm06Id&AT2 z4Rwhnps@bVbK1`K)|sab!5?ng>iQ9WPtJ*bSI-U|if?}VVr+wE$7kjLDt~nRlgnG) zQrm91vc25n%beZEeOtC~-hp`g+}_yTR;Q;Mj{on{?JBF&H!kgMcy!cfYW4s~E+L-o z@SSojOj#(o+vPGCx{qPWdh%n2JF;}CD{QR;rK0jhlPteTu6`k8)WTas@?(gN8Up|T z=h*MJ0FD)<$rticv@(v$vuXJW!Ux5yuCnXR*d?Uw$9w{*MjWh>KzkhpS5^eVMZ<<4 zP(L1H?}J|eVECsTd(Wy_%506hE5-&IXq%`@d1eK8^oL;hrP5Zn5^c#`@2L*j$-FK< z+H|bUpshmwZQN$}>lV^DS1dLBsaYQ2ru&*^wZFvTTyWlK?FAp2POsp{zFFB0c@Ct# zk7x^+o>i#%e7+0L614WrOb1`?rH#aksnw+zRXC3wB>Sd$wCbfbByV(JT?B4n7zn#J z{xSy723Ii4wH02Ji2D#@+F?~L->yt`*~m@Dca0ItJL z1}6MowFPKiE0Wt)eyTOTM&?Hl#LU$wey?!jlEh8Z`NenNg=X@2g2bN*Prd$*PL2PE4`lZQDCyXJus&YMCcfvT*!xaOZMOBGr8dUU5(>?8^lj#Yo59~Ym0Xsn& zn$W_be`P{5ibKPIb>uRSbCW)>+SHNOXY}q)1v_$HBw#!8>LO+ho)d#Uj?9{16?9AXUiUf?b za)(W`&TS=yWQ!2sf3)S=8Lajc;UJMwHz;xdUhOmjz~;JB$G^m}2FL`QoscAIn%0DW z@cOePe|4{l9!y0BU?-ft$z+-Sis{qe4?%WyPJ1s$-q1nImnD>FttvXDyy@;^y4i%o z6kZ2^7_WWT^6a(A^*SBIWkjgu-hpRAc)5PGVQ!aB&_(~w39?Mz@Y_(f5@?K9E}gI&`WPuR!S$qR@%UO@DHeSg}!)(h;A*de<(XJS8oT6 zwYmF0v<;6Fk78Sy`n!2Hf|!^yQT<%9Fib+-1@Y{t63A_!y~vA5#IFqm%H)bvE_<%` zgzAZEl+`z??A#2yEZiHvW*s6ZXk6GoIu=rkF75L)f04pKVAIiVAdeKG3+H*)P~tA& zAu(_(BKPp2&2hIhiUa&~oQtn%Y0cD+)oxVv<7XbKN~_KH=)S08Em{~yAKr6dBUF)e z9*WuqS9BV|G7$D1R&U~5{PH+nvjM{A7*LpVpsi?;xfN;;snmR%U^JnuL`$>~ z5-l53d*mW=`5r5f;)}vcF~X{{YJE7fQc|AQ!l@Fvdcf-h0GqnGr$xkIQS$d)I`OM1 zlz&KS;5v{~(;}7nLi=WNb$%;vP^g++4P%~CjxHWKF_(|>k4XJyT^5!RtHe)gbPlnz zn8zcbC~2hE;uQq8$-`wGk3~6xWKowOzj2?vAjIz@hf+6hMv@Vw4EQ!}VDb}y90f+erl4n*+=Gf+~B z*J3TgSp;uh(%VL|bmF=@R!C=v`4Tam;790xgZE=`le0{ZmgZYkw`^mV`^vjvF_45- z$57LzSFh@?c%l2X9h1mVI3VL6PHjRu-d04#S~5`1!8)EHzo?e$RG@mTJHdek@bly4 zatheUp**uXXHWzRN=R6Lp+8R^y5b##MG7fnUE2^)E zE*PPmPG86o_p~fFylN;Sf=wPxuLco|W6L$L2FPTo#>xt$V_ZWaqs+;rPwO&e1e;L* zgd#ins8WtW#+8XW*+JCCK#>Z;8XC!5uXKF$M>AEU*K%Ux#&`CLnmQNFsmA;83fdHo z7uf)eCF4r$91&f%sU=sfI!w&aoNt#ab?4)aEx_Rg~1e_%(7zjJTpt(rL zH$0~4S1&3PA{bAG{%9^PhMNnJ&2VQJ!$PqPFpr&EO3rvb1g>gbVm(dk)75#ZCr~Te zmY2-*yp>(&^$)_9I+jM{VTWRPWpM|}!co;u-wy!Pn1oWB5sJ@{w< delta 2586 zcmYLLdsGuw9v&5nt5tgHg9Q}UdRTN(C`&_-=dp;?N<|FM$g4#`5+J-1kPrq@+ny>= zi=q$#4Vp-X@Gu615D*k-Mc_af0we?^6=V`#Vt6D3b|&3D`_Igo`F`Jb@9*C4_q+E^ z|K_g#%{7$!;GBJ-oVvertXEYR5NxpR=syC#$nmndc6OwsE_AOC^7!57hgf@9uTEH{ z|Lqfn<>#9Z7+4+8IdH9eh07;Fjth4@YOxyGZnSfP(%v-?@0+inM6n(ismt#;l& zN2Ezjhl=?8#SAO!-h!0ou|ErRQ5!2NN*M=i;AT*%gKPEypThesy0j70c`x;|({-*E z002}L&l)$htRf39so zNz%N#m7CBv5J%V+Uf@z<1HQ<6T3svbc=moD_S?H{*2@SO3XPhs%$RI#Oys6C6ReL) zcsO?#xE)e!Y?$sX?{8y~9$T%`uS5;XJ6_&ZmY2&NVKG#|^(#56lRYsx3d3}BJLv74 zCmI+j^}7UgKH{6_S5;M75Olt3ZzJVH&Oj1gQu;Upobab`X};>;-euhQ%>)e}N^oUu za+*|;Wm7Kds)|`c*fYqssdAc4BxgdDAWN=$YM>&wT<+&ar!bITGFDm1Xkssnr=JVD zJVvwV{=zzEYTp6CY2*lgJ+r~S&^%~8S#eFs9Fsbwxr1Hu4&OMhlh{B8QCfxtsE%PS zde^3;7q}++91|tUlBk~4InrfNyhl0g0xc~0nfTjD$3FIVzuAhCn19}Z?E*~foPYnM zNu*g}c>;;Io%jnYtFba)$^{BV5j06x{_7gH#Ce~DA2QfSC`2AEN+HLmcp+n*lNa{| ziez_}j~nJ4E>ECO&VoGiVVCu#RUsqV4uxLyeciepBZ1IK-N%zl?A5g=cJU`|^{fXd z3ujpo$Z^)HI{r|GIS2bz6S>9-#D8P(!8l?n@POnKBZ-C7?~yDRPlK)9&uxT=gHs!4 zq8k=wk;8Dr93^9Yw7X2avH)v*sMS|N^)(x&?dZo}Q3=31JI7=%>BtOkJ166mdfxNX z(DR~++Zt^>o|h0`H>0fVIOxr&9C3r^!sH)+6y9@78fXcO@lls{F?+@uA7K(6`wZ=l z{NCJAdS2OGUh24k{D^EJFsK7MPDa}kqi#@mAptB3_W4WFuKvA$ zp_}J3k$z*5x!RG5dH%u0aQxm9S(QRqZ*RD za;X~!yOI@S=odwCnOS6v!r3!Xv3;8&IYo$y>t_-_|M9)oqAtbJ>hBm=nwMizC*J}U zBHPVF%<6kR-v4ZkwgDjW{JHtIL16=FzzzTOS*mueJ}(`!A^_G|p)(edCnXM!&(kJL zmN4rMy+xP0Jy7YkD2*u{em<5#Tf!~f)Tp_SrOW@v-A6uFAip7>$D^#L_{siJ0R{`Ycvz*6omwno;ffx^`52n10#NMrusSvOYkcWUNcyy)VsB23?@@lg8rR|?JP z5O|6A%I#5wJ07WD#xo+JWDKrxL*dpX9Bu5JiI4gw(g*9f6#ue&NXbSJMdvTR(#|#j z0R9Em{!L(<56(sCT+J@4m06!&;zbOv$<0swgJu3L{+RXZh z^I<(Oh7;CA*Z16z*-2hU45}m~S{ASQLG+xil(qc9%-Yu3ULVGDt&O%>{IEpDE$xe* ztt<}1m(ju8(eq5qfk5`0eI8gn93%NwdMAh%wSHT$tC{ZywFp;N^=zk`!zokmX2I%> z6SJz2MM9H=C%U~u&osOzipnxuHdKz8p2le>M&wt-csp|p^5#EA+jz%8NfqC?5{z*U zW+cvJO;6>g>i4|P2(3|B>coh8rJ9nspiBd0nDHVxe)DZ@xtINfAF_AYmS%P`Fe#du zJ{TUMN(v+`4zvJYqA)^){Opa{3W#)z?j_PgMpTQqGr?0mlPByi;+;ybwJ0I?_OeuNv%eT^be<`g#zo;=g*$y!&2i^E(!9@3xm z;z??+#lH@^nwQ5~w|hTc_}Mu|FCcRUevJR_o87f>k5Mxt^H`m9UBAc_*s?TZk7Aom#tg z;+6&wCdBD(S@}WTY!<Gu-Osqcu*)M~SrSW88x(m5GT(4#JHD zlB;vP*tp1r2|-t|`@}5(MB#CxN8=ZNGBpks+J?2Xilmd4i6;~o?}hPkG(Cre;xQRH ziZ0IYrX)0W>D@i_^|o-@y=g?CJZUMIA6`B3A1Lb z$Tm|63GSF6Fx#feC10FTG0^(dt-U4>f|EfW;V&!FFfhB_)VK;w&uUIcl4-w8>4aZL zyqVfL@cP*QipJBaCKR>PyBP`T-8;dD6*FUKOUwXbDNz-#&e`DTJ*-{WbqAOaQ@q6q zQ^O}LCi%%!o@-LyDQpME&$7LYvfIrF-KC*oL+oI{?PTyfI8Yi~1y;q@jsMDD;COB_ d1!}}=9uGO?yYGB6gk4U6Q(k9IRDB(p^B?%q43Gc- diff --git a/docs/articles/EDA_files/figure-html/unnamed-chunk-42-2.png b/docs/articles/EDA_files/figure-html/unnamed-chunk-42-2.png index 065b13712d6c595e40ffe326947e36c69555d244..322b8a65e242e3736bd4bc2b9b041a936a9cc150 100644 GIT binary patch delta 7163 zcmZ{J3sh5QwtsxvTA++otO(SxEi+dkI0{%IiI!Gst)fC65C~C}R}2p&1PS5L_7-Xp zsAClc0hLi8;Sq%JNC-hQ4ORq1IN=#WjDQ|U0>%(XNOI3Xde{8df8Dbdi-DN9ypLoO`_#XAw-D}rBw*SjtW`9*?NUvZ2bL*ewBGOGhO$i$_u4CmWqL1g8++ zY9FDX#aIN5UGt)@LnB0OFKlbDA#&a41{{T5X*|#PnqL=e%SvJ7K^AZoFn7cHH1d0G zB1qg!|FUfZ!oj<76ch@!kN7sG#?(=nlaxL*u|24}x)>Wi8P73k&YJbxdJsaGvOP)S zJ`%_&!@I<3C4)tvKc|<|-mP^SoZhDRX?@BHglhAJH)&}M{e65j+QPPDO&xg_k`+B_U8AO#po_A%>U{cqW$lM`72*< zSkrsBG0+sfU!$Goa2y}L%t(fXTE4k+ZJ@x&k^QCL8)mxst}eeU`+_}oi<=1eQ5gbAW| ztfU}(8NZ7fuJ#{v0vbIxB-fC5bI+kKz*AKoBW{=_MdzOH>l@aP6p47>r1nG1RU>hs z!9{q{zXUW!5~BvfaQzCMIuq!6KBVi+jh~-iG;!WrVvOtgojk>f>PtBvmh`1te8rJ= z!Hi366EC@?CH-xkqx`c3p$8%SCLqh%u@%+>K*h-x>}ulE?@IHDu3nf39cRH#ER;s| zzj1{gO?D<5R#xIxAU@D0KHqbgpOnbZLK4qgCo$R}-1%>u5|68~wW(}=b82GP+i$m{ zd0CyH60`?>xk4hdKoK688;u;d=?cz=lPszY{!ll}cw7fv!Nkum_%VaDKmpr5CD10m zy7+_xJKD=-AIj;Z@14|>`trz0&FDXOaTUDw)kV}w3V$& zFx+=$p0FwF6u0o)1-+?B>qp|waVfH0^}dZh6=XXmZSDoX9Un!^CyE1|TAr_+Uh> zYa>hus3<0|n?!a|OoB_rF|IRC%sf+fABbt@pMN)!>VmPtT2Rx}f);>a(~`sQhHn zqKy+O|IKb6&8&oNIP&;8Iw&G1s_&9?+4?^kykvZ0hV=DKp zhV=b@pDLfI&wg4;IT_@)1LB(Ep!iV&SzIO{(~XDpfB3|_F7aymf~pET&L-SAb|M>G#mx&c+)`jlQ_ZQ~FFvC!iOV*n>StmNi>5C?<&^xtmy`EdEYTdU zo9YCEr{o#PyFG9{9Jl!E?=9%N3C!T`tPSs~0wFF+?=m-U*)z3}fDT?t?4%-GRk4@Y zGI4ds7Y6~+$N7zY=Hz~R&=WJ|LTgGY6(X)?@q|<31(mNC__3dF3{yTX5Z2-TCbi4e z7YZSU=kyS7GhDnf924Q-rpGSMjvHSdx7G?ej+bypPl(C{g4CJgVsR*NLM8WlK!gR3 ztzAjUST%BATCxQK@XT`eZO}su^cX0z$r~A*;T19RYmZg6hWe&8TR2h-{aioHa{x~K zw$bZ6ojv=$(A9|R>zu`5c2xyF}^ zZz#0UkKi@lhbz!+-_!cjLMc3rU;)$5L*NQ^4eW92%I{#wo-%9gH}W?&I-F4I1|Se% z1MC{xZYRrF9H1h1a3p19RFh1R^TM)f$3XTci*7=EcBF)VLn+vQ;n| z>zOHb%dt*sd};*R<6@jia;oL-P=nA`5T_xDh1~S?^cKX+cn{%nbX#rXG8(Md)At(u z9n6JhB9$7V)F-Mug6X-xE>rC|v;=4c$w+SXfrR5AQqgK1>F=F*4sO6NC?0PcevN4X2kVOj_K zZsncCa}{>mOfN@qEw=^X5|Zk;ge1&|%Ubxg{c>beR zr_7pbrG+azERPpu<2jOWuglhveIxu+i{C@(Ig)1f*nn%Uc4Y3VzG$Vja?FXjrZjM?GwMeExCXq&(4l*-IJwK7*t^wU)kHJV!%x~64g+0 zr^{sr+#?{o0S-6b>GX=#8T^C+@8aQo`#Hu*FSSo%%Hwr7M(^JxI~28bK2d4i?`dOu ztHrU~(s_P0i)c9VM-k0UYhde9uSpF~%yy|#+||0vcYNZJ+}B277!4o<6anU+X5|Xz z05;AZc3bmraIzrKwmAnn5zJu1;%9)B75{B!R;yJF3OSOY7FCwvEDIJpEr#8d7a~b{ zk=By%@X6FfNz;8Z{63-W!R+b2uXjtFsK;J$6*<8lv*x3!lxVvpSay7kC)$viB|MaWgk1Qe%O zf&XaLHem<>xB9I;Sm*;p@mq-EQ`-TP1quVhU`2`XG~+(6ATdFH&&Y*ubKP8G7NU3= zvembeXC!kdgRYv{qcY{PUL%(iAE!b7v8;*cs^Sx2WM3M^4%vT$a4;OZBIEZD;EP%( zJ>qN(v{5yK*4{frY-G#JJ7T=3)Tt0n)8)q3IQJxs*KtfljH9&7rhQNZC!Mw@aFU|t ze9$h|9#ygO#P#>&lR@o!FN?|Gb+vbqG0#n%ZcLa~SjJNg>tS-s@Aft*US{S-_l4{R z_LRE?48X&ttZ3cs(p{6zp(}h2H6da{ct1LzWCJs8;$ey?(t;#gw$%2j(j)Ca?8QSP< zNw|3gL(3oLJfaJ?_1gTQH!wQiNId-2!JyEv6Y6uU2q9|M#BMongW)$Q z2Fw~ZB_v1buR!(Ctd8aHg=uGQ|Fb)}wcjN?Oa#PSqrvTBTDrM6d-L*X=5~ZHLSduL zX9xDjCAl0kB(wB>y4g)|!}b5bLzL+XI&@C$8t3d4j{w1#{n4dlQjXt* zs=q&46#ul{&%rHe3HzejPGfhwxI8#CRpjA75 zn;iu|16L87x=w&Bj<8z{cPVRbEt~X42Pcr*zjp%@7s9@u8ll%fN5D-W2v$cr(i;iP z%G~nYs$&(-_3Z^^#C-RmpO;}nVhw%si((?ZA{VIaA}K@4@RODQdImcr^6b2DP*3mt zLB4ZyrKmpj7=yI)17?TqQcp)+bvdU$EInQidXnBiZ~%6Bl4$lsLKGfdp$TyclXHz- z(6dPYJ)vZFl`*YO<%q>vTVvmuoGNEu=)cwtgYvzB1*KPl*8 zLqp!o@L;_X>Y(vng5YpJwdn9NHkyjl@x}!m;ap1N_f?fyti2e4au_b?-Gq`jo7}5^ zI?9B-ZnlJ*Cx6lc1e)XO;QlE&NPI$6Zj^rO7#tF_9XVs$3P=stBJ?Qms5=YV1eP## z$~bTWY6kCthMIc&ca0cICev|BYJusMGxG zA{;oaB=d2-!F!MPGSt)ggW^Z7xKcCp!{i&ETdK{YE4mXL(SH-Mb(SSIDi`LvzIFtbtycMT2bar1 z2h~&_tI&|lsrsLx%OaAhFD|8d$Z<2Bda-9I3Q=({Dd1~ecQGZ19iV?%IHCwL7e)%x zfP{3d4lHpuQkT^|-GKKGY7cVVJN$=f6*y6N(XL&cm zK!?c^9K9isS*|%LZ}e#h9y7&r?d0E?K~^Ym*QkW{?2K6^=cPt478Z5=AW)(ZH;0KZ z9P3GQu>Rpi^)Jg)l({0O#sup6 zj-;khPZsaLl{Px3pGG28HaHinD-|@{YdDvLZhT$jH0a50fGWT#uZF_c=f7Iz5v-aj zJ|7~{WEcJ<3T*E)i6BBG)tRw~|6lt(F`6 zAPSgeY%jG8(~r6oTTCVNEhWCDe_(-aML1i8&}DT?+v=RWn%FJj*jpDTG@}0+d|=K2 z&w@-tL7)pyn~I=B5)Kh3RUX8vLoL}Nw~voufBmr( zgZH!z4=ax|JSWBn*})4Qi3oG%>>JK?<|zH4U~n<9DXo)*s5yXoC-+A@JPDW+yzC4Z zIcYwCFHB}9l)OcXB(Dor@9kxY%hUF#oSOY?9R&W$_m%VHf^*CL1vxna^{_UWF=r{p`}RP5Y9 zEX)@+45pV4Hx@Ysvl~{oa9{kqmiizwFr1Yx^eTGhVL4parjE&xbT~@u9J3tYdWWWM z0jdLB%n^^mHt)u2f6t5AW@&*Z4G%MCUp7qdOG=s5X`f$rA`gq+K7*zsfndP6*bt9p zo_p(123xXnr}*cUrk`eQ%0|TUBd(sd{zxlI-=Y}2t_D6IID101A$|ODGMZgJ7`|;W znVh_z1}j|TjWJwy@a3dVrD-l?IpD1QvRXV0$b1JMvQTjE)^_xARLd(pc$M3zf3YY1 zTyzr*P^6RM8UL+Wzy?mdm#xC{7DIY=>iOT`bLYI5Vs`+Z31#?Rjw-%53Au8LY*ck| zJ4dRvQr`Zs!BL8q*8&2E4R z#wOqlNDWXWl)!V}H9K+pYcS`Jnh?B5M({Y`n-wq}(&a6*RI@T9DI39Kh%BM7?eo?Lq)+&q>taWhNHkndYGEzD2S6i9=+v98&t z#pkXdieZ3`=}fe5;grtW0_%=`>NkX`XY0`Fqn#Q`W< zq?}+J<%^7|`teBXbKP@@rZXwZyK2$}f{s|1{gufpPy>p~-GK7F9EoDDDf?N}2k3Om zVBClJ+#7CAI_M?6Wj|AH;B! zcfSwNxfGIl5??v{3p|Ggcm5roh_!WY=}zhCCW?bWkK$nu%afT$;fsBG98L!xpmm`S z%I9K;T6FO)mJ-8@D7Yz*+eCfJ78t)|MC)%uw-?N~a~-*^ zc2UI(IX2PoU}DT?<*2@{!kFN_nmG6RMzW3L&<$u1?42}V1LaKgR1M-0L`aRVw>~omZ`~+NHm_ssLQ`s zC5y-7h%kDQWPkMTlLOW2QJZ0S4UXdhl3BiWR|-S_1S*kHtA^iPgQ~$<&?KXZfOVdj zH_Bh2W7!`aQ(BjhI#016V>q~W;%G_;>X$`VkuM+v)2&rZIVQ|DYMI+qc_0p`!J z)t+FrCus(fY0I+$g6wVrmQyw|%qeX8nVv7-)nDEU&2cB|q}~-h`sx^A%&qg0Jl_*@ z`b7c0k^y{!d{bFy^qQU6RrTT_>@aZ0d6(GP&LZXq*@Y^7{PEff4c2OT^0fofa={OE zcRs$1P!qFRlU{H9PA`SzV19wfLk&f?2kgR=xflWraR_C5SRw!_4do)=LKbW z*S~#hhE6&K7u7!EALDifA12*d`Wk_PVb~AQaKRcOaTkddqrV052wODQo!)(=;U=DC z5cL0qjn)H-INC~Edh%WgAMEFJdt+LaDxH@5ZWNCqiE52c7VF~R4@_6>acKvSOyUdS z(V}Q(5K4EH|NG@T$Vau#bVA4UnK_z>6;5Ss9f6YHLu`OL{PnS~s=uWE@IN?iEQSC8 delta 7158 zcmZvBdt6i3wk~RwtrXDh-l9CU?ru+u0%~~(hSX}MtrbKF;gtk@fV@Esfh4eK-9SAG z?3N=~5u&0Z2_!%Wgai_7YUr&(L|FuqK){rTE091#2uUEhD~RXb`@3iTlV8>xbIdWu z9P=CBm`hZ*?s?t1rrlmiAAD!^;NYge{I>0{f1UsLc!98@V)s3t9}Bi#PaEL<$HM)j z&C_4IZ!P-XA=v%uhp^>Ewe{`*6Y;b(RiY~9-N3E`uEe*TYt?7>$}J&XSO(}R`K zB()@f32AnnFG-|#P|SzTdvin2o1yx|_00G$?biWuNM;8ojMX^&Pbmh(gJPOXihlPx zPb>K8hMdnLnu(XS)5*%T7hO~in{$ttqMZPb4sElw2w1r@8;MEGmy0s!VS0e9(Z7{Q z#%JTd)Jnmp?rGh2Sc^=-GZ$tP^FgU+gqb=S^l|U^Bh{o(eymFvf<_dQtNHb+_DZd9=7|j!-QDM0r6t_V zkop=dMlxE=44~Pg>QEuKc$&_#`s64@HrZDSc} zx(%o)WuCZNZC_29J+Af4``5=O6=?CLE=F(9afbtcd#~oaX8wLk>*!|9{P7z*w&bj{ zsMw*I)GxhCmVPSsf9NC{Lje8f-g|*P;--$loJCwJR63)&xSXkFqx%j_TyCNLCd*8} zGZ<_&5Z%RzVjIVyFwlugK;fRy8|d}f-qK547Uv571U?o2jdlz%c(jX?+JEwcPRl&2 z8>G|Bt-8+SQ}_#b;TExfqkrPZg{7BP$0C2Wp>n-#vKg^Wi!IPF7~kk6I}osH>f$TE zff#kH{4ySq+H;byK^7m2ss>P9Yz_&36;FX;XveEudNVQFTM)CiG-GLc*+|{IIx`)7 z7NdkH4fB6+rvDW^dbY9zKaL#8jGxVkT6tOL%Q-b>7vI49%-rA<^qIv9*#nJRD9#*N z;z?0_!cgQ2E86JPc#0ftgnR4~gfre?a}ceIs4oXq1C5>6kQz=E<0RnhmV( zt?XC2Lqzf5lC_p?zWh22RkNccePG%)cCBBh zA(Odx=i)*?v=?-sxznnF-pfM*8VP0p#FgE%Oi9|Y9#G(sKSvmpZ=m>o|mRy z+0n$$N%d9zf_OwE;*$W9Tc4^SFuXbf5udOAEn#ZO69lONkx!ar+9zH7Cp#8{W-7L1H$MGI94@9m^(QI*tzQDYqtz*z`IleX zxb(xitTL~;EuUaIxQukzne<(>Bj)>HIjx$tP?RTjngMXC)`_C+r)&Bp&i!+zLAS;* zqgz#(J*HM0e7npodJPgXx1U1dO1x`A9RerXrmzdMtc8l?dSRtlVah`If8Zn2_I%#i zDrx(jW%pKiI7ftALzv9%`&KU6iWo%@9{{yWC@yt7c^IBVO)Gib-4PgIrl}Q@|eOLqIY%Sx`bahHrc# z?%rZcLgEsyg_Hcq_Al=sMf|_SKGJ3zMCKJVDiP&LS7BW+BXz@iS+P&RopBE24klK) z$mja?I@I=e_}efVnU`dW@;#;0ds+6?YOu6?cgQC|a&E2D>i^rf`5E$yv>?wzQSWg) zgVC0Hb^FJwr^zaEAQU7~_b#$^!^uXX??-EIUrf=gQEpTff=@W9N7o~R?AgnHL|fLkZ&@S|KrFppmtYf`@jl8ybWXpDBV)nskK~7xiWdf_2Y`7 z%Lm+b9Fa>H(Hgi+5RFaqdY^YAH~8| z<}vZNGyL{gAXI_yX+gsZ$4;)t7Hp6`7P`4W0GdGcaEA5-K)(Uiwq=sxxw&e*xH-6y z7l}C6VWJATsi|Uk&gU@j+g-BucJ&@OqG9ma%$la!@oU~Uefu1F&9rgv03{oG1x-)* zlQu{!*q45?+a}XWiZRzpd1X_qvp$ z7a9NnS5gIaw7aOV8B5=4k+jJkA6UT3=_^=OK{UM>ZH=lV*N(p?#rO_XO(|*@LsQ`4 zZtP#@);r%5atPoVO60@zpgeMZF2y@z3p^J2LxICsH!CI3!!wewvRs`qWH~)e>n;8d zoT1PimFDP&>3X4_f>l%i@KC`h-!I(afbBU4_t0B2=SCGM>n*R>r-sQE5_)H3ms&kPoAfzQ|Dv zBN>Xzo?HKNvFH?GkYI-=;je%4Fxy3Yu=J!?xOmo^_2u2t_H$~Ib<7GQb0d?7j_9VIJ z!ydjahy%Uc>nMCpb$2T6X`huKcY5YO1o)|N=Egl+KD*f}WxR=jsLRT^suiV4@Nec` z+LPZ*h7|>MqEhaY1A(2tBO#%kqM=3o~NwtUeB4s`dYC2EAKuS5V)@}h{) zfkH0Hk!M7>F=~9w291KtGdAVPKC*=76H90Y{f@TzHyCK+OQ!&nX!O4$DNx*s+2=aHK%TVp1O?ka=drE1#H;|24V| z-l^{Ij>CXQBlMDw=G>=_oFY(@o#|LbKCI2}a~N;qSQXho3pL9x|2`+aGvBmN%-(C+ zf4i+P4U24yUl!=WvQo7{C0KlXfvnCV&}%+pm}~O}c3BKRvTFEo^I{$tK;yRM_Aq3l z3t6d8@>!e|E!xFs(y0}8uz^D%7Q=59-ETGwLmc6Folxhh`)U47kca%0%<`k-DX?c( zF5ofR7r6+_`uk^g0QwKCb{sxBlc#p`%pEH8y*U+O4uPXQH2+iaN`iJVJC)bj8^G%z zUJ#%}4X$TqQ+HAVofCB)ux0M>ae`CF**xl7syKhuvRL9_9gf6Sh0!y@ zB^tr==W-qxW}&fLK5^FXdbc-rjKJ6tV}cGDo%hgiZsNw>N;u@(!@fRoEF6E4#f-8e z<=`36I&g#Tw)t@Hdbxt?c|h{7H5(3AQ3=`S*`##sPYF*|eO*s*^wRno6yiLuPadw5 zJ~ue|J+QcI6?d>~R)}HOg@-Ua($s?CYOt94n!4|W+GTjgSzh?A*jw$m@+X;$(gH#h z9e+&Q0$0lY(QDoem61))33)vg@fvo2o~$N?pbF$kfjz@6pib0N$>=90qLDEOa{m`_ z8p6*^P#{6?OJU~@b@r#p=#S>_m88de+x=XIgDD%&$ITwo`f{y1y`di>lcyaU3BQn+ zUp^>YkA+hX4*j#v+(6#{z}4Vx5Z%{fjHnE^j~@3ALaFJhBWBZoe(8|8>0L!-h^1yd3VK>KUpwsAl^5QacM-6I4=-9}5 z(rkFO%uIhTAmy~O7-}9Bfa~^+)g`2Zan)b1waChJP1A(oIj#}Q{jRa0nB*P68Bd2R zcO5OHZBx(J@3&F&n|?_I2Bn`L<=5xeMX^a&0;o6!HZm{mQOW+s)~yyt#;mk$&>P4h zePZgk_D@K}naFHUzM{PgwLqi@$q&Fgcdb&C9bkxhekFtIi>5T%QC-8Uqg_H>Vps6m zF-UMD5M}`uZB5y{N5joFC<=qeHyC4X!xZgy!c+BA5EntnczPxG9mR*mf+=NE+Ig;J zu?7>H2sf`7>OK#H*SoCgmgLIFN0}V5Colft z|CynGL0+!hm`uN0R{Vdx&3#SoG_UuTA96!-rv+;rx%-teXsl|)IICZ}yKyjgl1%P- zuts#PA|^xOKu%H7;dS8zdOpxdgu8ZZLsqgcFLqXY!>6h9(&|aF^39?^3;M(m&juco z_#PH<4eBCe<;*i(${%lIAd#UHC+waW&u`-&hIq+hI9>XSlrENp-)Ku5Q zZVvxVZ0V3jBck|7>jT0GjViQ@bpPB+a64$7ao=WrJC@ zMm9pMa(0VM8=ek)9Qr;B^J&{$S&)sTD32+OO`%gwT6LCo&*gCTo>=T0M5-N_}1 zH5~(?6qqA4gM@IH+tNn+OM9p6>#DEli+uh9%QuyMxGH&*k!!ea%Qf?%J?)1kB*JmA z#885B3=YgN5*IDFs!S!Z^!*s|*%%*ArBqv5IwJ|hXj>tcleG8hkq7H;H_Wp_5RLJ= zXT86Scmh5*`LF!$%KYvQ_$^Nr&4*CaY!w=g>K@Wbq@Ne~vMn%Q;63rfrnsMk;-j+% zOBCveQze2^Qh3#!!GUT?)oEiRtTFF|V$KL&KcFTHmLBgzr2FYRF-|WJ!Lz&XFt0h> zzB_+9L^9}AV}YGV<8P+|jXQoBp%wvdq>%t=2l*U)+om=M2kRPBnD87cBV0vp*C^Wp z8)3kBYMOsy&LX`oPFxLAK`#>u1)So#b!IqPG)3apW8;WL^B$-Y zL8Sv#+O;rIHDDR|_O4}eeCGq|M71umDcuKfrblXOEP8$5)(O_T^f^kfG~MNq`?|a> zTpj~H#<&gb%d@0b!(rGwgksKGGyk)~Jy_m}_7=M=Y=`fGii_%artN@{egqaP(C!`E z_;^Z^meCLx>M~MIH)*p{*^O@%DHOvPgod5NNp!X?d`HT{OxP@K?Ge1pwQfDFV zU|R7?pRz)4M0_T-&9|EzKGmD)AD3q&nI8tRt65uc-rOD z4g}O3fer49xl0n-xM8|32I`IoZq(>#%Arr;ysw!VLs-FdYAiu`7`w!QJ^^D${kxDy zKa))kqZAtK+%=ePZv@3o#TjmW{)#{GNq>XO&f^a{t#?}(o~!V%X!$V|M60${9M15R zH9BIKmTjDbNV**y+%R2kIc%|)g*zfJ2x>3q|G^STWpYXlOk%H`-uJy~ia1tUQgU>U3`o9I&%1kt~3gm9r9<23OpIfCtC#tYC9O z@oB6sL$dZ+g87xE1#;IIakM^0{sWFO+3jdU_ByK}xg~=(mk8va8E?F#IAa$&nHhMM zh@zc6Fl%B$QmWh)erIkCPJ>T}OtzS;c^o)jiGRuN@0HbHT+AcdM~&cXsyO{B(j91R zBp%b^(9OcO1z4DB`m-gO!^#E0Qp`xs$yfVmB2;mNJ>Bk(+$?CD$@x8V z@@Jg1zz2pC`o1v?vWj|&d+-UOo%l5~jxdEC@I?27i>NgR`MP>2pA-dbu9<;tFwdWC9O)8tpYWRH589G9QKe;^Wc46+zlHu!2kh1DV@@lF+g~BYlU8*E+myyO@5i5jak* z>}81fjn~^RB>jEugT~gb%YmcqoQK4hTf|4GL^zT4I`n={!5Zbe(b4J8BI22uIssTm z^$k~3c`s)Qlf<6|G4nphdc`X0d;r;6E)r8a Ue8_U8WA*iy!6)cn#C`w20drSJMgRZ+ diff --git a/docs/articles/EDA_files/figure-html/unnamed-chunk-46-1.png b/docs/articles/EDA_files/figure-html/unnamed-chunk-46-1.png index 7a2b86a054f5bd4a876b12067337fee956525d58..b390e89acd0383672adcfd01fd54aa734b149c41 100644 GIT binary patch delta 8045 zcmY*;c|a3)w|1c|& zsgnS*t0aU70VD)u3#b(umLL$q8Wss45E8Z!mMnMD``7pP%lK@@h+{s~LjHb+c(eNZ zeLmwig519S_ChpIE_ZI9e0%?7?$^OQB(bHEP}$I%+dE$%C#`n0B}GUqwqH%!C(hN} zr&knPtPWoVma3^LJMQZxK~As3CcD!|SLlU~0I$_x2;*Bi``1SJthZ(+>1!lj2-cxjo3?K%!sxLsHl-NxWnjH|qtIv{Fxat*JD z_+oUI9wcy?>+BNnlIRx&g<4sSfoTPe#mkYUx$qj z>&MpFA`odo=}tyQ0H9j$=Nda)`q<*N9Tm>^Kr_riaW5KR7I$w1hj6lkq8PIeRU^hJ zRn%mrU_8$$?gjgV;5u07i`Bk{#hj(b77$lk!W0v`HSvP%u3$EL<8ueK8Rt7JuzOfrLi71wPp4P7xuC;i!@0PUL7U5Z zmVm%sLg>vK%c0VX29zVgC2B23?vp$c)L3T~MeyB@n_pD61|%l#6pKPNp)G_%TRm7| z8$b72kG=hDZc#Oq6GW%vLDXDmPJ9%_WX#8in|2P~?!4U-7ot}IMfth7oSikV3#y9a zJAz#g-i}%C>WA=Jthw*@2EZ22-Ej!g`pK9npv>7A7YW?+t&uiHTvx;GP$<&KCp#$C z1^0yVThC;=IzlPl5RM&7IJl9;_D1>?i)cbjj$LGRlA&x12{6^?FLGgfZC^Aa!uByo zEGGOg4n;^t!_$&JbzjuZFO%xkc~GW^PmkENSJWYkulEGVm`lEibN$4eip7tKS6zy- zg6PP23T2iy(kl9eJD@JN4_Tv|*{o4Lh2CbIi-y95vSORkdO3)*y4`71^|b_7CrSsD z#ekPQt8(94@_*nQ=(&f+BM^1rr1`>_E1`q40EEq0vQvIA%(QOW1P6q>vZ0%((vjAA z&m=L~@PJ}uCf)3W&{M6lFt?AG{r8oLABA0CN(wJVTwAN9n)yzO^N9;09fOf!ad-Kb z%Gl7X3FHiRDL2|!&pIh#pw64gE@0h#2Pfl1b{?IL)?d7~-X4;+EsOQA@<`i@s16@d z+U!=@t!?PEOJl*mzgf<>a0i83861xuSoWUeh<8qn7VfM2vi=TY3NT^r{DGupCr5eA zM&Qq??|!6O@U~f>Ce@+2pUcM|zm>G^?qyPR1^uhzqh-!?zRk#8+h0SM1oL_EXO>Aj zcMCg8yZ`Cf^-?4Oin{6TJfy{{yqVl@o4x5^&(4kqNlShuA^r^sA1ZD?(#`VPmLq4N z3!vmL#(bUa?p+2udt|*TsY|@iG-cw>YzSL`AuQU^1PA@t_hgYncI$H1eAOkTVm(q{ zD5-#xJ*MNm^2y4tgDkg{U{+tFCHF;!%5Iq-7mPrhSOBhk^L(A^uGT=cGf{H@VyQ z-=$^;b10&|oYNbIM`dLlOPC&%)P8j?Q${HgtQdu5MkiJ25BORvLQr$;6e9`W+3(a- z7|N#$@=lTMEC6&5o5oTshYlExkAR%N5Qs3X%BkNTzqU`i@I`}pZ9rsBWG9a>{6T{8^@T>{6ud~ zm8z&o?+P3{M^`&&f_lDa1vx|BFm5oUCA0bh9Fks(>V*>%)VFjxNVi(d`{E#Gtu$=w zT#JR5v~>q6;*xjOmplk(=eyM?XKO6V8-v5<%WT!7Ni);Zf~b{6E2jf6{+XTDIE?Ob zU?bU9DQrfA%4yOBh;!{6GB1b;la5EbCg4~UXr!S24DHhcD?EkqOjBP2KcP@zgQV4@q-Q?MN2JK zDaHFxBzMMAPFCJLs%CE5&5+n}cOHhi;fYrV%n@!kPwlODE%VPmW@=c4fkyB6|A|~8 zgm^=Ier#s_dRt)$r$97;?3Hjn9PAZ-MN9?Th^cNqO(oe)_AS zhzmGvfam6uYoUJ9M6-eZxf3>f;64ud42LMH9(_@72$;y;yYRHeS#_*z0z@t8yL=Hq zcP?kvM~_fUdh%}OAlZH6aS@B`y~NH@OC7SEJ=fgT_J=n)`&rR~4PB)--V6iwyLXjY zYlVKT0g9hsur{tJiKI)77u?P|53UE>5pG%7v+0k6ZbIV0)?NeYfUP}%W~yH@hRnHb z$+r|<54*ki_^cd50MGHPoBHyYCEP&(BURhwg2rO%KNg#%>)J>k*h8P_l;wqO@}#Lf zjh+RekX$KvtW{VKZUP-h;#Da1Sb9yufb=`L3*>Yb93CAZt}Q+&k0)bOTCP5#sdm&O zaN4In^?*B!8beJv$KA^yhDR%^%q#3W6bs4(LW3261BW6f$b1Z$N?CgywewDnnplc6 z_lKdY840lZ+`SLEBo?J%7Z;HXTE^IOu*KJ^d#FPHmm6^N+WrTg_-<&;Y$9}?2lRo? zG}Y=1I0{ODj-hq8@e%eXe{jIIA~lV8#CH!k_+bvwY*i(E8pCV3yYvfD()M&_Nah}@yPD* zNxdD41{Ul4B{0skE{+Ve2dka+O+3s9Mu6NC17=(=PqE?Z1HM3|YfmP&^Atb|hP;i5 zXo$kk?6$$<-O$8wQ&MPawAoIdipJV5LAts0I#LOXp8`(Gg)1#q%r#Dfd2wURE7s~?1x-_p0Naz33%7zTc_%k7 zLu!>j%X8OLHqopyUeGue+>?MWo8l9qkD7kIS-KxF#l^0?`5R_ZPtQ)o_B{93U+6MD z7HY>bx`mE%2EpjIn?a2m58(e|DD|6TRd=TlFPCpE>jv`UN7 zJx77|u$VHDF3rcaaDDAot9A3jemb3Q6*r>Z84_S83PjZ)Rq~i}fUJneD@V&bn@H1q z5AB;nk^(q%dY|Er9KAfIhd{)|NE?Iu%$6ieyH3y_$BP(hcc^MG&yTR^O1o%;v@x^n zEl=Mm%=I>NSbhU|poF~c;{yX8z5wU^3Ji^H=e}F{eZt>xbIeD| zZ^e*YOl_+9X)c|G>9v&{X=NqBEdK%x9FZiueb1Ebg>iSn;)(W?{Ake_Zwbc{^#C{l zoEi~wUMtoKE@3A#c(R{+-ZIl^E*@(M>wDwm-NF)dn_C)OkMhN$2GI@pdb(VR7t|QS zGcR0n-?0f?c^6`AbBXI1D_-1p-}ft8wy!!tEwn!DX$2dsgQxC3Fz~O-+Yf(pmgNY% zp_(L!!@r3`w{S{dHu42~*pw3TiSImgc{l4sp4t<`w(FX0CNf^~`h}8oAgBKt7QCe4 z1+OKswT+cx=|_we66!tye_ zRgsMO&^n0WZum>3OBkkw2RhtCeAeTbn+pU*O=edJSs{|i@VD&|40f2s{6RR6Uh`jS zA<{0v1Hs)l_6O)5z==`&m*94XqpSf|Z)4{NZN z&yIxIj7yq&jN(m}k89@TOOu2>NA7`=8!7K6k=u{>YrAYhzHzw3k#F|olB|)+F$d70 z8;6|Rna}zfRK|N#Q{$_iu+{_R`0(basgKT%|At-qDg1Xh$Dh-w9OBf}z`+0u<@9TD z8cxaYH71_s1{_LG82LT^^>l|Cjw?Cnx*!dl4~$F9Hd{W!E_gZZJ~IhEIHwOsYzzT| z<0)4c90f_c*lIgm*n5Js(U^DhF_Jx!-1qORV~f6q_Qx|8of~t&X~X;zmF)4pd-Edz zyihKecuO1amaW6H`CN_WoBr6m2FYSK^!#eRhioA#MQrn*XAj=|rbACLwu~l=DWf~8 z?%79lxE)a2N>IV;nwL66k3bmmjs!_!dJ%R)G8__x)dw_{e`O&I=I+D4r$S&O-iL#xHjAq$pK*|LZMyzA;*cn4v^HFPgFVET5Yq`E`W25%L1yy#V zc*|vxEMogUGF|QM_sc)+3DdVD;5{@WpvnaF z$4}(?&eJI_IHF%~k=17BZ^}vksINODO_c#Tq@jvt6t@N`r}Bj!U4LPt1EK96{}c;a z%JU@rc1MG@Ru}h>mx=6+2)Y#^_OD%1l5{XVe<72G_-w-lc8Pnda{ClrStC3TC+Ucf zra3MV1a)6#9323+zC-7}Z&4f!;kocqnny;Hu6K~)Gu4Zrc)j8+S>#i$FJ3+|M!cD8 zSugFg=$XtY&J#8Bo9jjf<%5^$yMviUM@{|#A!LqrGHkxhX!}n~gj2z9Rk^CWXNesT zoMj&H#-Vs!M8jC`ICG0Dk_8*J0AL~!V18W*y*qY1-zm=8;lxAZvq5c7wj>Uew{`)ef zwZLhH$)uz$NYy=~ymrjIYeC$6DUKx-lLK(am^46Nazxk)Ztw1s!x4jhjSB|l^WxUE zzX#lov<{s-z_#sts!Vw89o_3vA3)lzS<1W<|K+gnO_;3wZW;gKo*H{x#s(sQwQ{G@#vTC^J#`?_xOPh(jjw zseOT0npXav;gGu1TR;^bOxneHd*Jf1#U9X0OIhVxY0HvH6=$aIl-##|Q;}hftBIs7VoTy3Plr&3Uttma?nB+@ZKC!OnA7$w};b zPumM?7nA0#Eob5tA6v)tZoQXmaeFQB^XHc{_V{IK=86{>o?Kp1>rf=>k#4&B_1>L6&V?At@>Fx%mTpUm-O_sm&p0Azeeg@mhx0E}qFp#@!+m7r; zd8uDjSp5FsJap4uL>u{~1Wxn&zB~Rf(7EuWH`$X%X>_{!Wi(skq~XnhB|>^Kg8?FndiLh)PySvk6xhN_%118b;Y!aB|-6t(lL;ifr1T3Ozcw!ql`b|Hv zDK0jy*vJZY zU!kZ9iqTS(fmxy#{L7Jpd$i3LHMEOl0+-6DkYa>nB@B8E~cplZi?Fbzvv?B&KoNOS5Wh5t1t~DYec4B}5k}#IV8G#30<#iL_d=V6Je4l7Hkqq^B+7 zmEq_aN5KB6kvyyavLbCJAj%_&yccdn1Gx6WZZ+nd<=Ame@mzVFFMDhW6%B6mWhNPn z`gG}Xss-(yKs!yqfOVbvpe@MZ9$OG4QG79pS$l{?MZ{2simbxl6dupF2m36WHe~TP zvqghIiUWSO5}clBhLf1_yib$Mslw!UZ%S&OZ6sF{{MBPto)RN&K}o5ymfvg(U^`Pi zmaJAggwgX=2_!49V7^7!lQCqEYsg2^_2vCpw#&`y`FO55S>ZEjrrmR_?kQYW;ia%V z8Gfy#?+Ju7k^KUaW>@7}!68zC!#a8VvB-vgX7|H0$0L#DCV>3G{k2tj(MC>uScIz3 z<1nt!i==+w96R^t12_&xzJcqr+J#|`hMX4T_cwuk7Q`r!*gy+`{=< z-qO;(zjgOF)hCLFVF@rx^ym7QmBUG8YjAa>AvLvDO0g$X>yEWfK4&@!?|u=+NILvY z852Jga8)~U><%ADiCc}G!?AJgzIsx`qA!PfvBF~`F}mDdl8bxk!b@v zkoX=C`oitF7}wiRD+CT-hrC#dh~GbGoIR~^Hk-eb{p8Hrbq!s>#Sz@%l|1j#V}itT5582PNVr-;pf)gRh_Xc?rJ;mDEzt!JD#+>vrE*Wk6Wbm)#a_vDOY|9UQnQc z!+Ht$a1iptqAl1Crra$px16!#Y*~G$KRm3QOEd+4Llcn2yj5`E8p+?q{uzXwionPHCddkHe=)RUXqHHGg&Qg>TLg?X6zKi z;~YS_ti*QWJG@N|a+ey-WD@;o{GPI@!E2MtL+p72Aa}0+>weo0mdIhf?j&Y0l|r&P{aRel+O| znInl$`OQH*D#JQ5F{N)8-PwVSl8;*UgqSDyY^0`|e5E;2?xY!>a}=z@xw{)+QBPJA z5H;=YfpRA=VOc}GTbDx)#X7(*-qF>V_LXaMw#59zYfx&<`it%V+v!j()8CM0G@JqP z(3vRB2ePPO@;s<8G~A!1#H!& z)-f+_xJ*IBsb4h|Tr%;qG%1{mb@m==OKyoDAj9XXmo=uJ$JTbb?LVA(X?bzt{Cy#z zcF`0{;BHP#14Wg{go=k%^G(mGLeheAEl^iH)8JKLu#=O&h{ z166#*<`r1n!$+bSnfgh)YwwyY3BkrT=K;`#IQyGUW=oCUW7wU*OEAM9Hfmn-n>^MM zF~0X8`Gmy^zZbhSgy{@t2VDmamvbkLV5P?ydx0cz_b?}51Ac^^JCdj=8a>T@y1g%G z8`R*c^mK{{<>5>3wZV_NrP^v%wnNtc6tboqLiuIxWSH>t+b1kz!|@S-^Y-R%&iYBW zn%4KQKHu`+LvEAq2hV*%i8}yqj6DT5rg1o%%jDy1{Tt|`-h?HIm-F^?E-Z)NKr@zk zaD3V_G&BGH#_Bt3vDFLdV{Hnh-gty~>Xfy>*CAo<4;{|s@e$aE;q&mq7x-@;?ymA= zy4SW7R{KZ-{whSkFv{^Y0eGS(WDg-NquZJ0(mc?T@NGc;2YBRH-~XuD>W(Y~2Sf=u zp@UN65ex1^r}FO0;qAW~*e90K4L=hFI8X`4!oPh%y_HFp=Sy&Tsh@X3@Bhl-29qRN) z<%m>y%~J(L(;{o?9yr0n&orM;?!-XUL3fV*aJq+^{at@Frx&SDaS4uvTO|eh?Z&(CHAl>1Ia~0Pi8KWtz&#NTO4T5U$|8)Vj{Iv$9!gwyQ z2O~9pXZbrdS_hcW?97X9hF)}>O(LbM4Q!8q>H{ha`pJ%P^F zNvenPQi0ncJH1iEXt68YResl6n>T20#n{4m7%0nqow?*nGXM5 zXd!KEHKpB4!4|J3SXgd5l?x>Df~^lt4=j$u_H8vgLfFrm|2bsK!blgBs&dN%Mn`k_ xO&(o?%#8jd!N#XUFi^uq?zrbj*Z~#lGv>jXf9?O#13ruZuDV{S{5J5H{{?B>jI96w delta 8049 zcmX9@cR-V8w~wFK+Sb9>+FMjWYz-h)MvH*#T0g-g3=IkrmR4rMP&NeeTCLJs8TuxG z5CSR*qY#3G0AY$&FhGJr2!s`7$_f$)F^k+c{r*j!_dL(pzw+6E&Idp;aYb<0cANTJ8$dU$vU5TptAbPiTG$DLJQ?JTu4xip?hc7^P*>fxJgj&IuQDpFVTK>6r^#X| zE;CthH>1?YZ`s?^(e_`!V6dd~Uk1TOv%Cw;6o%IF4LHtrldk#ja}qG`UXD0C3cG=GBpjZ zvQDNx48)qb0jInx^7(f_KDzIaL3pr&F}~aeNgn<2c*>5eR@h!b=uD}LsHi<`QJH$o z0MSbzD+sA;q1DU9;*l--qVi`157AqVlPpE0GfDhy*?^a~9x#%+Wh8=Z_%E#u-MaQX zPx4(zSQ~3jmEJw`$r+{IHOh4&F_syO$F^>y;) zby00;VMna0)txe2wo)>?KU|C$!or?du#QvHNG2<;iBQ-9cqAYq`wGggC?p`0_o zW=Po{x8&hY^=6;f73JfL z=?a_Z`N*jua=coA;rTa9-sE6%&U39WM!5;p)IMgnYP#Fh|9JNf*g?Oo^r_#fbDTG* z>wr=}>3nP1-ccRhbUT?SZ6q<-taGt4Dg3w9S7wJ{DM(~B;d=y>TN43nGNw;t;JjF~ zu^sVZijI!stCJW0$P_DoJ~8)-mEhQEv-Hd~(bHyX|Ftp2KK8ajU%qpECGUFtyk~Ke zS5;~}$U@jXsV-Zd_ZvCsJg5EJiUs5+XUyo8g$FWIrfcTz>*o2$o8U9xPk{LEs)Z&8 z<%KF%zHlQpy>DgL31BQ@&V(iCgW`!MxbM%pImr+>D{Ywz49ATZdt&t_#Wj$#9lrMc z_^&$d61&2=RTwe(FeK6KsA#_-45q(=_|KV3!6lcc@WLe%@@mktPn&!o{RfUhXCiK9 z-vFjH?N|ETu`*uA=Goj*aw2#74vtd*>KE~s>zB(Ij~uS~tQ{@wz16RpntqA03O+CS zg!(3pn3Xm$vyV1!D5Io|_oN}ca1jR@d*mpF-VnxNsUB=&X{waC-g;NAQzXA)q^OMO z=zu_S_tBWD;X^~lz{F6;-!NE|PVKw9@4K8*c8rE`U2$lT%3mYNc=*9MnbuBB#umX5 zfi)W{WhD)dQQc3{I;Q`R8E@>-zRIu8Z>xWM+1GgPwWB@36|}pP@TLFUbXoa!C4R2> zWpB&6302Ub%HcMl9dr*@3D3xV9Q=s2G zUthu@DhV#$II{(=#-+yw?c$FL@*zw8HT9eM$3%8>Z>*!U_QPOxXD?_?jpPzoaFz|B zgU#-6U5i8{dGz{Plq9GI*$b4-+hL}NUZ#yTz^TsZWZ+*-TX{22(MpJzg>sVp!3Cg> zrC=DBjA-(#YW?l!BY~~p<>dV8#L|d~Gbg;b-Ep#qK9TN@3x6MrAxygqKZ(R5Uf{=> z0#eJh)T-3?*KvmG3i#T=C2i4kI4pa&>*~1mAh7)V7>oT3Em6R$vIXZ5^-q$Lj1V4y znh*yak=4?D#F6uo32`+eWjhJrIDBq?I*hAI5t#D6fYEbjqXILd3Q*i)fsF?Wn_oJHP?Tf%#sz0V^wQm&C+@d`=uK`0 z5QNE3!`m55FFSM238Ld*1nCtS$ZP??Q&{=x7LVucYa7%~CQ0toF(;+EngM6X(BoPI zcn>~Qbis8h<`cQ=oz2Z#`m#*f41Mk%JoROJXSx^K!V5(A?(QoraNZ1IjJHQ|tUyUU zoa^cqXm@%s^#^1X4y5MW12NTGSmEhlX4t=f-2wHIOHeOyG@7eP?flEM$0+rrsguJFFfPO~_{sB~O4OYDLZvxKczy9S#prSdcT`^HdpN4nJKP z-{YQO>HzOBM8y z+vl3N8{sv$Eoa53-dcy+(AY60R&h8xfGOLy4YpsTtsOV=N*fS}=TK85%z!&M`1Vuq z*<|CW?76)1Cq;HyQ?EkjDG9Ru=xkXKBNR zCX1dDU=p5de27BzBWegYHq8rwPj`XFtv$PsNSK4OIRx^!)n4!Ll9bt4tV9kE%wQ2>76)kt{$q;^J_4s$!bMs7nZHQDrIcDTmak=wR2m?-skI?3Ko6bF>Iy-Q1praWA zx#TvlZ^bg9IWFdPG>B3QRPUY-3RP#oii-I?^qg96Ug7q%Tj}YhgvG&}U?;^2aGsM1 zo+>@Z|) zAd0c+b1Jh}Y@LtR_eN!egD=4btSOV{eDj6Ts>eRqb8i|{R?l?p`Psj1S#hq_NkI0s z8B9s?=qAmIJ38k7L;)sV%G6dSYba9WUzZ%6*j6P-b4Lgn<+UiYrUF;_d`E^dXxJ(> zF1XbyrdM7dN{R3&ES>$s#NY?{IkRlPa4(l>|FZ>qVYj-T{`V@_%jY+nPOgrrpG*PA zt;3BDF*#2_jX5_?QS7U)p*-=hwRCb~Jsbbcw!JoA0@xyQ&MyTa7sroUFCfNd%pDqlKF%=xdV1JTvofRyV|(jHN`M0Y+f%^tQpCXbaq*}7>&IC3wQv% zaeJ&%RFuk{wlXg{CG}qIZ!>jrqUFuv)WJ}=@7)1~d&5Pq)yRqVwv$NC-*8z2hTaqa zNdAmGQDV6@JQL%mcLw70Xv%owUiC-MsP**ycO8C!l|oHh(**t?F5 zG=g_f+)?Vp(D~(--D|5Y+d!|WchM@ZiH@Zko(ItzCBLOVpC~R9C7qG|X#@~w2kiY@ zi;HG&ckw=lD(}ZRD1+{?k^|yjZBO>;nnfiH`QXmFAOLRo{)cRRIrlGM_QkhJYF?2N)s*YDffE$oqUJ9ywEgZ`k4ILzs z6LGVA{x9^Bhjq3!t#SWfG=1{ym%(dxJiVSduMx zJ{op-)1KoqVx3{o&gqUj2&Eh45fsqZBIjAC{bqCpRKAfCdRTOa8bl1OrK|dHq6(56 zGfJlbB9?QP7NQXANVm!bg{HJd(=CB%c7+K7k$M9s5Q`jiR-fIxp3BF$_RAqWUpL7< zw-ff#6LKWUC-6~70BGTuuvR(Z^lZWdJW=5u$tyf19d!N4j&q$hPb%!wZNK(9`R*H z2-ED6C$F2GPTAY4Dm5Qpi}T`>3_b+Wvwfw8>Z||MY|GnFi#eEtToP>>reojZDqQRz zP~PH7w%PDpxSY7HW1+WYZZG*;L@HV)W^u;W*Ysa|4%CNIX!%SVz!|GrKH9DI#s5HH z!g7T_YlJ`}H^z5P$~T|&)G|232sD{nuovC1T6=krxn4=2;$Qu*#rVn%`kXii&-0M< zAjF5;!(?~wP;?->zxRN8(~SmSFsia_ZK{X{PEg>qkhQMQtq+=)oR<1m6_P^=_=4o{ z+AEIqiY-9ZHL#EzWDN`y_7wz_@RLmzqgj|CmyDHX%bAXrkda;@!&`U4o*O%YA-T0< zt$0wmyXBI1vW2PLhqsqoH@VJoGuo-G8qQe*x`1nkoAN?&>Qq11XO{lB6o_}^JD6Md z6cp`B4#s~}wiZ|@FbHv_>2*+1(QX=hlJg0GFC)2M6tw+1_Gi+&n- zaL&-dGH}A?L0-w&P|CX{0nR2NVV0h(ULhh7bUo!nm}!-6e=|Kc$$9LV;?_A@MTPaF z^(KKf8y{f29;L2MujTv997ANBK?i*V#y?1ucVcaexJ>gRN43lN*WWUjWn#g#mSm{g}K8wgVVY|@8g&5=fqC3R? zSn*b$sr104cb{k=Bjmhi*kfdsu1SGGa^K*&Ru{g*GrqffeXK{IFX&)@SV}H+NE;g% zGdQ4i(mCz5%%ngZ@cz+{**Y}R7n3JyPvc|a#6+%u)|2R%BKl;ZQ4$91enONm70D=v zo}`isVcgXWmHUS8OocJ~s5JwZBqgwUiv;dW_`UllbSU-TaW4N;?CSiSL-yUe7Oss& z3~K7x`bBjGG;?fUg`$qEqRr;|I4xW+C2YTEqyd$<1lJ}-Oh@SEo^qFG&1T-UQAs6< z!rM7v8#IL2!;BF@U&L!3mqO(Swzs~1?kiYCu6XYL6os_GTwfR-K=;kj8e;yUUH6Ez z*1_@xWNg{Gzz5mADOJY>hR@7t>5A}ph7d2VVjRyF)WdU=vcwK`s@2=OGiO6!0PN~+ z=EBDQfW*y0lWfsK-PtjN(C38acYSP)ptZIYC--n;IqZqDsD+^IXpzJE??7#~q6OY$ zl1f0TQ#{x|uo5%O<~F#lJ^nZ|yXhy&BN3~L*L#{SiH$jx@#buMPCfiOS1X&c?CrnbOgHV;Y4!a@&Loy3Mo_t|D-%z=IjGzfD?SV7{%y2be8zP z5SIEm*j>WRs(UK?&3~=AeDcs$d>qtGj$t&H+eSvw744GiW*fnII!%UY^cjyVk~UklFiOX|>QlD8}6rttFF zZ}&oHK6|J=<4PHF`U|3Fq7m|C>XDL=0je_zO#t`%sN;HyS}HdKwy(6t|BLw5r{lnL z?@MC_FjxxK6JrxAtL4@Dn#?`mujKRbxaf(GtxEft=D1!`SnEc#SNwd9zO?mOhBCoX zF#ML4q-w7yC45vQg+r|>!UR$(>w<|zaEq_+1c?{?k#Dq>#ttzl4+ z90O_|QjPtBaJ3dj)##-iRdX!F{v|`ri&5T1li(Y(q{P+UR=RdlY}cdjEA{$`t*I)S z?Vz3_w#0(2AZd2KgVaeFKpcpP_4R=YQWDgAo_`+S3rQaZ-uCyx2hK~>W5=y5oE4w^ zkGRB7K)BjV)Rc^+%iY0sgtLq6(M+x(!dDWMBGlPhiay2gk`%*bCUa%j*WvZeNv`XsT?n#t_Iuc^V7o%hVgCh zhk%|VN~-J$h4t(E`?%-;a!3G{VxK(t1?rypVq-Nce`A56@&tX2<=4u}+QeCr2gE}D z%H8|5B6<^JrWejYNQN#}Cut7I=669c`mGkX!9El7t96eMvuO)!Edp74bo^Wl*l!m$ zmW$%H65+J;)2y67g2g2+z?@z^u_GQ zi)s6^k>9@iJAM*N$&492!7;Z^y%FCOmh!a3G&AOW91h$Z*0;POha&6V0j(m(Lob8W zvh@b~7=R6J%HEwCq6{DFSTd(%!%Y!5J%K-B(2u;G0|AwlZ&Wk8VXh>_5WI?&IO`Lg z*L@KI`l#2=e9j7V!fhIKdJK|77#sOD>D@oe((=ug-Q#Y64MlS!cfNt@=G7}&bWZ=Ngh$f%jiS0~{YVmq*piA=? zO}Rz=%Py+t@`3=_rWrRl<$ZLS_Xfn7v--ye9krCkFA&py?6npOnDdm0-Cej8j8W2%}V?tI@RC!3K#M>|P2} zY*}Q-MPcoJ1UTjhG19H4dj5!1Fg{LBTkh{z=~fRNw>3@;107IihW(@ag6-pbA1;F- zyyCnvpKKn^9_`{o)HOs+jeR~5Tw}t)6Lt)?~I$eO4uZTX9u&MKd{I0%i+Ip@v1i7Tbl zyxG_V&te4|*fN5E=&h~_E#g>)sHaw6eF=@a9g1FyCMg;{0-xXq>r-135_1$6uyQ37 zMAGj2CLYSA2fMZ3efL!R9hsfJ?vH|cStg3xr`@rP&oAhCcqDfLC#3^ZyKItnSKrYc<|Nza|1Y z@h0Y;8v4)G zTq_#mR;`_dDz%Jd*kgRQPev$2Wf|^wHHVHI+^+@jxKheyW3Un1lrzfWb~NdPRD=ub zdFZ}E1c>f9{l_|V@G)I`5YOW0!Vz?788psrFV1H|cn|2AEOn2I0E4rFn93L5{h>vk z(HFHHxv^646Ydq*hmAvn!!$u*ys>9s5qfE+XR71Z^&{LOA;Qyh(APUCasBTZMx(})f4AKj`CFGw+Y#*Z~&KF-VSEp3YKxOy&1#ie9)5Q%@Q|4u^*+l`+ zn#g90UbT#l$J_VX{?k0iC_2oqKKbt;)~$UG+`9Hy>*}mi5N?=A9RA=Q!%w?m8X7>S zD=`Lh%5X384HPs2J3wqb%s~gT_1-rAC0Ae^`}fa)vNl3GrX#kTv)TJ^D|}S%(e~K7J}Jp*1CB2e*nFsN3GiF#4fMtWm0) z|G%IM>xQ(HK~z_2foPKgw*5s?7#vzHNsk;B6&ee>ELJ3}o z+l-)HLHK|(;l<9K!bJ>A8BTP(MAW6&#?I~e%=)NSu(kFzKB<0S17z~uEjJa5yBS{4 z1E^G~qzegUBn*mx(YA1C8~|nu{8_`j3@BRbWk*Ax+`9$W{s~@2)PI-Q1VMACoT1S^ zI=>i0pPh#i`IZ^m8i6$PPp-a;(L~LhSr)98XyZ{~3auyOvFbFCgb5$U^!@B(u2me= z&kq@13hb#p*q;KOTA6@CyzbD9&8crq*e0Cc0pW&k2OhPdT_fD2&pw4Cs!Ep%<38Lw zlLHBT?g`P#F!GN$!S5{A>?X8OP1UY;m=zT|MqVQbM8-0fa!*a$Y#) z(@!!H)R3-T&}wmuM^2szE*NaKtQttGFDy!@U&hJso`l8rvxN}EzC|J4)`c~`&~9{y zEK010DT84RtrZLSN_1Z$J*R%Nc=13?M6xRs@F@U*{;lM@4ZJC zm&^UVUf1XQ|L?E+$9)6T5nC_JT-vTv=J|Nrl52nKvyX^b>{g84R*Jd9>|K>z~Cq3NaKvPzT zV(>o8v0}M%fTq@>2)`wn$iaUNZ{xtPxQ{6=n8A_%Xfe+6KG(1827fj9VYfZ=C!wqB zNop-2A;yJrklq8c3J~L=L%B(3GGF!xp!B)nGjCdu=?eGU?h<4+mbKoX$wm^?uqHt- zW|mvVM75=P!0+w-ZGZBE(rRn!i$;ZpNm4jcG)J4D7Z~~$1Qh4vL=zRyd@|~Kakw@w zoFTH`93FCT?z=jrxv}eFEW6`NH%9R;LN7u^5@$ zDpn>&;+0t8cL8^|;NbM`K{V0?< z=JH&_!!+|ug_HI)}BOr1D6HP7n>V&a(`({p?~2kq8gExIN&Q5j6)1r)rvTAAP=Y4aD^bw<6b}TU zQB_Pg2BbX+_qyU1Olncdgn!H3g>>1$0xOjz`+%AgCU0@emwr+)NL{Yn|M0jjG%vlt0nnDrXylI#aC=&o&cdNl5V)!%FdVjnxLD>IjQC? zpZ$q6)|aT3n^+Q%ul%MD(BCcVkTLflsU&iDabl#gbrjth0luP+eujs8lBMTLHs2GeEO*P*JPc}?=Mn1KjZ0~A z_P|)|B-4)yP${E%1xr%~6=9rvb5N zmZrFWqE;w(^V9i4PH7n=t<|fijc3N^omEwyxZG*a7W8Iz85x@=UfRCe+8{28)f#<< zx^UN?FpagIJA#EBEFs>+gZj$3-zdlgfET|7LkrDTEU2WsL2OZ=GOzIYnf!CKs)>>Y zGND9{31FKm5|i(ICA*d_m!2WreMMdWpHuUpKh3Wh9hVSPO{PxvD^x4kETvJ?HZjxS<^B=G9l@#ilQxutf-1yo6fCwbI1)0Df ziwZuaWSqaBXnY&mRJBxfQWg9Yne(#+JdT@2C7SHowc3Af&bElwVqXZxBZH8Yd^a)Q0~)-M>&CYmKHY~~ukx+&R)yqnUo z`<8$lbP|&oWRAU`L|-@wz&0o@vHLbg(n(eaL57q##{j#UTTxXtcqE$*!JLK)ifZTV~X*d~>^TX~?HSTzKC{L99|C#lZLa!ff9mb>2!=Pj5>) zlIb);rh^pwsv&c{wQ1tfQSRN4jjFOxKXpZR($mk0X_1=5bIJ(@3kdJ9cB>z!?6>60zS?E$cMs@s!*guDoq~qH1{+k|t6N*n+?k zqG{%{AbOS;W{r*@hP~h29PU3{*j*rSx9-A_JF|vGhr1fk=M|<~00R2l(28ICrlH(g zojNccm;B<~V6}de3#agqmhI6FY!o+fVvI-lm(wwB93>}?~*Mk7sPdZ-Rq^m0; zp`|J7og{R`FtnB}m zLb6i$=>$77KMiJdJFgI7YXj*Gr?h$y?a#cO_m{(D0dzINJl>zPlJg~_$iM)iGttfu`B)Ibq2{c@%*kbM#^TiMc z^CBBKL=})fBM$#nRrlv!%PbMw*8KpmvRRL(1h%W;zxge$v{80b4%*NcxlVl9XaEyA z&@DLoP=g`;@3$vuyH7cr$)b^U@wXa`N|N@mvh3!@!tJA?s2e-U$%N9*nI8*nNoEsE zou@M3hQi{fK{40CI<=PX6d^wBuLQU5YLo9%Ox~QW$kjVy?G?fIil;I$J%b2xs9uFr zfdmYj4F^}IbjO87-k&Wi%_j-UL5>73>BL&n(VnGo-SV+<2$>7O*IX59Fh~MBeR+!I zX8A14O%vM1ZDl`-9<(I5PP}emPAB0e=W`PzJPR3N7Gm$$rk2&V9vGaQOj#$-*J-i8 zDp{ioUn*sbp`eK(Nv=0$3W^OuNdpc&(naeH*ROs=FbT z`&g)3D_ZsrCez>X|Exd^5^}z|rzR`#q%kxY878UEi@`6&b(kXlTQogfZEsKDBby}m z$~XA%Hn|BweR|>9QUC-Yt|06{7{RSL07|-A5>-``ldUuRY$|A~_3+vkVxcL(CPMbq&mJY-GzHNyU=XHF^zHy$q>`qx;YLw0cNt`0hCI!2qyZ zQSb)hTSm^GynT#3)Oc249q2IH|0Z8MKq4>Q)$~akZY$TuL3gAXRzj|S?YCpn#V0xt z2TTAk#*@=oWT6>=V$|sP?R*8)^rmerdX;}2*(9*wCbvSQ;3H*xpcBbg&w~Ga=XTX&E z=2RL-$=9SY{oBBfq!nge$eW#4s@!*Ht?kN*+NlasEkP=#%iG0xT5*k(;{}m$E|Fxl zSMqbF$%HF2{$!iqJS13$#9a3ZRcyhE2F!#0UTS0xR!3w~6d=SK1;H>OmKvlq8mUD6 zYM*MNw&)1`-UAnDO98<2VUueL)raq)as;4y)-k8L?;)`YNg%>hA#`(DKMiNK) z_m!#&r_M;R2LN_^N~DGZcv`R5=luE2?#upa`vt;vpQ174w^RKNh7V`p=8EJI%hPKi ztE?_|B@-DtQR8GbP?-#JkhA`)FIwu2ox>qsz601@P>`{vIZ$U$ceI3HI6V?M{<-$% z?_l}h#Xg)xW$7v!+Z(=H=py*t?}BaRTLA!!ouv1V+fBG07)?c~EH1spH-;Wf$%X!{ zl-zjV82fVEw1&BF(z;p#Ob|(rhL3oyUkr#Ve&PMl8CL%gJKn(HGH>hoa=xw#0re?J z2Rb=qIr@i&)Hc*p9FT97Z_GCIRCZA|x>L!eA3{YQ{NW@0f-?Zu#(3mRY>VX#QalpF z1xfU;KONCvBPh9;x;TN^u(rdmMJwoeD%CwGd!#C@TN?k}j?r_1Z&%59qbcopRdrHF zyl8)V^IHe;@^)|Eu7qxvn4?)`ZHSIcs)dCXdz<{zV!=@p%RuAIk;$!OeYzPy@P-GF z?f85G7=5lSQD$iNnnfRIEXG&e1~Y}|D(Hxem)*E1Nt`jFtC4!}$nQC^=_vp?E&IzW zX%Z)II8jVecc;C%^Ymp>z3fxO{IOs?`z}ct&lwgTECQxCvED=%AvRO{)4oDTJ8qS= z+Q~{obj#C%h^w#GZQ#+#+;s-n!AB*hP1Jj%&5rK;d?m6dUSu@DHoyY_Ois@Vc(&B1 z($jTE=#{qwTjLzP*9k<#1txkZ!RWQvRj#SBfgMnOXa0WK=j)NrwXORW!cz>5;WgNe z*Y7Su5zjs*KPjEz^4cX|U+V@v+d}gV1;gFBVXRfM3sqR_{z5;neRRo$*=fgRmQy#%{zdo_uZzxpJYEC4KA8RKua*C-9)0;8$Fi1AXdigZI4~B<2GN zlZltK_Oc=a*iT%EW;CRf(f;!74?Zf`r-W~k?g?Lsxkp=wdJT{k)O9D6zA-(^TCH{z zaYQq9l$9T~PGTVUma`rPAut5=Kl?E4SK2NM4!A^H3d*s*|CRJ1@u&ZP`BHW97Cfr^ zLd!-^AL`bM3;C_MFURzn5J1G1ASWOe)>ONoNEtwFSIp4GzS{OgQ+|~r%nNam{-3P^ z#76Jb3zFP)g=a&Q_+IIQQN&-OQbN&lp`rgP0MOapeEwI&-m8S|G*M?7A#rW>E?si9 z+Nz$8<3B$qwNV4N!{lybKm%hpSt?;oNXF&v?I`7)L$d<3xl%S{QDyB!8EVRZ>Q(+UN9v&xya`u2B#pkCiAv{+jFAu4AjK!#5n1q zGB;w$qe>%*8L(OanTWIo->O4l1@aI$(mLFD1Mx-?HYtD{eb187G~LLIuxv9?Z#wXk z4>EYxjt=vw1M`Ufkyz#+K@+x`Hn^vT^s;bb+%8LeU+yyWx8|eN>hu%LR}CkB zsn_tQ{fpL~WA0fp-s`Z_l#2$?QHC0B73lYKuZtCTUxQ>4&o@p2onkbOiUM33T{!mm zRrNL5Ka$#+IiDdHm_rs1wx_72sGjRut?$YwzaQkmy|IVE@wxwNHZd8I@GW?EFLc+N zNuds}{oyb}8U6e^V|CDWPW3nnh4Rz&y>aa_K>)xQZ~15`mgw*of0ay7svjr)~s5Qz6p$kOkMz&?~tyI2PHb_0ihrEqnkulX0Jf;!cYgf-vZpruE0I^!D0upE11H|=ssTAafCv$F z-*fiICPtZ89oRF=X*F?;Q`hdV>|*0oqr<=Hi$?tHBcKB_` zy7%7>?UMVib5)qpvmGA2HbJQ1XeQscUfAyP5DMJ)Oj;+*?LJ%C9^Lp2bge8UW&{PH z1+&*uYfi7f-v8+vm%)H1g+E9Z0 ztF4--gR!{o>x-s-s+0{>UP7u7EZDg2ZtlkzvanVc=XD&Zja|hG3C>C77a!tvSiY#1 zl;=e5AcjSJufA1^aS7I(fqL0k{2cmq{?AOwOFC@S~fg)cg>^@2J~i&ekL;ib{Vyo$Tt9&O$dwrliu0N@y#uA2Gn5 zHb5mHFH~_3zD8#Xoa9ToTtWYSp^KLIc`rkL-q+PB#{ z2SW<$e;8?bF+=dr@KF@@+yCyjIO{^8puE$I@f1|&6HXWPxBfD3eU6&^cd&oR51Exp zWplaZib;tDwUgnsS|z=mV*-?F3fJ#*KwCReU~xw%g& zs>`M3okS|yF}KA^Z=u@lAr;%$!w;n4fm%Es&LMKppWALKGOI`{`(JPTB5SECX5Zs3P)ASt|x&u_uw_K?8 z^&RBoL3@~Q9;`A)Z?Pb|VXF#0yEFh+F%Z}OG% zbf(m9*tzuMfZOtJgIWx1^q%$Pg+TZNzQ1)7Sk_nqb|TyP*hl=^d?WA62>bAo@y{mX zac1q}1& zV2{k$Hq*;{-1gJe88-DgFj_FHW_vAj^b7H(uVHfAZH~5ScNYdlOP>EL%i>9T$ntxZ zYZSqF>~Rk5)>dj6G+ZChe6!SMF5jx2XZnT(w>E_{*Nm*Ppu+y2xCt*?%eYHv4&vb^ z=z#l;sY`wzCvxWVaf#sYLI!6)F+|JtNfiw8G7o#wKCtJJWE(!~4gCPducWWR+ zaiW8wvatX%P=urWpf7iD-~*+n z@b_}joym`^0F#Fu)V_d-6jQe9@(P>S_#h+#0Kt9tHOsug=dM| zB{1&EaI=@6W4BCUoYBjfRwQsALv@H#sSoi_G%OsUCXc#RFaR8)bRr$#Tat)|Yu=m2 zsea9NQ`U`^%2zH(9-l)AE5&YC*JFx{l1#lfA2en9i{HR60w0sO0Z6-0Y1ONrAHz=0 zcGFiQa4u80ZDk3Vh?bo7Ltw`NEI!7ajC1B8I9vP8EbDUAtE}}_is>sug2{y9a-}$@ z+jS+CsHFiD73`sv-f4R?XZ-^hPV5Vsa-_Za?lC>T(4)^Ry<<>mZ=06E5D6IZ#)2)! zp@Iz*Fl*pcJ=y7a;&wC|%z9Hu5R;C>Yh?U*zfX1@$!;1z_^3)XW7Myn43LK*v;D;B zT|M@vivlwsp(3k9!3dpGG$?037~L`D6E;eop}sKYXGcat`;amnFA zHJ;BOWn7BsK{JqQTKjNP7<<&wG~B_@Zy?8RM;&xg?$Skym2-fP-Ov__-S=lh@k#p$ zHF_&|fUBMu-r(!BEfdAuG6Cw?npc4A@gVn{zU;pPLTJCxJ~cW3^D zGZ;un_DS#bM8~Yrj@3XPQmRf15gs90|YtB|G>N36;!Qby@WJUlA9vxH2G zLT$&BT9c~ZZl|C>tI|=_gb3O zGOPC4o@pPCRs?2$Q!>DCw|1=Qv}9Ml1#5w|L{9zxS3rOitW+s%{M}m{{}?%oSOCmo zvAWGiwi!}3%SyI=iOCYgcXVYDn=mfK5r<;xv!G`sErDGLBgIy(0V)|ZEadTw_u_u& zUIdKj>w2dwK&x{I^EUS$#yHCQ8s6WIc*9D*Q8ch(&@E%XmdTV}6gzR!hxfNK^nGZ< z#@?g=FTOcjb!+CxAG=qd<<|?ZRIwe4v3GZol6vpkIL&N&jUb)<@h-mNHz4(@4Ma=7 zxq#1?pU@;F=f1_iu5e>7-ygfbW1o-%UPDt^Q?yT`-EGo*+UF@!i*3IR2zX5po3U0+ zslmT*W>Rh6+L9G%7_M`}3a7hc%CX`ydEkkM@6MEnNr{o>FQc_2)>qk92oiU{t;*s< z5H2=u{>a~4AGi>@@QhUDldZx6`V9ZJbCwEyt)0v|MJne4YLCDq4vfJ}Feuj)*A_4M zgYK9SdHu98(AuzmzL&1W>^R4Ik|}U^CVKtQVv+i+P}mf}D^R zK5>!Ys4Go)V&MnaLM1;pjTy8iz|=qCJCL;JWbQTmI*Vts!^(`CogDL)-~l%&Uo}ey zQotG{-|7;II<$)TucMpt5*1rVx<1gg*`xhPWr6N!v;K2K8OgNYQIQ(vkR+8SO@kKd+pLQB3u1 zdV|Tp=(Q&nI3#E;-3cWn%cCSu_sL^WJp59WNCS1m*@OS&SAoqR|K9X%JO{d#{)F?_ zt`AEKg@kiTIVFY4%C^achrQHZn|S|162ZZ?(ltckzqM6tN>__ye7N98Iy4YN8kK2^ z7bwT0U^mDD=BJNR&3EVA7%V^m1~#9ww7LH3>URmGD8|TZc$G?Si~jrvYS`7im9DYk z=)%Akz;VdwT%sZnD!plB_RRwSt_Cy2x^}0C<3uI)FINgjF}YLB9g%ToZj|8Py}gTf{7f8_#v9VVqsTs>^P5w z@{%B2%^QBQGBd@p%q$#Ap=)|jB$Y-&OGr!s$VoaDZK@XX>OHHRl!2L_{2c~f&+gRWFp5Fv zUw0NORI}aJbg8YBNQlqE_??c$H z;|_C#GdxCIn6HvXR;Mi_fGRzVpnsLf);4T~;d&A0J+biC(!0jt{<>=TrLSxC>Mb&R zrs$dfEEu<7v9)pc?jUU`cEKs`KuYFIcDl_}{1C$AiI(yl&s~4etqG6LPh+0OMv(7m zx@k17CvY|Z+pd3>hC_A9xP(9A}*IQ=e)NoY;w!_s{ z7lK75MKqbztNHBkR4)e^ao)}~6F}p5Bi0hJ%w3XS?GeOfThZWlEFSU)D$^1CHRjOi z+)hYZ!#EJZ7tB0IW*O_sR|^RLz>GTRYmLV;74hj#68|N_fo-PyPzSp+WApd2z17rE zd0@YSkD!(gg zR5krj(QwWYF^X8cjDOEv%+awbGSh*}+8OMe+6pBeTA*evg@;T~7ybrJd@&$b4^CfU z?J8McRF8p#l5dWJCZO82b3b$&6b~2vbWg7T#9(>1nK(1Af7bV|uX3FQ6;!2dVdk){0%rZ@PN&2DDBf04^PP{G^w=ehI>^%2mU%(2+ z=xa>;0`2!z1pgCKGFR%f|8iru~F#s7g!BA=DAIZ~bPyjaG}#giWMn`n33N zpM$L5=W6fT+f&Rlwl-;1R+0*G(l>J4djs zA7rU}I_$?m4srAi=C)Ida+67`t#g3hM1pc!Pr$|+Kb62olH89;t2SM&jO$%slcV}R zfqL%0#*G+Sx^3omf{L}C8T|mtk@<9|gG4}5N?f=hO|lSP~B%P;2`&FVm@r;a75#Z8%x>w6ojobEzFBW`APgj;!flvSF$;>bF|9wEl*^QmyDTG zO&}ptMS<{zKYVgj_SOI<+%dH?&F>vJZfkzL61nkEc6#MZs0}@Ug>kjAi0;18WuP(X z6--LL=QOd?5u8NUaO=)?ihB#2>*TvZGml|US?|F+>Ieh!1{br^j_|QmXe!pbmu2Sx z1G7wbC}r`fQR`MU9vqmc$_LYc=50&hdYeDE>vcBy;S9TXUYGHSOil6bPb2isNMu4S zY%%Q+dHpxwJ+`gENVwu-wup(=xbgiH#CX32lo`_8RDN1Pei{F#yMgd8)K8?`8`Uj0 zWj1B#V!k*3`|zGw<~h4fnJ}%o{RoE1S`^NUrNlq-=#)EUt3pGq@`pE{Wsb}*V-;y`WNiJ-t+Mecb6EY!+9(LCv}!nM zCnXah?@7W}D};U0k^5qx%OmT}y7he0cEwn_E+2OGR<%VPrCoasK#U{}0Bfg+1aJp7 zXKs^Bq{Grr{Q93#SUf&7=TM@^^g6Bsm8>ORiRN7 zw~ZHoSIi8=6<~2Lzv^S}<{fQ?^a-K8s=JCBma>dPV*^+?L>FEHrV0xfP7IEA7`vDOqtT!)!ttP2(|qIZO~9Og&`j#Pef8Kk+317wuPEmF z%JcE7eT#$_Ns&cG7(i;wU0Q?{uy6}TbM4?HO z)jV^^uagPED4Hl)a-*4_f3Ahj?5v!b6`S|QL3Ysa-zf;2VhGY}vM@D%(;ZxR@^M=F z(U>rku~@;)6wz!;R2I(r165i zKjf2pfy;yS0V?jrZ1}_10ZvHj`w^5UDhr<0*TRKaJ=?(zcUMP9-%P%XnzQde!dOnC zH=8#(-GyX5gErpF`a{pR_lJgUOm3L^7ZV$-zwhv=HoKA?aTng4scPLhqMe*{n@56+ z+u5SufB@$ST&;Ivsf&JDzJ7E=n&JuY^@uqgJOtd7YJ-v_s|w-Fp3amj>>SdxL-t%9 zLAsB8F$~e{{_`*u(k^`dP3Zj(AB>8Zt4PdmxggW}kBj(UALw7LrpB>~NTo&GYpho~ zSLe9!^&W$yP$`4}_;EKW0n;lt8uQ29HxCVvpF38b8qFPB;`ax3J;`tKBAB-}>0t zKYfK>!A;e;-~mAnL1@muM#vjSTqkT8Z6jn|Ar}Mh<~<^Wlfn8(%13FvNt;7Wv;vA#q7Q zxJHzM%wYY{vXSFKZ@Ig_q&Ghk36;ftk15x^Vq8lvph)E`9rVXi~gU6%Sku|CC`Cx0N z8Wc2@zDtYUN&4In#NVa?Katw$t)!;E$q6z0XxS46`;lb?s2{cNvlq0z;}-ogsHIhi z_7?flZxH3A;Pz_%OG-Lif;YM7_Uc}tDeG@3M=c!<#Pga$X(Ou(* zP7Z-tIfT!N0{m^Y4m+{jE|1-Wc=i?jM$w9ErZ2$zmK4qi!wjO0z}tR$30ljEW6hm& zxVv-2L`Hd?Yd5jsthC@)^r@f-3o!3~`Wube9q0#=-L#0mNBt=g5&c~ zr!9|Vup|Qz3fg|GFj%n!9bF%|6FnEDUsRxWJG)XsSmNP4!{{cntf5*y8bb}TJO#3> z6k6}PCCMKuoN?p^A5OEvTdQae8r7Et&JIO0$TEYMhroYcfU){4ZRZaZ<;o@ZS7XLg zG~MdrWpv}1bvvk$b@$*pqWAnh%l&nZHeCarLaL!^LYh&-5JA5T_9)QS+{p`DpD(WAcB}0%l2-o5bRr+U@NI~{+<{dP4Bc!&gr;>Kz%XfUvg_4q z2EKiqd$?vgFXXt@OUU+(C2 z?rAol3&=ps+^{=u2K#7$5{IXJ-tov|Hm)j^$wWSc>-5&;8MlGADuF`T_18sSc=r4a}wQ58AQkc@UN?&PEFdDxlu8Phi9BB+r{BJIyN;i=Rh*#Eg!NewG1t!PRFmH zO6^sDa|Qbhpo&zPjEiu2+)KM_KaBW1glDBPzJI^+;M5?#T2a=Bj^pWMi z2dfsy1|G&y6maNnkV4#;YwO{~n;~=h0oCTs`sD{nT;wp=-A2$r?nZn0uRReQMso8E zm%0=GRc&wk4KFShQ}juu$@(wk!S%7o$u5kUkKNPX5X~!@!~Sb9s&UM5pZSxb$+X%4 zq1*mO8d2r~<)RP2cv`~o78(*fhEI`-*xoVx6rT%@XbLh`qXwa5r1a5#ld8IXAYZ;q zP-Sw8+;D%*@&)F}3G`1`E|hQu-NmJ4$W7J_$NG nDV;@Q&VopONOprreR9Ehu~)n;kT(y!0R~srd{q3v;`RRnDvL~L delta 13892 zcma*Oc|4Tw_Xj*<{rK3DO2|^#%2s6GKlX&8tXT>P+4p7Kq(u=KTlT&rJK2dDitI~- zVK8=M-v`6sx$o)sdj5I-dH$L|?&~_&xz74N=UjsyhOZ98zwL?xZ^z7&i9Enme@Y6K z&N;Q*x(oDXs%lPR{9(SBH>J-W{>RI1JNv!@NmYD2xAa}w$VB9ms{FguV(MTuN_gD) z1~b+7yqe3pIw^AadI0E|*1DI%C+XeCw~6u15bp0G;`)i{Q7QrN!brMA-O4;EiAp|QB%iA&y|pfK&tEM4tUHgtkz>hOSoo|=Tr$3$XFIsVTs1*6 zhHLay8XIeJu~W(&mlx;7Y0=C>l$p%i=Oa(T-iDbcRs^^K4m)cpAM}Mmdb*bV*E#rf z2dCbxaZpov49jteqXBxYCI(V4pCFUYx02uTP9x0WJd1+zT7DOQNxr|kt}Cj!ZOT2i zIg)SU@}W-OKdLV$WRB@A&=6u z@8}?bFHOd(GODVpNxi@3RvV6$5}>O&MTi9OgPe3qY`}DOUR&NVy}`VWYRt*H4jqA% z{t2CNk}=b;*2rK+>$!K<^L<+mkSK#d)Vm}Y>#w2Q<-kDxkwfC4&S@#JJuI6ya@zw(w9*k)vb38P^tvxyV{b?;; zt&!4<#)s07!h+&7eT$ea#FP?p6o;>^t;KMrnLu~+QxyHc#H));9hbvjsbi|UTqj;< z(K~yiziy_JIiZNBC`QG}HK!61@?cCKM4n*2$-=-aE&mqW%~$YNJN}&foA^*kLx4-pTCWT}C^ymLcCF`d2X&CX8JJMYl*YSQvK&?a4k19(U5)p@}_QeKc=D9w)j z>^74O@6`_AwQQ3zf|Mx7f2JhRe}YhNAuD1?n|pv)7rWuB&*N`~%57xXvA30)XOPf# zOvs50QP;Xh%PlYmv<6*}@iA1IbNJ9F0-a)HQx{>1tg`Aplk@HmLXiZ%v3;vDs)~N+ z?T9;m<&ccu^W-T_{&mmR=c7&M*|O|SoYFCKM3xyOmM>^;+A=<;29vTx9?DE6QeB1D zLeq=S6V$wY8OJ&f3!(1RXofY5GJGDbWFGlWmOu+AovO($L!UKu5Bd8=8qrZJ$Wr~1 zSm)|uh9Z3!_v-*nOoAjcPx=?=1U^?T&{+rlif}(&mWbvD>z`y-V-YFu{QH29_E%Lk z0(VpwSz81MV1Wuhrjk*HvIk26>+nTLX@syp&we7cnU*@rh$ z>=%W@V)qadHgGi!l27wbrzrh~J?vyb6CHBmtJeQ{5hF`4D?Rzi zGRbMF;@f9v^Iw8q_)K$Wd>g<;B>d0=V@H)8c5dvrOxA6-E-skc>wZqo-dL?bXmmsJ z8O?M~GcCsz?G?7a4)u%Zy;;=S#Y$1wd=r^-JrJN_qkjC`a>LJ|buTGf5$jdE{k7NX zwCtRCILXDu<)lhKu>ls}#uI9#g=PzjWM;mr16i3f1xOA6J-W4(-zAKB!Ex$#HQH@m zSR(MjIYZq5p^CxjeMJri~Vs8?l3L@JGy3NHAx} zZyrSmD9y;yLUgg*km>sgdG6y);5O@se5ZvtnC|u@+92J#FMRcDZ-b|kz*!QzHpQhz zBmnBRCK$RGGIbym<}k8}L;mmH#&Z4pJOcC$WK$Vj##g|u^zZ%qYc;RE8z?mPd&q%v zpB&kwGQy?~NGa`mz5>!;Y5 z@^9tBFxx5uf5I{GeeWzqC0! z`M|(m#*~1g0hCVOm;c`u- zCH_X^57R7+$S+?Lv*cW3k4k|fcxNu0HcnAzOVsx2w+l-Y29ep1u}Zmicf|m1E2kHK zV<}Ct0vJp6Z#epFJT5In@C4lU;9-fsDSTjcW!QP$-9?O}(q&9(ZQ>QP)~$k2Ovg;K z0_P-~#kEE~U^qGDsmAKBW+fKIykLxijp8>ta_Dzv0!{JD*Z8=0 z%5%hObYJVMl*w~bH2DdrU5I5qS3HzC^Z`L63f?8;HdRsISnU{tpt+U|ebw!41Jl`% z&-oDwjm|C66ybLnL2mbpxx>imkxvRrUPilgZq!0T%v0Ir*O+M|J4CTWGHM*W59N1f zWrtAOuxo7&)!4kOM{>R-G+!C4!brSH;o~;>1m{Z-gTPl~^F$l|LvI0b5$y>=X>Uot zb9Fvz797iasT~YYoUcBS*_BEMEvaBx!*|1?OOcKDdfrH$kI%F7oEB+pC>JwCYeq6f z87+4~!Z!Lx&rPz)T(2hQHqJqbz`nDQybn#hlFA7`qL21sYKOjF$SSGYvU{Jw4Lq4l zMReUI76u)xbW-(Gj6A!v?upCIY$9I;`vk%eLsd6f@gbigJ)5udiSu`fV^$XsgpKx* zk*J-Tdtz@wOauU-O4(B1om`dYKF^@Tku>oTy9L$v(xu7t^Y!^1!g>>KT!u(q+46>aI`5JRAZy$Pkd6DkX@?BER>Sv zrWCKLd=+$^5TG!30M4hYkV%?f?k_aG*-ld~li*Sz;#Tt8*CD-jx?IcgFM<#%2W^Zo zb%VaW>CVmVfgrCtsz_DUxFIL2aiwazXL>H7e0?e2Ktv81ZQbDu(1_r3YIdl$@G)FH z+!UI9yO+=)97(z>V0=}K#trs{Hr;qLCd(htUzN@N5l6N*j`L7fQ z&wR5V65n|%lUlvlY)1o=PYXfprQ3`NpIk|N`b6ONQuyBk{}TZ~sZid$c1q9NX;^hH zo$x`wv_x#Va7gxI9kXl&h$B~Num1&{>WQE>oSNqa+t)R{&VMV-Z6L6MSnHt2n*B#r zCTFW9jYJk%w(1aqcWNH8ys1s0wlx>9*`s|dZ<;_X!F2=NpX|w&=*j~*4rQJQa6rXd z?;W+c;%T}$oOzP2LssPadx*sJg}T90!=hgEc!sJ4WOEQCj5yXMBg+B$xZRQ@6#yKfL2%d)BG)c-5 z)_&ObZ2pPEBJ+-MhI{ncCn7V?_axmRAkR0QsRtH0t+d@oWM&GoC6f@_4L^I~^Ut*A z2d2-AP;g_+&+oHJ%UV&aw=NRZ5AZ~p93u{fV)S^?IHUP>tLo8uqnWLvJAGk_+`RDx ziSH^MZa-b>2%(*{NxFX8^8|6zHeRBpXZuvrSHyK zC(G&GII&yK@4i+ySpD;;Ln%s=#zW5xLY zGQwmil3^;8CUBRqwD8x>&!tb`t}+x>%~qTN8zVTpz~CR5Ohyv78T>IW*q!lQ?DLO& z0ApcIXY%QVL#G^XNcV$G^S;e&VOG*x6XB>>V=({Qg(*mXD}9|w5ulEko$Ftx=z$wp zZq{QcV=44%#J)?ngW4r?j15IG90qL?T2wC{(rv+RU6G~wM0JI6jqx$HBBfC6Y&C8w zxWA0zOuwIL#uPR+y0V8Ap$EWXAKLA7{16t)6M1@uPUBIsz)XzWlf?; z8261l%aJgZgFh(gMT2Rqa_QtK(7e>LX`@c(;AxwisV1WYi=Ek z%`(elC&Am&XcLTdpNlYrG01Di^DYI&_{-KEtd58G!&R11r@~6@_h5>SzyB22K&$R( z*jHNsw`MaZZ*Yf-2#A^gSyF_yrsC2Lo4gL9_ClsD>f@>#O8ie+nO%%oAwMX1x1hPn zVd7V|qVv9XxPF&kRag#*9g1n7LqEE)YkWH}Cd&v)I!@}iZ#Y8mSU^3!$5IgHS99xt z>Xu3ppRRtPi$yyNn0P|dTJgNGw17ppc9`4rGG7KE(#GF#`4e)u@a#E6V)@PTRiZ4i>WIMM8Cq{II7WJ7mO(3#IIxEXM zC8ik8#cg&L0CNXijpSlFbs}qtXj|Q$q22#1t|82ZBI|43Ln!C)gZV zbN_C7M>fFT9xyU|`FdWd$tvD_JiA<^A-IgReg&kfiw%bia7Y8$2ylkIjHt0MHE~xs z$2+|NkNg`mjUexmio0v+%6=btC5tTvVPS*M&Tpdod@qT~OctVH^anx&1@BrF@GAd= zus$zgE8$u0zGtAc${T4A#&C(jUYWeio4l-ZsQVE1n=$=S7Iu3>zogeNooFbvl1vG> zQqf}tdU4sze{lw*EBWMZNaU84vGUmr_XOq?L{_D!J!0Xx?V6Iw}|`tNV51*1g9U5xwd z5<67lqVvlNQDKo8uz!HihgHK^yFpSSW2i7>RbSMeL28b$KTlZZ;v&qq#H~@%QBm3d zw<(S#eTr=QNHpqjj8k+$S&9gHTR1G7+PrtJe$g8Ik<3IA6iygF4iC5zoUS`k+QH6; zGC#KFt7VZ>eAf~#18YatCq-@(f=D&_3BfGeW_p1C$p~1XBR+&MlTU9WdpUfiA%=9P z^Rn&5`KH?931EQLe`c{t(yuI8?zOFA3jM#c7fVgq9b{F`yZM)y zD!VUh-c?GQZJfHgeiS_}2{CLgySgu|ZDPQaoUI{{= zeSX3#CzvkrYj_X2S<7Len5~BVQgUlQc-Nm@xsh=H{ZXbS%IqS0ZOG}D+R5_z`XIf) z%NNd(`1%0LEi)UNG9%&A{MrQ7#^;t^P%(|H5r@pcHC(dnXm>6{LDro&g9BI6Q!4$Z8ftt<6~7E8rxDkMJ55k@kmC;ebwbM4m-SwDI7`?vvh_7}ozy;( zkeqvUyOytqCbGvk^Dx9=HvLyKCTwzLDB0JL6ZrXNBOWyVN#nl5`#*iz^*|rx{n`0L<@0lEY1g)V2Zzr}RkR^x`*+oxNmD6V#&5YW(lb;oI;oFskq9U>dwuj1DESjia> z$%mEqzsZaRv3ZK5yv-xaN5`tof#=F}0;rY5wLYTC`ZqgfRV)N-jv@e8gg9Bl>#?Bg z7ECQf_hq;gxxCd<+V8P-pkL^{?bK)Wp|4sh`*YN*jtW=3#rG8smlLVXY6pT1KaDXy z^uCLCT+v*&M?T;?RxRy(IW9yr04p=#^02cj=hPdrP86V8c133OYlg1}|0>&%>9951 zt#loVd{z+u`jI3$ZzLj25m&)tT4#R2x;Zv@4jgpVrnG58OGflQi+O zuJ#a96HFxSE&Yl*bI=Vw7Vziw7qi@>=>Xs+zS`rYAG&0;jAbDQo;N_v#`j80;iS z1XTTZ@-=UBFOL%|V;l{Dp6K*^?Elm3?8gHij@{97ScRm?fEPKHIw!xNG1fR=7fJRU zd&pDc1+kQEp0^pdoVs>n0xZ~nlpjpB%rKuUQ1W{|*IJM>pD%isuGa7Qj~&L>b5bEm z4CnF<*Z#HViqt+%2S-)>Mz*?SaKDHSFcnpt)O^;sIzGiMJyZBPM?l0fz&v4F z)RwBXF(s$%o{P`^4`j-1UmT-*iabEve2=toT%6#`(^%wpxP-w~AF=xzX4HnvYO+mA z6c3m~DcmV|7VIVsnsn3mhiIXM+$l{=oE4RDlEDjYBYxJXtt&`F_^PtUAAk{~f*^D~ zNZFnNagmrAF!`$J68EPcrr{A+%N+3S2I+yVuQuSJ!U(UCST^oUzG$lACe8nGKDXLj zE!8=7*?dqNQpGXs<-sc5R`m+KyzDePEbcLn=yscT zJGZC%+<8#u1u9@u#F;4*np9z(3E7J9unwNq;KdhJ6NvV~U%|r_$9Aw3PwXGlGBd{8 zH?J9n%wpLEqw5!XgfF3rpLZ{uYu_5}V6tt4pP21RC$*ekMq;Ei)YFN2WO8_A!^NOOT=3!-J*RPsRkfuP`A1rWB=@43fPNf zo5xGY%C8bp{bK0lPnF}$*2B$9Pv`#=>ToIW2(YZbPCTewbbmDI&0=DB*ZMj&hs3=HaH>tQ?BD59POQV0eU|Djk2| zx2il42~Z|w=^EA_KWG1yziXgEGBte6s&uxF2Imnr-0Wl3B1pDktCLZ|aDN6ra;b*J z1<-)Kfz^w9+!-HT(=0CiaDi6{sWAUe6m^B^mX441v>eogQU|~SOz?>|0R~O;T(Cc} zPBxV}Ne$5CkvilbUSzF%{)E+3U>?^IfMLKfB%I6mgD1_0{ph$s4ylq**>2J;;SM(B zTBPes4|=dk(W|hVnt_*9&-uT2@k}>3SZRhPOk_nJf4_{YBYvcqn|h6!bUNXw9a11J ziO=wxch^aRB}R|PFg{m>Xky_I;;gaA4L)QJ=U{Kg@5MN}J=d24il}c<*!E+UW3&DQ zbEw*f`WqiGFIm|{ujO^DXgjcF0y(n)-gkQXj+YCze z_53j#kILfAj{tG(e<=V}Br>PwxybAiuG{iRi5$S!ZONm%V&B1Ho}?e!=W1yblY8n3 z8;33ki}uu@13MQ(G=AhvarVb?{zYn2CD$pNUiq1Pe~oVgl9md|qCo&<3M)L@h}85W zSP*;u!4P`V`$to#^XbmXk%aevW-UV$m@p)Q`e(_7ud5Vj8AeUd(`17K9Twi>DKnax z!`s82s4C4IFf(x~AE=8T;)iXpXP?@`W^TpS4> zJ%?M|X3%$@T?X1GGPX27mm~#l&;E)MPD@+nCU(5l*{5~Gy625IschXKN3-Kg(1aNq zy71c0|H)akOAbPp>+^1^X8VIh)37`Weh<;k{zx-=BExiIb3E)NX)AiJ{o%XOB?B8N zT!J1@15^zGG;0PsxfO$cZIIoMvSLK78|%CPj9ves;Y<3kpbNx`cX?dC!_$IbJz)g= z|4IoUK)RDJpDa46kRKw{>8ZM^QrfY4V-6u{c%{YO&b&<~oTVA{G0WiQ zR2gOtH*$Bq)7~>gE0ggGg?Z4{n!tEBRcM9+oU`P^FZ}y+&rzyx}{g=MucV+kPkV48#$kD5vy97 zWCA)tJG^sWBp`Ru7Bod8*2{=Lvo(|4E2sTB0&oRaj|W@F`R#I&28s)`5ox9Fg~K9# zlV@!h`_{DZmaAF+ZvV4oDIxA|MVuEWkIFbQj6n`hz!9}G)89FL%!U=ls%G^&Z9@}0 zdWC2ZDl@$U+;h|O3efPR^0?XQUD>gj;XC}(TU_o*Paa1~pnBo3P`LY^GUOn-5#(Zm zrtn#Houm0C^j$7Ijb-cK`N7ee7Jl3!g$NJR>D%n4?dg@> zaQ&lDX1(`pI?J+a#*yL=?cXN|1%dTYUw;VaIn1`d{@8EqWwz*MFJN!Y$3xZknq;s0 zcy}K4{Y>`BShjKJ6)&DESmK-y zh5DmP3Y4kQK;NUTnj+^!x1}3z$#PP-1^KM8{A#Kut#-;3jTTi%StbE!+I#iK%?9WN zahh<$=9rRLMAS7|*V?z=8#)!EB46BJ6J`Ci0aH_~z94fQ%qq%F{0(wX5K9pJo%XxcUR3* zMfIn(rNqJfTZ}UL6y9w`P7LKxX_eZiWXiJ_G_7erfqJHY65Wf4#NxF-)WdfWFcwYU zTN3+kvvXJ3P|58+Vp-+hHh77s@#AMVxeo^OvD zY#0>(ZOlJt=}yJrW93dZbV@1xo)S7Lk0p$)zE|-}2oORZg#^OpAWo2PU}P$~vgdiT zPfyT&AxFby*2y0Hsw1n~O!uooO=*TRi%1?|fRhc1kCL3r>_V|o^wVx!u5qrVrpz#e zXbb@pP(8m7 z*r9FrcS8F*0r^HrO-~2Yr!;>j06aSTTgDbsg!#AMwLhkx?<576%59xwbc-EpHM{Dr zQ4wd|X6M7=np1TQPjLN8d7HLER{>`9{4pu>qt7%Hu%z6MmHD-LhXdtc2w23&m< zL$^<|t+V!s@dn5G>MzNy(bO2I(puJ-$HX6EbovCmxmnUC0@K)HCKn2+t2f2vKUcK7 zS*?!x6W+fKb7(%%*idWB*I}Ys9QH?5DyiV)1fUlkYJrl7i*d=#YXdT(=og^fYHLdT zJF3tLNWp6#y(jhkYX5Meo@4j-#3=HK#n#4RqfU9V6xU*w8jtAX9e=*&v`mZAHsvOD zca$OgvmCi8w|Wv|Mcl@67luCFsti7nA~a~lz`w>fe#MQPRHqLRy9k&&QT(*E{&3U( z3u9P56?=Vf%6X}ArK(*b0MPC?C3e!8ijr)7mj@Y7bLPcO6nAs7Li?VG1Np9(Te`4i zZXEj)e=^M`w2qNM-CxFbg$YLwni2NtW~GHFpm{2i93Ck}q?9oXGn zVYcu2AmrYYU;MrzR5fmavqA`GaenP#(PaJC+<;D~$e$bnlp4epcUy(Ja+~cEpH!dB zW$f}?Nsxh_xVbv+2kf5;$E3-+&1b&7GPERw*xx1E%$=rf*6qhQ$Z(G@i5LN%;G?Ai zr`{{RD`)m`WpFp@O!fJ8WZg@VvhGOnk*F?9$%q!7qi)KDzF4%a_kx(}YGAT8od~sG zfqymHFASJ^`Ir4JNzf1U*O7AuCw)t4msEfQ+V3`LtuB!ve$8UKIR75X1EuA}gNe|I z%+-;{4+C4)E+SBl%@|gLYrAH)I9MBbhU}zD4iDCww6TcXgKe2Ca8UmbujIxk^4Ot` zOM_x<(vXE5=A8e5#wm;rKoR`fXkgUW_c+3sq&Vc)gZCGpQt0EwP990#&gy#ZGmb79SAg@)3;H_AIgSbmfuEbxZm6pGoHMtu#HSm4c;6uz+LJ>L5)Qo%wE2$^B zLI9nj#WKf!bimXvW_LFM@hc5_sOPAQqmogwrGyD{6@dE?Y9|l+-QeW1bx~aS>=-%| zp60HQJ0SPvlw6a29F`^y+FcvZl>BaF`b_duz;cg^v>8(;odEdKXnW}xarHZ*k} ztYNS9>2q@xbu9~%jkGuIIF^W7)#MBEYf$=J-qYS+Y?;p>|U_;gB) zlsx%hDJ0ZwRUbNZh|0nySq(?a(m$VUMk=t1)y*FoFS5i%WRx|5m0cFl!YL7DFrBMv zxoOPr!I%Pgn{aQ9It<4f6iSKZLgp&;#^E!^#gJp zUcds$o#ScW;r7oHVc#T5LwG0>&`kI3^vs*6I!zq_pN{%XH3Z)i$bxH8*rW%NZsalK zW;C+(o{kweL>>7yONJj`RW`a*VxzcOrGEDB);4>0))3YN9Va9frpP<6H}-POU4a z&}&g|8EqRwS$~gtv+xA>vx}o0y;u9)R01wKpqubTiY}@xkj)ygk|m(ic^&@mPB0=P zKhwuZG+r2XcPBsm?uZSDaw`C^1l0V&b|hcxoNR@rE2d&fLE92>l!@dNp8Ae#3wIS6 zdAnyfL{o28II_K%|3kz3unD`qj8VCGIdg0JYs|BNZ0F-2R?WSzYWt?}E^_C)7kWJV z+MywHmHHMC3XY46cKl%} z3%4!rT>MoIOCTP@{~0dJR9>rTqL^$p&J(dXO+fcON)~g4Gf@exZsXza$!F>Rg3kIM z-!3N#K%;7ZPZZaRH>{a;sD~%EaF3r9hDT#~u;b&a&55vqUrXq|4|U$H!eNtPX@b7M z6<5TEKB#5n(0%d?NT+UJ>+0teaalQd9vAm_wwL%- z=-wy#Iv;DXlnKoFfPG5Z#I9~f?&A?l&a|NJdl`rp^aa3^@*A5+uzko!tM6!e=uI08 z3N%)?qfJdZVg(w{1r&EEZcJ=zpJe~<2V|R0=b#XGMOfX5?OT7Yec_^2lhm*zi3y11B94J;LW$b z1xX8ULI;Lz-X&h~pQn6VrV?esIc6ct`NpBcOVQ(n-+i3AI~4rb4O^+Ex0(RyP|g(Z zvD{jUW@gN3XFiah!H;0?OiS2Bt1)X{(Kh*m$gwZWf?SqL z=vrdLWqnB4U*13^DI*;hriWt;*&;3|2L?S;s%-+F8~uucgNH1;T^J(#d;lKAAYyKh z|L-YWCdgsI@}o+N32%a$&Fc`Qd4%TtxO9~|;6E`a*D`KlAYzY&}@Wdzfgug2fEa{<)KgaY78E@?5R z)2;=+zQ{9sV$W$z(%pjG5p8R9KF@}=JPZa~5~UW0ova&qdn1SDmvZdZqcTdX--s(I z)cSkZX2W4H)v_B9nOu7ZWWqcT{g{G3nm9%3!YEzhir_%32$bn!Z^sdeF4 zioG3jEVaU|A4}-pza{}5B0>YQYx^-{vinr>VQBdYx;#EN0lOLkQe|KQIrdrNqy;Ly4rlAdlM{M% zlWd;N+m|c|kITfI1e8~T>bv#nLL=;V_*?EQi%I9McwNNmM9DH=yIz5$RQ>Jh5Z+GC zcs?oC9JVgX_5IOb+`unTGq$QC%f6s#_$%-zY$x3z+()h=@71Ob;*JW+ZO~rNLU!f{ zUHZ~b?in>@AoumI>&MSmD$y~(V9m{2G~%$wKVlHZD#D%LjaDShrGqgw4O9O6!_WNJ z(=7h*y+uaz5r0Q;x&=PnMuHl<_1pr*1lq#dOuONPH4^aEJ)LBz-AE~$&_|YVy2)9@ zi}UO1qHBb%f|t2$_OCVUleVjuAu=I#avT$zv10GIyzJsHNOaW4mD_FZjW=+d1Jx4# zb(%UXFwrvp3;Rt&|L^4v-G#e1Go`OaA1uT# z5;2M_;I|%VTZr?CE;7Mlyn1A?v#S(g?1C&d@CtfHe1Cm1niiCgEod&yidy1TOaeqp zWO>GMo{E1ianm64iYs!HU-vEouqSP#iTTJ~11VD8`#}%eeO}w%H-rQy|41%{14DOC zp0Z>_=!X0)L`!|8V`!?quPAYHZSD2jOHv}xp1d4GeYoxK^$C@eUqeT|_1$=6Mc(lI z;V%gV$%hs)NeRp&_QuGI{6ufj-VEl@9h0*uP~)GAAS?MFSFpNaNL9j!Kk{hNG_9aB zUcV#_{cU>^u<3aL5@!$qEl#AlCB8jrp$8e8m(bwcTgaEAi@05V#pO-cJbsf$0k;|r h8nQb4@)j`NRJ1T)db_6EAKVMm)ils3{m=I0{{w_cPhbE5 diff --git a/docs/articles/EDA_files/figure-html/unnamed-chunk-49-2.png b/docs/articles/EDA_files/figure-html/unnamed-chunk-49-2.png index 119dd91b2b69a56dff28e729ad1e0e0665917370..34a92a3568ae7ca8a4e4d06e8d8fb8805749396d 100644 GIT binary patch delta 7261 zcmaiZc|a5A_I4DNdQqvDt6&9@IwVqLQDooRQo&(M4HaYwK~az$LBJ4T+__c+ov<(A zsw`4gfv|-TkSYyJPzXT+0TmEgl4u}_kOY3i?fw4#-aj*w_nh}V=RD^;&!p9EeOSA- z?m;xvGk{ucWD_it|cY}*d!Ui@guu%}>7{CSLg5lt>2G6=PE zS+PRfxe4Kb++;b=WUh()_0%>LO1^W85$ZuS_Y4WzFlH_W`^WRLFP#xa-qOo(TM#A= zNy+cqpY7Bj@f)Ll(9^3h5(sOn*Vl&*v0Au>Mj-6d_u@_UwV(0PhG9AGIYTX zb50y;QP4Fm?FboSnJe1M1U4aacbw3z(Gh{Hwyz(ZF0Brc;gT|cyMzc?k>0$#V}=)K>^Ocumr>8Q8`}i$-S|V z8HcKb>MZ-~ADfo{7*0>*JW-A;mM`G?KrrQOXuON4iEVX6R|x7UC(u}t;!L``t)x}u zRh=IS^|r*jO9j>GI66h(f_BHlI4{Pe(kvxsENKe2C^2odr%qU*A4`(>1|F1UC=ic9 zyj+76%O^j=&LW#*kDgL-7 zZ2i%S=Ij}JAO4Nyz7TaqP}L$5Z5q#MpME>H9tv$c zv=fE8zWd_+9jMFKFPW6P9_oMh07PS2X_NdtDeNO;_v#9h&UJqS|$}*s~Q*8r# z4Vc^Kc1!IVf(#}Wx=!6^z_1dT%}#16^Uvn4U#VP?0C5>U3wuFJfGNZ9lZO2jUii4n z8$T)UPWz;!ghCmIBl-3A&)u0fOk6}?fl-Og=gvjvjoCiW(dGp15;VB0-=fJ}PkjV# zSoFr={U=vzrMu_sR9&kYTw(%Xnul+#-RxU>KDkA~i@ufTqRkyRUp)B$&tOj4K<5>~i-V6R=JN(hF5XUH*Im7QLb=os$H#~Rj z8VF84oVme0l=KDq;RVm$O8kso6Rw*Ic>9x^iW)lY#%#HNn@xi^Zf*J z0oNa4-fh3`b}l5V91VuOpSG9U)gyN`J%a-(0dp}aPaic6s|8+IAx zKwk!>Z3Yz#uzuQp5dXOfde3R%KRIROdP0Y(inU(wzJJ#mapd}=Bb%4z7cr862KB_+ zJIb`By`~by+cO!Fs=Jbo7ts^!?ay|JFrDj5(CK~OI9 z#8uPcN{duu>7a!^6ZTnNm@jVoQXRJ78)h&rsDGyfO0Y3l!c-@tYA_ZFQr-Kz^ua?Y zdwkikNcswpu_$`%2mx~;a%5^KvIA=j*Gdd|) zl9D<}lf2O?EkUcdM~zwbq|irx5JGOE4}h{=yNBQy->Sj%d_hJ|bJErMHV(1(&7fi> z4Que$%2Zpwl;TH{rRO1FVosK~lu0r(ZQ(BUvh1DU{!#cT*3zd%1u2*8DkNxUPQ<;h zs;<900%RrIqxJO1;h7WwIOMY@~k!G zY)5r|EGsd^l-fN;kGd~a%K8(#-cOy|D{!Z;4ME9*w#3ox)R|>uQ_r-DQackp?cR6q zsy*iLCuF&mA8lfmD9A?F%Qh?Xo5bM}b^3qM%1Ei>J^h#8BxkfkFR5xD3G%yai5wUN zW4vJ1Y@9!3MiiMtBR6_1WbU+8i_A?NxMLl$g5V_TKW7k3Grk$hx3obp$O*Dv{m>23 zKgbI{LWvu&U+%@9omm5(s)EGH<&106Dy2Oe(yqx4b6xN3i>X6~gILimfL6+rl~$+( zN0_2jx1vx#9@&JMZ6i3<)39d<{`m*Ljk8|jCh{_QMR&G%(E8oK&5O-f|9q)mGdL-H zO(Odhm9RaVgnE|7%xVxy_Qc!FvmYpSA-}6V2BCoRUO5aHA+$+t>SF@U1)Ppv%YF#z?^++jRMsKFZv$a$pq@4cpcN6~1 zK3-UHOHzhIPIZu9u>M^ibqupgDI>Rd<|8m}$XlCKa)O=*AcnuI`nz^Ox783Z{<63c z>AxnRk1mM~l=9jVsngC9XE!c&eJKOuQsX{A(IYy-wHfhzWA=*6e!DViV@FF-eQaeT zhV3KJJa%c)Iz3N5{Jds2DnOHT70!vb9|T2gK$lqy`{m560R$IO!-(7KXjRCBtNS4Rzqd!S!p8KTZk? zGrr@uoxc-nC}$Z~$1f^*dlCpPKDwr+x_TfsG^igR9TAab;%*x%G7ZG*qdF}_w}H8j z8Iaaj3}r~6IcB@=-V7-iPYGPdv+&C95H;VEsLp?f8tFHXkNv^aK}tc?3+S0j0kAS5 zIyFm%#ao0`;<(x_FgsB|BxC(LKKK|Q_{PrM7}ub7r&+43myJXw+cVFDJIF~#^oCsq zlwCxvfD|*vXk3)f$L^<`2@|`SqB=j3@GxQKakP{L0YX>N3jpg9yid3c%ah^atFoox z2u93P&)(d+n@Bpm#t@Re)|RtmDI>2o9TCts9xUX$m z2NWAH8^{ycm(*C^SE?D3WWy~WCi zkDVR=6WzZdrlkNV*Oum}x>~Qb3SBFrTw&ZoYWbk|*OdqU#;DG(buNegk&si`u(1@p zT>f70t0{AKzDj^U&w2J+5844~&PS><6W0lcQhvrwKDr2ouGf>+p+|JzM#!5hPSq1v z0SHlvtM1}V7F&FJrd^|v@}d2HLUn194d`6iAr(2OYH5<^0w&%zQ3t+&@joyJR0Z-* zUl+ZwwZ}T;nu-Z*c_vcynYfKB)4%OR84LWZN)-7(b9MLIRj_8MN!2;{pt6|=VjV-utR>Zj7jwwp`G3hu{ z=L?QHBGOhu9b~dAjd++4!lQgX`Ir$ii<)`Rc|c)Gynx&Ifk`Qv6o;u{X2jY&>0h#* z`XDo`*ueu$B`tu|%u(H0OYL#NZBD>E^PZGNkGOzGGH-Gc(u=YcVw*0X8%u*)RiI3E zaHc0o7~;flhz?}$L4{lW|J!{7I#}28>3GT|Sl@Bp&KHwc!0Mn^4!g(v468U2DOzMd z@{C?(Ysw`nLNk#!?NzF_o=)1#QpcFdEvd=nBPMlTIJ>M8s2QDF!jX=$GXSyH{B4>P z5c8#q&=)!{@Q&T0ydK3!Kvas4%j&N%)1`0oARqxxF<5}{&L<+G1Kwe7nWS4&In-l2 zp7E_WhwcW&t7jM9J=R2_)KTCsKmDeKKp=7Yp+x-jYK8%vWTbkh-dvYRgz;oK5pD*E z(BUF^bUfVPbcKSjT3yvUv>af}yr^1tk9$m@bn4AN+74F#7n{G#sL8YxeLzoP(#WOY zV?w;dytFCaWub&EFO#r^#|RzrKU$TwWU0?<$OFTjD}kym)y3{Z&I4jSOPQCiJ<%VQ zW#@DpGgMQZ_`}dvk9poyTzDf7@}Ok;edde|c)5%<0rM3vjS!;b$npd!uOn2^tBf;k zgRS6t)wrEClP3DC-l8yO-T`ae>Yd=>VejLl?xX#&DONgBux8%O2c6NB?3n^^-I6&~ z+r9kYVAExUCo5-DV&xRuY6(K>I6hNTvUlVuk2Tpicp^}6bHfc1u{}eCQprsA_K^=}wRCYFu-2pjG81FX0X?B4BjPD5UtE>5ev$eBpKaT8${`0~iKyuxv6ad0RyX)d9UgOqtwXaAR@9Ww z0l^xft(d%FW<1?OCR?qkwqr z*H)eV!55V#9~;#vc;B$B*_C%2v4aZ^V?e7l#5^@0e(=i*fbDnKvU0jV_Vq)%;Og^9 z)=c}dhEXF2WVAq;#frNsT*x+WO|HCK$*OJk!YctIWU&pg*i{sgL%>#wB&va99vR-S_tHL`y znI~37T?fR&rk8}7iP3FagsITn#8-8G{GtlTs{sf_@$8ww;>49#$%jza#b$beXwzo7{lr{6o`4vXQY0@Y#rO`!{9EgdGh)v_9{P_U=ZaeC2 zKQ%1g5Ol6EudNwW*iS9qBFB5TxP+FKu=|2i7G7=0KMYy#UuvGQhC*`cWh<5{1aIeL zH)~6qifTY5+rS_-3&&XrzJ@|o(Ui#(#TUl~!3BcWk-VJL)ED}${oT#KYJ|S*eW%>; zF=C(Rxf3O}S5@vk$_;+mH^S}C?N+Jq`Uz<_b*+{2e0i6DSU?p8$bTp-y)i=>}Ajr+P_GCOT=lvy0zbFFD`Io3>(RudD`B{Ypq7(Hu;-Eah zG;Y*XtY6CZ$S9J(IZ-Fq11IJGmIxWrPhC?%1#O?88@L51JJUqjBi?#8mp)~~|Mk5g z!h@}%PRkn4mlQf(^8r_vsKBYTpky?{v=aWLkVfHZ#wh)cGO`o(s}MqAPFFPTNy#$ z(^9t0G0@EOJV`9vPjJ~7-4!x*;>B`5R#c`Fn?%|@T};nj?a}?)RPt~TRGT?bcu^)X zs}AWt&>%0ICOpi~(e<7P&FXV%{u!YhIC6X9Uth97O8cH^U(nsVTdaS#anLz9?DhyT z95#<1XSl}nd@~q3`_N8EfV#f|t36ad?VL@Gte_Q#8|Sa30~NZ$gSjd4%275n->)V) zS}h4CmvBzd+xcY1q(whj!6wDmqN!Gm;+5Z}bmm2cJrt`0>Lr8!4WF5!KqH?5|kkUqb zd*kHZ*0@*CvEOmaQ)d1hp&YE45Q^1m*I`cMmIo%4i&r|HS7@NF134IC2yBn2Aak=} z3{XS?lz}l_CV6O#`%XAKHYjl-e)Zh3OqPp(_-JRT%D**U%!*era;x`%%XKXcnf&?o z83T}opjzpf{5h@pZEryl7VIcwHT?_gieW1*zy~T@%)OWELlBMf2(_#+*wvDrophK- zSQ(vRxWssYhrG$Q!>e67pdo*(O!_tE1Mz-ORRAi0+%%Uy&VvMD(t?%tB5iX{>8|mv zhK}qgUZNMAWXz=Xv=qjDc?M{ojv2Co(ppaxjnvtnb105LM#`Be&WX{G`E6BkrlU?5 zDBwI>-ae9s&z#u}uG2~KKd#=Kx-#g(L57=qI2>7p<)6s9vhl`aAy3b;1fXHY=rXN% zYi7Go?-)I*IQddJB6SvAmkoLAkwOuXNwd)X+csaTac#L>(Fje2jF1s%L6A#rwJ*wP z;pffd0!Hq^_fubj>-t6e{>(wI@*Q*MZd`4;Y+=m22l~S^kHC&mt&Mv?-`y{+)9DCV z3n_M7|ntfiP^328$xTN{7vh<;lWF zt9zmy<|@Dro}wyULu;q!_XuKXl=n9F<&-oGA-dJ&qek9J4PEzkZfSV@Zb8`>ht7>|IRYYpv#IOS5(*+P{k*{1@?>!y_TVD! zE}zA(0g)#8+)&9e)8IQ)!}&*DTgVR|C3%_|kTBj&TZ$*oJPY|LL1688KGLl7a?*2z zOCpl&usLUYRf%~~{>;4s4FaOfBcO5>ks9I_Ey~gzb;9#ED+UpO=G%;!d4c#};NXn7 zEmirpEhu+E~@@CG0EUbtJsG_~$84jS1A>ujm3(ecXY~9wteWNK{x|u;y`xhZB zw_qy3noq2OqtBI%HunslTsLEuf=&J}sd!p(H+iDyA_K4|oMKE~-TLnA>^=ROh@y+` z@YB0~BqBV8X-!f%2S@zRoz=uMun`nDF4djK#w5eYgPi_tn6(Eq0qxc`<|<3box~;tAg&@ zK~w7J)}X(>9D)4`Sk7E%p!hCLpADESzxHp%GS{}ZgQ9ese+laMZuWa*YEnRkEZx6IaR4txUR!3XLZu>|KvLa1)9A-|A)tzmtG~u2%ul)PS*9S(Mz?##T zxA?4sWVsWf%x=Uf38~>qJq^&I|3!ni;1*0uwQcKZ)?K{@FVgr^B@F|=z)MYUDg%G{ z`>+AaEBVOTQ_w}~HB_%*=_3cOKBMY^+qp1A&)Zy%FZEL!2me~=<^e>`!>0bapOT($ z{vNR0sCX!WO;;9OL^V1+YEI>vj<=AaL>6R*ojNc?sn54d20I?kFdbMCwxRoufB1i1 zt^N5>;tj6r6;*3caxV@7$gFrDFme$Q9M<;mGIHDs|K7$7+g!eUfx6G#MMMV@fYlT@ z13jk0)B`2%m?bw@$?U>|@WcPhn+`(|!PW+{{3tU3wnHXS+oAyJb1*1=kigYyfZ(3+ z6=!cFdLVw&Kcs)Cz?pjsh3SBBDTOnWCI~)Dq2IlN_3t)y%-h#+{9fK>iKhSdZ1TC` z=KI%!){1LcgZL@>rK&!SCR&GdYJNPl52@+Rrvc#+;#?=iNic#tcN|OV)qN_`-Wphv zhJ4yV*2$rJVElKB-*dX#0fP48_YF75c}nDmy4V*Sf| zVNf#rbf0vCqL06DQ~!A#aO8(y|M_|R_n&T_cyn*hg^`nI0=E8i^NQ*(&szs=P5*$+ zo;}^X?anWcA3v*`G};{nhP7PK&^WoVWz&gkDDBy%W!WUhVFxwBA=&~hZ|V*w_n8;J z=#msDXB82Vc~Sph`~?6>j6>s_9&dNH2$GOdu~6rSlyXj$-u!5w;nV~u567(}9?jil zvd+IEPrR(9rL`=T%d7jxe1}^1xDQWl0$m7a3>$u45Bw(jA!gmBjKD1m)n-if_69XS z{%E{tVE{LzSn(a`;i!1Zy(1X z-=Pw|a=?0ZaVfk!K{&V4om2fd^mC=wj28P>6Opskd12$Hihlq=&dFvKpgAtQyOT!t z!YFi^H!!6$FCKk%m)@?1UFYGIgMt_JW7tvsCE51An9PxCnQi@FOmR0 zSN5#clV5196C3Cxolgzl)fnFfjYxfQI<*DfwT^T7I#W_G4j%C#B+PmhTZ!ELy)6MC z=&!QzO@JTWV)kY6k;a*6X2s!ZjVx|-;l*N9C`d7O5te6ELbbekHyoS)<`CH&+SaiN zNK(!Dxe)-$qUG|!JnjzaMg8oAXkT{mQk6unI>ehqbM3gd<8rs@AJ&*>^VjbXT zhh7WxK_h;idjV9?Wa|Kc1?%qxNPa0P(2M9Y6#%$hA(qr`u3hcKx^@s?F%_MdPI(0P*NSLHj9OJ24^;8Oh)uOWKVvO2xm=jePHu3YVTQ!syqWWB{Jp?F)D z)f}Hv+hs$|=-U!kF-u-m`1hK|IF!VO!0o8OV%DSH%L(BxN1Mij?QKNS(4j@-;()S4 zUdMpnHt6M$wH~B-H`eJ%eN`5};IOvm;QK7|t%38U9O?|)giKhUY zlw7KON_NgZ8r`y|FnV!U;dBC+pT)fc=4ZHwaTMb?jC3lsUNpuY^G(o1vNmi(AWu>~ zn`g6p?ndM|j8exy!ovJ(8lKKJGx-O-cWO&rU<1_;R&&)Qks&2ho%}tniJ7_KtT2Hw zfpxue!MpAYL5FP$I(6a+b0jweRFz#)X3W@z9xfU zCaK4t&+~>8NF(_}ac{TUFGTTw^iIs>8uxb76O}z7kamf|m~dL(COcqgL!ucHhIPl5 zvN1{3BhMs~3Tu#1H~6ftr7F=`yobkURx?&cQR;ybee(!2$wM2wLIoonLP`3><08oY z9}9}kJIVa0Kwa}+n3Xw=Q>i#_25&KcGjiMazn^_@+mzr3^&x*aM8BCOqV`)T|brzlbqEeo}FzL2&kz%HgkI{D}6=a^RD?(P$hn+yV9UQFmUsx@M z)M{(=cOAJJ0&fKqi9P3V-ex0L)5SERDsQv5@>)tX5p4Pz=2&T=kkMntD2sig4bKyESH=--ZFx;I2l` z4jQS-We(DRbfs_0TwuF(z$J+6>ALx%Mr`vq%;8-YE)}d+;y*XPYNfaPjWq{?I|p*y z9hH5Np+4SYo&+{ASt`I*M#GjXE1MOfYgS0H1$ZHYviWs@e=#dV{6R0^nJ z@FS8VrqUj^*9O7FkC=o&^K)JL2;zIl4GSOph(0rkQ~s0|sIb`CGOofhSuAay7uZ(T zMvtfV5yRjpP&yN6@2Hrzut7MaTE(mJ8cmok73VCK@imXK3bzd_s7?0;BQaiZqb<|2 zy-s8IcDlbeQdZ|z2oR5@8+|nnN3(e{`hHrco<5qhNN30IkD1A_kIsN|az*)tcnxW% zTWKR?$rO?1_?*LMM@n0=e5$2(qwp_o91xz2D|Sgc{m z*ron_SKC*D6Sf}1^}MAL^?iC+^24Pd62#4qn!A_K+g1N$$Ht0Bd&oJ;rM}#J?k!zf zq>l7=!Y_iDjz4KiK?6qxNSa3WKfVoN+3roQ6)PVmjm^FlqHqiOD^9Q!+^H2C1k-z@ z*qkVexpW?{X?3WuEZoczwppAdXpU0L@Qf;9b`{pLkaN~+M^iY$HF>KCG_V*eY!`Wk;xj}s9ayH4cRll=BlIqvJNQyZS$7UTnoWN zZXwD%^^sR$CNMW)+cJIUdW7%O=3~E%c2w*Smr5&~f_?M3d%zH^P~q|(3!fd~6XW41 zOrFsb{OfAh3ae<^vI5x$ICgh!qdzFtThO4s6ncjyLyLkeG9;fOb7-g;?T6{GF_lfX z%wL|j%tjB?^)JbGVS`KPzjEbqMcXQ zL`JllH2u@!`euh0Y;AC^a)mcl91=Pzh70C%xka=CL-E4*w;yEqMxqDBlQIpWdx?2b zcvJpjTSY?f=Sx{gz5LC1P3r&ZXJ~_#e5XuuAliWMBYX3frcoF1^Q48>(Y}Vm;6;A? zyD2clp>hiD6pTbe|D%Ew`o}GC?F|4hnBAA*n;G!P4M!ltUZjH4l~^a2A&Rb>d3iu> zUx7ETLJ?KTz1ugR1EbN>=}QA@c1{exmR3*foM>2QxE2%tJ7tR1;xbL=|HWiz@Q|w5 z_9|IB_MAkNib}(|z^g}?{a`sLyoX|V_HR_Jb+v#5dLZnMt`9ItXjlCXBYah#$AT4wGirgWr@ngU^k5H83=oJ zTM>k>Ix>ArwbGDd3fq_ewEU25tUO7H;@N|07^7^i7x>WUGRGJ0)~dH;atgf-$Ts*E zooctSeJ7*?l2bhPz@-Siyy|aYs~q2$_oB6VtD ztqj)a3L8;6e4;!K`l&5Xy)%yyO{2~=8tC|b37*mqwFweJp|{s6uP%Cd**V6ZGL_*n z7ic`~!!Tspw-ucSlCDfVM(v6i?tmMQFi(PWKgtsyaEBt?q)opvZy`PH)q{CIecN^J z*@aDr0$x({6W)FBM9{lfy(8P&1a#qjb#02BIFwc|yzX7pMH|m($x-T?7&s8^31N#` zc=~uV#Ly#8iaW@QbEx6s%rTBMnZrX=wcB)M=4=f}6Wy@$rA+zvs*Uj<=-#G*MB$&x znC_}pvQ(V0(ty$_OuV#`y9wth*o1(pZpm#5iw?AqbtfK&G#AuPlg{RL&2gqK-or!& z8E!3ex;92FIxx-nUU z#50@Qh4RHg#GnR)dk2al^NP_-Mu8|RJ-R@o_LqUS`7b^%YA_0az|Z<&+}m66C_dJO z8VO&}s;|l<2A9;+w9}mDY_-_cy|hIC&o>*V55*sdlX$Q`w3Q_Ky)THuS(j%D=L)PQ zpLy-?-K%G9F7B!~bt+3?d>kH@k*7NG^3k2Dx;YTiyW>bJ+@8w<8~#h{on>i5>ylL4 z%ZEcEB@Zix2tCvq=#58~QIM>ATx;cjX$tV^;A`FX&=X@+;aB7RjE@p|k^_m4h+2d-;q=CPnUZgUj&eK8Cz zvA9WnE1aB_iGn8myfDe%1x?H4V@_tj)pcC*I4*h)?Vay5An0g17{!7QKO%|DmUdKv z-i>x(k*eCZ)$?I(f1+6px8DNQ30QbrO?-`yW;Mb^r?Sgj0NA+-{_DiQ4^`~zX}XxP z@Ct-ArRTN`Dw~5Eh{zNdZZ-%bB=xxJxvSvh7HiSl9%L9r1)aa?;rWd34qF zg;Tu!y!C*emGq5Ivhp}{d%JJcC!LPCtfuFEEN3t;BgeKce}#UbBh&kMG~o-X9L=|-DMN( z&*f8lx5kpV$V{$YFD^wP{gEcfsoU9Y8Z!7489p^Uh;5%};;Nwmt%n|jgirxJEx~G&Dt~mS(tDFz61U}Z#|J)uiIt%eeBBf5I9uM`ca0P z`0wzFkOUibz)+l1cd|9SYxQ#ZYQKQQh2YhgjYS#`!cVF5zYg1L)mINU9b~%Nhb>GU zxX+c0iX&&sGQIm#qH3LpUbS)&$}(-y$_sr4QqZ|tvq9i1BT9tNv087*;7(O|$SAm%_plu*U*)wg?6>fn zxT%pD(2E+_8oe&5s4n~yJk^;Ou6#`N)_ebMbEBQFpKNA(ZuIjk^+0m&>Eud~7!Sds z9`^CiAb228w*JfgY&_#&g0olWwbw@bUe7U|BJx;~+` zLz*GgUP@1bTHaB-0`F`_lvFG`KC;G#O=k?C*$H7^;jCg&XAI0u4QJHa1rJEHKz(z6 zy7do0v&GQGo+2q*pvaAIgAx-juHlB4CEc%zaER|QT!BpTs+NCq`^3G4g^| zab4i_$RamIW6v82Y8@;&Pe5;7I)i zg-;3t%8Jsl#F44v7Yh5_Ye+XpLl`4y7AF3ob0HGCy#;6Z;C=6v;L zxBfx~ql!SW@6L{wt7A(9CDm4vfgLsR3s40*C=1nnxWxBM)P6_eMRpJyEY^56@cDEn z5`2SO?-}o_j*^(#h~Gy}pXqO^rh}Q3&qKaFu@8rLww48oes24lYt^9)E~Iw8nfskn z?OkGZq^wSJ3ljXH+gvEAplG44A+azc?(=<;t;^<2>m$s42l^Bp>Y5hcii7^#1#w(4 zasf=7^Ly`%)_5h`SG51|$R=R-NxW(x`Ph#l<#So6ZmSBuR!a@a5rg z*)v|D2LQm_l?WfR8Z5l4SOopEl5i?ap-a-}3${JPoFaTtzCXw(-&?fGLdVL}&6{XB zUva*ztCR4W?X|DIDUb?zV377TGCqY>HIaHIs_j!Z*qK7oyIlSL?K7`~0HFIE^f}7? z)`Lp(PWehfq06RMwCsk83#lfrUszc&c@6wA?fMHhXX+yy$P%dh;#GK6wzoVD`ybxu zl<=bxyx=}qvdz(U<>yi!BVhU{EyGPlMJ&pPJ{%!)tRf9@)#}LmNE(B|IE*l5;cJet z5sf~R&RyzXk_N+~20p!KtF!ygu8@2#&+hNEZn@+gBAEq8;Y3Khpezo1HxLwiysf_C z)C{QrhH6WBW-~pWym(|dA0lgJ+f041n0(j1jqhrE^py;s$RS2pEV+40C{0;%mNGH)zDOo*vcR4Gcc! zH}Kt}$wez}LWOw4DN zkTG=mLB0#liMdXTZO-f(6}%hlbK1DA((3tIbCY%?N&2bzioP=db&Hon&O)gNEJBt zuqU=5u5IVjh#G@$b3b&)+nt)WY)0BGZE1*v`s?l}l*gLqpjflNgw~(3BCL}e2m#a%FW}-zy+sDGv+<83n!c_Q@jlk zk@TF19hh=?Wqh!wMeHO)TN(?~NN0QU9{qV<-DfS%V4WNbtB``4V1i|o?G|*sHPZ)7 zq{E5y*^SM*9Xqmohpm{osASc8F^qyh;@1tjc_wRb5aPkK@nXRys4sZzL4hsP1YB^a z1mR+o`9bCZu*S*AfT;!!sgL^zzH~`%p#)g`twm&llCE>_-uvHlCi^f(v|*pjfMOJM z_DQ!AB|Qsw7f~O)jsg`2nP~@_<;Owd8Q5LBWHj719uU3UxmM{B!%n4Rr#v!NtfpC0}w>fc+5er&=4e5JC#+sX{kioSX+DRm3MP`cZ^1;v0>MXl z47>UN$Pf{3Vc_PqP=K;^Bw}GrEvW+>4Ckf?NFrWyP;9(4>z&1afJ1n99W|_FZq3Az zwrSheqnW0?Tcb4d11?HdZ;c*}N5>AvRb*@_`2KGTa`**&B5ZVBGzxS1quq14J@T>- zz3#>fuS)CN4pXmFlTwDhi{JJC#Sg789--yqBiPDi*C-91%WZy*rUJKed^n=4V+{>p zcX;(3atX!H~Meca3JG^jMG?Gq8URl^|Ev6Wzw7@C-n!w( diff --git a/docs/articles/EDA_files/figure-html/unnamed-chunk-49-3.png b/docs/articles/EDA_files/figure-html/unnamed-chunk-49-3.png index b53eea27de9387094edbe8700a0cfdd0df323aae..7581851b1d25a452b51aca98812a46a893a0ee48 100644 GIT binary patch delta 2614 zcmc&!X;@Qd8jZM%o!FuRf`ED=5?N%2%TlE(hViDd zCPA$VGqMN)LRh7v*eeOBsUUfm}maC-=F*Ad+&G7`=0llU+G#S zbgf65EW??z7Kbw(rQ@cH_HUKXmBb*ptBOUqZ|~|IG1onco~3;GLLOLpr#Ym1lFu(YgV3y9-%d%5#MB<>s$d%_G&lD|gkO&~3A>G+SG?8_sJfi5(UMCj%3NLa^ zwL&aF_V5rXhg)TrkTur_*zFhix7Tf2eTLOAKRqR2sRC&{mcsZM2V6t(Q1NuBADBP=}AqXVaR``$1gQZw7~t z{jz?EUVu5jM0IMdUq1SLjYY`b9&YEv#M{|~I687>P#x<5pH6OEeA%0r2XH5&+1WnQ zsBn7GKwcw0Q&-bmXx{X8_h(vww6?t`SJ84;^zgXJmAmo3Mw)aZ&)@q>jD$dn)mhm6Ys}dHOrIL4}b7zNeXNS`HoVqFT zm1#psRgP58UdvKb%eR1#0bTlT)}?btda(&mU8nK*+u8FzLm_EwSp&$A4#2is$F1|% z)E4@=GE(nMC4sOXF8b3vfb+Vz*wi~Si1*nS$2klS*$?3u2PTvx_p^QTiCJ?DwBj?S zF=Z8pjK!&A!dm_gLvdtUxonJqvH_XLMF9h}7|X?iI-bw2bF>-I;Lo$EF1_M?Tw^7v z04-z5?|f`CeF}nq8IPfsudI!ggWoOmC*UD`z)h*B4}<5;kw7rsT_M5y7^GSX(i^a$ z;>xX5cSTY32lAdsRfnU4AYS{JnfLd>J%E&=I8$8EVv0Nkt4i-Ad3xwPVxaSY?SuaO zpaT2}NHqXB>C3pFlIW;uIUv5t6iI=Z4AcRX+%mhzZq1y_zn8RYI@3aS8tAu0-h*_C za@{y=(Z`0zGwY3&E%{~`OHe01?^na9YCuha4Vw6lb*lpuv%Qq}MpX<$HY$v88TOB8 za7wfm2%A*^&juM|r4W74`*_P}2NT2=PW?)-6T6==Sn^@>yDr8&Z69A5Q+#k2IUk(? zjsg8dB#kv^NvUnhX&1iuJaNqu+1pocMKoA8*7PVB2?8T-HaiTD7~3DS)oJ}H%Dg|D zb0TGj7Ug#NP3L9hGm`yx@Ag|5Ehfz?vON6tC(kC=zq?`U^v~dj&edyY!4(g@VvAx% zJknbyoKqxqQg*gKrH7p;+l@GVvf((S9Mn4b6g=fMq*s(l5Q~da)LZ!iJpTzq)XdJx zQF}vc##HV-ZwC8N*9=xeF{6J(4kUOg*e{FDY~nB;YikNQeWqZy;pAS}@X+vjD{=~B zP38{h@gO$|J`ejcgCpQ2CwV9?!csu}jahn)NDQ9Bd6T<&$LwXE6rq9FaRnE!H04#< z*xEcXT8;!OZW?h(nw|7mYF@YeHQlC2A%Yp|jmHkQxZX@%AGekmz1}4rVY6nWz|~der*Bgp)IsHukap43vrY+GKna zz4B!>`?D{WB?zDvm!btM`3N{oQAnq%lFX6UVAXNXtsn0Kb2uKfrJd^yOL2BYBwW@U zamaIc$&lvF&2`*lt775 z!n0g6o=K$Yx!Ccfb_*DDp|{hIsI?qC8F#E|5ub@|q6e{)|5;2c4%@5KI$sebNiHq* zQq&twq%{zXXw?$`q@aX-I;+?YP;finK;L^7b;PFDc%5v!i5grb3tkI`!0}P}0M%=l z9>xJ2%=&SH>#ymNjBv;h8ou3Uy}1Ce<6xDe1);RTJe)W4qvL&%;P^9Y=bqoRmUMkQ zSbqr~dG)PWK5vK6grtR(w|FRW3O^CHWp&skuCM+v@rWi<{s5-4(W>s5BE0B0fcP7v zU7EbSvK+C(8gGMyYB%MN^#s2vaRb5sQ%Dp)2vTlr)$9%?z%{jvKz0-lQQ_2bLhn{> zd8sD6F|k5=rTn3eFV_Uouk0!5=EoFnUX3CT=)#Tm{`bY}!78vea-{jPO~c+<&*gp3 z;C;NilxTpgtp8eI0k9EJQ{iU}Ll!FOefRF}6AWg92t4BaxB4+?A+hNFf4eYpR|eHv zmjOIWL;b7;Vw`1j zT@EV4;^4U(ZQncy4t}xh3QTWw0-Th_q$R<|arCQ9iCt&xFY8oe_8oSig*a$gI?T0| zwfp10(4PgoiVOW|ov#pp{`isq&%{G8|4(3-{-nlsnDUPkw&MJLPQ!+D z>@2}1>uc^X+4WDSMUHTA-9XI(yZIb(-zO6*6Xk{#Gg0ix$X#d4peD_miUN(9sc$P^8fM2x%?c^x1L9a}4djRtuH6oLVf1QJMi>P>)qXF7NMtH1Wl-g}+zTi;&m zTW2`iZPSU|H z7k4&r#A2N!>OFB^=&NNY6e@a~mspc?>oqyT<6C0$qj8T>8q~AVx4oIwl}+Q3kOzO8 zItN&nbnNWofN3F`gLX=MX=-bSWp|?^vVo$TE(%!u%)5$st;oPG<&FGru=)OpcYQ%<8|FE$`vBXbWXiD|%9z z>mb_5YmYP8_sk6R?u83H)V$?&F35oCp-29rL|(7-{sesp%}a|e;L9F_6b>dOd^73Fh zd$yr_V@=J)!Dg?c7-FRKKKe$+Bo8XwI%;CXe&;59Gt@^<@v*z;*q0_v?CtyoC{M%d zGvQ6r2mNH1L+T!`#9gPH#dd{-S+SgEu4}>%LcVK_(9soK*~S8_skXO$ipkB$602!E zJ1TF+txbMYz4H&{Xe4`*_dg&_Nh#;`%Wop|0Wot)P$YHs2ir2=VjNkfWYKaTpl9@> zHv59+g+AF4i$&rh3obi$#IDn~kr;hTmE{y(8&Qn&^XPKGSG#k)5RFfp_>a_9bEn(B zpycJfsX|~eA#FH}NomT0XK!j*`@HFDAl(5UcZzCDVkF09CJB>vlk=klkm8I?* zC+64>(_)iCVN$lcJ~`r!xhj`Z9l2`@A^~;5nhD_N>ntP^J|s|dZV)OJ*d?Bzguvhk z6P?pSETPnLqUKsMHxEmfni{n{R+0zTyCV@`LylsE;`cV!<~E%oEIF)JGq?dT2X+A& zF+!)L%W1W`>nY}?2G%*)B_}At3U-V#p6!fS^AEMhstO$zMbIS(onjmF6cs>0u%(|q zOg#55Ek)FG_bX%sq>Xfoq0N}_KX{5g+1pJZQ+}za z$?a=XYMt0!uh}5TqX^D@NH79KXMDLPW6AIaQ0(ZPd}++i=yfP@`!$eOpzyxte#_#R z(+}3hy<_EBaK6uA0MG$FF^kUB&38U(TgYG5leKg$5ad+ripW8O+v1UZ;0{nT1%=HX zsqy5O5-T(FnI8u8JvS5RUOvd*;rfdTp`^RTg1yj<-MW7Qp|A^D*{!w}0}cbT^ZnqbS9aR@#Xabw{VhE3>2@4d;D`Pi6U6`hE zqKxH=YL6$J$P{j0RXkjU zB|RWNJ6l^f#fA50)awiyQaL@l5w#TZ0@>Uibb9jzM?8kAee>FFl0?pJ5A>0 zJz3~liP)$uy6TwY_Zv9ExGk1 z)Fzu}VNmQU-8Rs*hjtdm9>%#ITST}~aItxL0BWGC|DAv834wcTx% zwFCaHxz>d!_D}`EXu*(oQCDkNGp%X!;ww~r2UDN@C?A`3L&~LIbL{t6h&q8)$E{u* zqd_|&|Qnv`3bWEuB&njG0ncOhFKEx)r z9D%ee7V0`WFtZrvgOm5u;QB_KY>nAif$;~#5U0C2_So`JjXgrS*_J11VF*^4V2md% z1Sp=@C>szi1It1xLx=DDcfEQa!LrB%pTSsT2cXt;$3HyU<(+mXCGb5ide56L zGK}Vh`gQyU01+&SU)ACf-f8kuaq{UtQ~t@*=Iif0pS7$1`S2(^#5%=z6AU2wm-$7X F`VZfNq<8=T diff --git a/docs/articles/EDA_files/figure-html/unnamed-chunk-7-1.png b/docs/articles/EDA_files/figure-html/unnamed-chunk-7-1.png index 62c85f7396be5986cc76ac8ef9f8b0ff55787c76..589e58afb1d6c8441fa8501b62827db8ff4ea3cf 100644 GIT binary patch delta 6709 zcmX|Fc_5VS*Pbzqv5&~UuVoi8$}U?%N!b}uD9ecKd1f-U7BsRedEZL*C2LtGTO(^q zmV_DGE8CQ9Eb$HF_syU4Jmr9rI4aUhBUOP88EYTFS5y|ZlN~#?~bxsohWA)|4q_NC= z=Q`k-A`wy3k4c&)izdsdDd)LJTjJw%4TYB@jka6s>p)_uRhfO^dt=wGg-#YJU0^>VLcC?A?9^x z2hsno01bnU2H&i#;YqL>unFj2i9OOP`88*|BoB9m5^D8!e_Z;qxK(VJ@Qf99Nm=|I z=!OXJ=Ys*_1O;&cos++^xVS%V7;9D~6+?|s%KXzvXmbIdP1EJ6S$ut=*B;ur%v)R->W;yj1rpHYF0^1tm+RC!FzrNnx zWJxg67OCPepoo+6XWredTKc@*Mzl=uG5~&BF8=lWKq_s@lKFrPb|uC&0EWKnzujjYWU6-S|)pIF)@(-cVt&Pab?+j{LKrBy^g8| zJV0rkKQ_@wY%5@3kA=_|yCffMt9bp?VaH++r#olcw~KnHt(u-sJ*tE5^>o_>%a_38FIo z13DJJV5#B-&1b{OkbxVNU}!YGI!OLc#bgb3J9fMUgFv*Nc=?7oB>GuJeM(~lNed4^ z^m42b%@oblBVy!41sid4x6TA2P=dug<34mePxmrAmGEyCwmbMUQPS?N`CI;CBHTm{ zywMtysFHdBec&pH!`QwWP2M+LJ30d=Cw_H-P73gAER#_XVwHsCvMPY$=>A1FnPq=C zNFYxRRd}iP{`|(iK=D*HSM-TOFF%TUab#*Udd==V$Xu}QK)jlc7s6{T?f--6Jd{xV zk!6_E)%nM+$$uc2@xGQO>RQyNF zvavu6x_>2}cJ}GfskDnT7f5(&o>79aTXfg(k2qIEKu_%86D7W}g0+re6>JmqApv4Z z*`^dH@o;d`lddo?ANglT_Ku&fDV388VcK|QNY5&^kF`-0K{ujjNwGW|wa;uA3HhA>;~faP8fJ_R zifhwSgFSx@Wb6lMlI9?|-XFDzsISbK)tLi>F1~$F=G4{sTe zA^~xpZ52r%w@FSVm-})45^<+h#9NiomUPaWy!HZ9PCj@pPJbBr)PRV4Mv8hY$HnqV zU3%RuS;I2t)uFtz@U27?uL@t-nby&v0m>xw}ncccvUd_!%|E(-!#Y+pZaN6*W0}G88oUOyv1YRqd&aQSh z-s~XO-w&R)+gm@D1QI@N^0---l*^XAmF;}m9y44@deZIM4&G=l+-Q&dmAJgIP#&rC zdnkfb!`6N!t?UXdo9u_ul=R0gU&u^J;^obL2R{>zj2%(Kp%)ZdH7uKhtl zQS;}XIp38`aPpcWYYV}V=U<)-gVyVC)MW(mV}oOAGG{woxTh5N{=y3D< zz0v}&bXC$2Zz0*3O_{gy!Cci5q-nfJ8^+T8+cm6dL^r>ckRv1jG<3FNqYbP1y>zF! zjyF(WFp3v(^6jGdQWi+IUs652QvFB{Ua?(#Gss{j_<(0bLC5*JcTlKACG!Xy5|-iy z+)F;|Xy*N}3+kK2!`G~_kv@nb4QNn=$$q%Gm1TSeBR`KB&Sudw~IK(m3UT-***fv$;xnspWub7oXV;f9~FCi8F{rn>c(5lBKixy z8%(X3`f`hb08_4h7rFuvRixVh&UQda%-L=8uJn&E+K)gTT>_*3SLe zLo_HC^#mJjM43=5`m(vuO7uplQ8Q0Es1cm(YT?xmNRNTghP4@zISQ~kzv`p>#?wWZ1-fuym<5pG z?AJ?2)ZZDmC81BZr_znTm&UTHhqe-+6xV=$Z?UAruCW?=O7vv&$M;?M7YoD~Yfi^U zgb%!8C7)@PV}oJNRy|dSx|-mY*j4gPZt5OVMn%ui6ukwB2d|p9DM!Iq*au)(P=?pk zx+zn)UCX@pjSWGRA({mZ1~{WD(B$Pa&DYCK;K|IWtJoY~c+x3twYZ4?KxfWgUQ@|$ z@-)791g0O7DxuOUvGu^E?8@DBc-1M$WFw9WE#!ASOpo!lS$cS8TKp$;E$9Q3PxR{> z6gsajrrd~-F?*Bwo4)p`R#Ccfy=3wi!!;9l9XpwsJQvjpRGdgZMFZwzE&5wDv;OFd;{l$_l=CuABSx>wQZq`ah1^Fzxo{!|L^Nz8@^a+go zac|9uof+afV5Xq-&$q=eG0Z~Fb?&G@_>V0-j)%vA>+7@Ype@eUj1Se zNUb-8vRipAefON|u&Vdspac!SA@96-5yneSgni|KN4Q9aNmTw4C99~M!Q0JqDk!`oSXM4a+360oWJEIV{m#7jQ!p}lW6gnzKzl=88A!t47+*UBhwLcOR%*uv}#$Ltn zW>5Wn#H2V|SPfST#TMzMl;i;8?8I{kL1Ha@MREFjaI!ISOPy%T7wZ1Hh*oE~SNE=4 z@0shUe&-6JY7$rCH5ZQ%Nq<-CMvW(TL=A*oFgC+Te?|3uHUUX>U1;6%;QjG+Id5%Y zfi<5c_u0~`H0qXesaY4qm3S}4J?yM6lR|G>svTFh+%=$|nhPiDxhXagzeZv2&;@Fj z1&J|u1XUYYP~+OI0dm&@wge7X5WHc~F+J9JWrv`>k^p^#Xc+$pL+4Ekw||e+07n(? z$?Qu)Oi_#o`nOKYHs?{HXi-<=`Z|dY>277Alf-zu)lU=rbAC#vcI$&Pyu*(cu3g?b zQ30I9s;X@EO$5EUiTvg!w!}v4R@r=r%Q$_M6WGIJvrKxl^VCCHJ{29r9dHuUKsk^| zx~%oRla?qFtD%$hZA-7U6~-v-)>^Qmq_z`Vo!&)z+r;dMVG8FIc*=+GgFM#WeqyN$ zUQRcMudkF=xO@c3f?JWi3mSMu(&m_l6o5D>KG41v9JxPjxZp&ccYHZLLOAmreQl;m zF5*dwa%kxm{2V&+tF<0yh;_72_)GGflK%W(AGiB;gWqV9bPH z$QOE+_-ZKU1Bf~~)W@N2iLiqvSW%QU)Lmodl{^jePnwS`iUC)Cy%Oa|Pieyg7genE zRG-=#SN-M%TYY$_;$``J_=E^ul0{3jmt5f26B+fGg!0$ZA;xold5?)h&84PCu@rh~ zguRZwfvQShF2j?Ai8#Z%WpO4`2Wa=_D$UO}{PaaG#*vvQ%Xo=D>{g!`ci)R0!TajP z2tZY}L=fYfc(nrQJ3n}ECn0-Kv9iy@0#BUiwV7FC_LyR4$2GV~=3RlgSBgH<$bNq) zVO-!4Py*RgHC%q$BfH!XyDIIm$JsOL)msS&gR&OUrRWy?$PWvb=SMb!7Y{v@&^JAI zoj1#_DWaJ<&|4BEeHmccZcvGo>sg)~zTdY?oIQ`}rwcHgL%=EF=0w;qJ+>eh%nx zoT6g_-crTy+~YBpGrLC7f&_KQqnA6ODz|)I7t`htL1k)x`%Ca7nWA^mMW6z}g@Jdy zdTx=M^o6rbb~`@z-!hp?%3h^SkHB+FOiQfWjxc3|6?eoLyM<%$cUTUSL@g^!8|ARG zp)}PfQ%{}c{Uj=HbB$=Wn&aEm=W>gg3hZ8u_*<687#uMDzJq6XQJOSsbd@=gPO zGy(kkh+15tK=uV~349uLbT8Dd;O6TrdTr;3K6o#%UsvGJJUd)3ufj5-sPp>_88&dS zs&n}>+l(VxxwT%f+x4F#U~TknP%$ZZ1D`xe)Wfu4cGBh{+QRO)pi1wlwegLXi@cw^SNg?4uR) zUk`3HUS(C;b)EVbuahFm!Id466rjz9;P8$u(jlf4blbe4C8Shgv4cmxs^RnB71!7ZZ`T+*uAkFE5>Tel_NBJ#Lqo z!)(rk8CwQ6xFaJ5#xhRQZ2e9huCbMHOqyDto_&}rE1q$1+H3c{+~H#Y_lga}=4yTu z?r+^$WF9-;vm;fZLzZ})=k~DZ*!%N`u2CnFV8cDS@mgT@_t$v+A>)M%i$MoGjmuxH z(DGMj5bNes5-*w0s11+LG)=o)4i#+Ip)PwJvxUb)>j4wB2nIWE_@6DwWD;TyHmv6X z&Xr?&BvoFqO++YrvO}7|z6_1fZ3wcpm6=EJ$p32Bchuk>&s}eO7=%v66b&g|nAo5H z0>P`QtZd)CE_?LSw@K=FWDBlii$`f=`$6Zy5cIIv9%nr#yI=567a9)cj;kFhJxj-J z?U=ZyeX4*B#*j*n?c=#+^p%uRX42ia5p=hC3={4E{iElN_W1}=LL_#5L2L*9`M|zB z!Z&>Ko6^ydubQcg?Jr(OU8Zdx{Qgg8XL_R0+rJFhzSdQ(I-cyl7!=**pGE^`5+>sU zGfJJf9B630M#k7VmUrAHxWIBVUl0I;M$s^))?0W}wBq2MP@_*zE4pwKtGm0F`Lk9? zQ8A8jdg3kEBeCxwNpTTspRuH9J^ou|>3STMoEdA%u9l~yr;~UnwEd&YjUutFa6&V# zQ-{8?Y-?Ae57P;I@+d#hwm#wKyF0v|arOKUQ z!h06S8YC9Xy}yTY%Ggsn7hk}bjDOnDy82<+4GmkO3o2&mr;SB6hkNzTrL{1E4nr>E z63aL6vc4i&JV6hQ0s8ef33UFoe&=+rIaq`&Qqw;QlRCI&2Q7v*Z0zYasc(}TI^o>%UW#$aWBFm=YgxvY&62qO-*wS|vH0f6Q)S-!B-gSZtz}{P| z*a0toxt+MaGanJXzvO1*fgR1@y}mkr+dE33%V*Eg{g_Hz^+b0x!tZS}b0xmUXIh`2 zo2L=3_oa6O)UaB1drqUyXp@KVf@Aamvvgpfk>?7qRqYnk?Ab-E@F$$r(F5j021c^f zeZ7RgT9kqX4mAB%bUA>aJ1mi=$NoC5{w?N=G!G0PT^no+`p_`HP~1D=XP(n&*WBdu zc#2om)nfR+0DJvkwEnHX`ine9Pj$$7K|qN)q+ej?*$1AQ>Re3@$3{SBgE}N zx}x|#^GHCAAixE^_f>sG4(hE9X&qfioW(!KOT2{gF$ragXc{1(oqebG{?g>cmYw?b zr8HGVgE~s?_kAh_wiV*IF_8%ygG_Wj~06uzX ztu2FnXQbQITO|X|)?h*|IDWmtCx>>Z+~KC+?|Lb2Z}(x(4{83^N5xi(g3!m{bNOrW z#eE#nFcQpLOMr9%8Gy9FIn)916ezY0Bm7ADU?38ctUq0b_eMs-{NTJsL#xD;;YTe6 z$Ktoa((CcH7Z{wA?iS&efD-n#T=YU~9Nsm=3`bWy0w{Lm4&!})vu_PwS{drUI(Ll*%|Sfr)E83Jb^}8m2xTH$BW8%S*k{J*s#xep8>lRSmw1 zt`$U%R5A0ON)=~#3lxeTc38)jb^-5gzIGik>ioQjZ&Uft9kzYZj@Buq%p>9vu)C9( zr89(1f8Bn=6&AQ!S{d#8p1ETef8&XUP@`Oi$CsMpKVf#oT3AQeTMh8+KIBqYt0&VS z5agx#1q0j5p$gc!htG~?2&&_bKBFoGCE$|Rf-Y0Tm(|CK*HX^&-0l8a@6b2%zdiEd zon{%oF6esJSj( z#p6zdvweHg1J^rP)o)Ous8Dc|mr!d|%au+24s}c&ASZdES&LHHvz!tN5fZfD7T7Qu;|49&L98IbY-<9&T#>{a@ zcdO3mLVLXoHlM8T*br8(Ei21Xz7pFodK(NL+>vBQj}!4> zNDd?)`5d-|t_3sJ0KZ{u@vN@$AMhaf=@d7g2KxcWMEX?)cX?G!5cOwnY;~c`5c%N$ E0LJ!Jg#Z8m delta 6707 zcmXw7cOcaLAHU(wS%)Zl9EYdu5egBhtW;!%v&mi|@-@yV6z37yeu*S|XI)m5@Yvg( z)f3_*Tv@-%dG6ouz2Berc)efmk<|;&?1hKdfK4NzjEHAx7Li~VFkO8|Bv={@5eTgR z83h)g0gj>mqMwBnfWkfUdMnEUy&aG~S#4w;vc*mS=fU231f*IhcVO-4AcuE`@j&@kCrBRN z!DgObr`X1E@|vp}Cd%}#xg+s)zD}S|Q*UR!DO(18uS&9V1=mAJPltMZ@CstV7F-66 zDKMD*8qvl20Ga^0u1)TmC+Z2u-H`YTV?~%7&0&(9*2<#ay4;hEn6%M!0(YtcOMy|| zXp&DHNJ(pUeEhI6nm*Y<2Tt)&2RHJ3l8|a_B9Cb7?NkTv!^jfek5R$qWJVdzbbyJt zqnT@Jn1#@%MaVRLRR@7c zk`_U$*Lm4tGIcw)Ba>wy5_m5lcIm{&(pqpYY3*L@T5T7eq|1TQxiE%a;1FY5bXXWp zd7>2(pL_FNrhb__eny1ApTN+*29-f);ecpqZ{`?vJU|?Nxg=c#$7u8KHocH(OWIdrp}k=S88QCQ|NP834xFi>DlOTI;Ji)uk>l9u zBvLxd_7pU9>5C$1J?%#$RSfV#IDz2_*o1;wn=+KG4BaRGbB?JqO6UL_r-9qLO ze4zXu^{?=9L@oej(JzqLd&FAlc>5y zc$)7%$-2p#9z6iceMYj*qYsj8pM~aa(YI%&mU?%XFfiAB$i#0jb>7)V0ODwAe5EYc zri4c{H8gAe24e+h()Cs4+JAxPX0>{%5Y8>MQaRUq%2gW~d@z!{+!#h3qaYB;E<9w4 zFa`iDFaFLyV7d<70)(=-2}fXWLI-yDV%KwYm@+dnh-Si%-_|zxLh6Zi7AlHCudkf# za3Hgi=0U9d%%sntZIyg^=qBwm(5@j{m=RNMTjb!JhN@6I?B@)-H7g;D=-tn#>HKZ} z_3?CK!>@3M?K%&knHq?wq-c#lhb3S*!;qfcZQUI1?Q0%?`U=CJR}`L*b5WBr?}YK= zfml7$-2BWqTYCLC5(6d$ly(Sv0VkVqldfTTAgc5=Hzq{T2E?eLwR+}=fx{$=)|d-g@+O&|(ZiRgb(wkwg=3t!n*lvvsXh|Q{5;F(6GNZJfyVT?;z zm6?`i0_g(F0ecQ~d|$o~N6lisKLwW9V$@p|H>O}cn8^0&;VrG32sle&Y*C*Zq7O zeqFQsk^p(ZZ$_gPp%4G@(m^6f)bpkyLYRGmT`HIJ0pT)6f#e(hYK3)U?aa^Ve>(lr z@aOT*AqU<7%~mc0Vmz(o{s{^S!uq+I?+TD@G~KWtBiAk>wza04H+-X(K z|J{bTLvQOFHSls1{P4~Z%UqnZ27VmjAqc*0y06;g3mW0MBW&Z-_CHwJc?D^_A?SxpzH#k|gJ_R8?j+sEOPAZvU>^M5i3D^yx1Wn3H@KBjl`-^N z1)zFQIu!IvwoDbcb$nW$JI>y&>Y*gKb-v!K!c(ro`4O35gdG$5u>nJr{GevSI4{zP zQTM_O`+}*RoOmsL5MMf7-}6CM!Xe%kA2LK@5WqG;6(A`5GMDnosRw67XybX`WYER3H>0CZYpm*nc&YO)fZj-sh#KZ(2rv=RtAQ}^*MT3s*H1&cnNOtz|<*zcM z*F=GOtp?-*Z;y1$TNH~rO(^Sxnt}4!ZY#6m2dBj4nmx(}+&4_v>AbJzvwF?$-gx?K zT;@1ixxwPp4VD|Gc_SCoEg2GlsBT2!^A8?P{sKxZ^xTHA-J#qeX2EMzzT#1FCg~o| zT(g_Sa9T52LiDytOQYCA-BCb3!>oly3fB5}&LhQk3BotVk?UkZ86<@pAiPS?NtwE% z(=FY{kbYQB#4d9OQE!Y_eT|2upVk`wFv4eYX#B4eSUXV2yIz#-24o(L1h1MjjUZ?E z2(hND8>KgWdVet7&?ciQjOtmvo#Cyr&nxo!x_0ayogHbRaR*?wj0r8(ds(hroI4zd z5G}G?Ld*Y_9I2SFrKk-oWR)KfOPt-TTx}x)*MdawEBG7@Q8hrDElW9S(Bz55@MQBo zSm1euNB9_Gz@+0lWp26mzrwkTVKhOYAnxuBdepfWN+EKcCE=H3Jl*LSs3G~C_GgL! zij@aCe&Nq+(1hV4w#(56e#<+>6j%|(!MA7&kr9%GtYWu>mp)sqsbP_Xxu3&^*x3{t z3;w^F8yNZhbK+x+jA$-I)VxMd8R9&<~7pM&! zSMsCw`r|oJbN#tbb+MO+}AjuFXt$2m zI}9pTx@P}a_Fn_+MsKInuCo#X$YeN#d={Mp=X z(=Pl{2t-Az^<2ANQV8d>zI*RagMZXc0m*>AC_nT47hx?7%H?z$FR!{}-h4MjvzzFB zMn*RA($@#=-_D+|vm9Q-3<8=5+!b1B@s|inEQKE?oIlxQQVH!S|R_+q6-;QrdT@ zpAWMs+k=Q=3;l%XCH|lKK8>=8176cbrxfiWND0D)$|u2jYL~3<7~S{eOy{rJb=0QH z^3YRSg093h%(DIr^SK-jC@JD6d9tz#4$1p_hH7MynTWnoaPGnQv@}Y>6T35PLNngHcMGF(C;R=jbL<*s-I(c*%9sq zvILi3Jp!dyR77f17pKzkKhC{s9IaU3B{<|gsAWj5KMwv0@@7m3Y0Vlvu@Swaq!=V} z5AV@|;$V-;vhjRS5hL>4U{avC$LoKEtbEMS~>`x^v(_EoS7 zhTWkqvVr$)PIyK%%fi&W-)?`BI$Ta5wgEZ_x0Ur4t2w4eTFxoeQcWu^ryK}=N53%C z4CAfjrkp9x>!fnAUkntW%4dX(+?Tq8v*tHi_IGmp#q>i~&a{F>X z#0tfH0hUc#>&OZ&5-TSD=hW<=58Az|U~m5@%*dsYZGyH3s&uu1t6hk4CAk^*5iCI2 zvXJ&|?kWFyMSljm6o#BcOq%p$gMGZy(l7Kp=C3L*@L|6CZtbu&(JxO{bJ5O)chqlY z{Z+nfW_MV%p*7Wh9h_q5FaP@=0n{ z;h7$p&j#2{wL8|t4nZO(nyIENUNZK!vlq9rw!(nJgufb-dEO(G-^>5|JV zBYae2wva^(vw`yt&$D3FhI&-ZIp zOYIL?EK}T~Ry186Ia`O7-}^P&`z7{0uMEU#1CjeUzasG6Z~aH4!RdMG;-!Q8UCN2u z38-eR;$VL<9O`r?*Ai6uc0YZ6_nVr^aOGOjS>H53Yx{woZ07}+Frk*C#++RB{qaFg z+uh~pQI&dbZUH@C?lu#%(^R5M_o@VL@w_e9l<@YLQf8?dC^DEc^!HQK*k~%rX#Da$ zsRdT`RcjYO?E^_)ipFiC){k5zk5h9(;C2QB1G$Z~3J*n@rp-V8yz3U;om=>2_Ny)6 z>0!G`9plhCYc0SC?uL0_Pn(?MW{QB54mxgGmAI=;Je3Tp-fn5je|3ctyQGv zby>W01eeUeJ);{+^zDGnu=EYhRysNP2n&L19EZl}CWfFlSS8YF1KuxvxaifM=b6!M z)dfm))=*YatK@B9Gou*+2}eMO7ex^t@e`M#+o(j3`}BcweF-=N7qu@e?dcrz=bcy% zn-}{Pn--55^uqalq19;M=R^|k_COmqHhvAaXEY^w{tfIx)BOaN24K6eXRBw}QTnlc zT;4aCGwY}h6yqrTx3<#d(9>4l(`D|ILHWv4f+IlUF;y-N7nd|a`b2+hfs%Gox5#=s*1A`fQNO} z`c;%&_s#mqkx&mSV8FjoGbjYz?Z3eL=LO z|Lc|9oa2Dxi^fI4!ErAaPM7nM+(|~{9EmD3&tHbs0u1y*K_t zd?*AdSr)UbH54TQU_*TxPhY9I6A!LZDy(*~6x{PLd+(Z-j!IHvs`}zOQ@WYuF)gRs zvU|DnZF_Fp0zqNZYwbwtKe>ONKm`L`r(6<~JoLtfzVu_)50gBs0!n{nIJm|J&IoHf zyu+Qxgnm-VfwDAsw~u;MmU_}#uDwEE)5x((#yYn{+- z(@#dHm4hzkk!;dbWS*>BYG9e9v>%dqZ_Mdzge#!$$h`?^UpC;D(t zO0tREO6<8bjv?~INc|3VCDG}sq{x_=r9bPEs!i&4&RHM!J%x%+w1uqbq=e)?Z|79I zuf@X%cNGVf{9Y06)9=NAoZZ=_mDdJy4D@jVpvk5b@=A%`=?sWNyE6F-7&tFo@5xC~ z@M)@c=X7v>?NhF?{cyR|=roQai8DS)-*0Bt8*1*dyByuF;?>%)9}GR`Fn_aLI(q#| zYMI&TKYvO$LWfs8?{|ECt}}c(30MfIV<{VDsrmw_hYy)Ry9 spsurvey - 5.4.1 + 5.5.0 @@ -84,7 +84,7 @@ -
+

Introduction

@@ -125,7 +125,7 @@

Introduction
-library(spsurvey)

+library(spsurvey)

Categorical Variable Analysis @@ -136,220 +136,220 @@

Unstratified Analysis

To estimate the proportion of total lakes in each nitrogen condition category and the total number of lakes in each nitrogen condition category, run

-cat_ests <- cat_analysis(
-  NLA_PNW,
-  siteID = "SITE_ID",
-  vars = "NITR_COND",
-  weight = "WEIGHT"
-)
-cat_ests
-#>        Type Subpopulation Indicator Category nResp Estimate.P StdError.P
-#> 1 All_Sites     All Sites NITR_COND     Fair    24   23.69392   6.194024
-#> 2 All_Sites     All Sites NITR_COND     Good    38   51.35111   7.430172
-#> 3 All_Sites     All Sites NITR_COND     Poor    34   24.95496   5.919180
-#> 4 All_Sites     All Sites NITR_COND    Total    96  100.00000   0.000000
-#>   MarginofError.P LCB95Pct.P UCB95Pct.P Estimate.U StdError.U MarginofError.U
-#> 1        12.14006   11.55386   35.83399   2530.428   693.5593        1359.351
-#> 2        14.56287   36.78824   65.91398   5484.120  1223.3708        2397.763
-#> 3        11.60138   13.35359   36.55634   2665.103   658.0966        1289.846
-#> 4         0.00000  100.00000  100.00000  10679.652  1416.2707        2775.840
-#>   LCB95Pct.U UCB95Pct.U
-#> 1   1171.077   3889.780
-#> 2   3086.357   7881.883
-#> 3   1375.258   3954.949
-#> 4   7903.812  13455.491
+cat_ests <- cat_analysis( + NLA_PNW, + siteID = "SITE_ID", + vars = "NITR_COND", + weight = "WEIGHT" +) +cat_ests +#> Type Subpopulation Indicator Category nResp Estimate.P StdError.P +#> 1 All_Sites All Sites NITR_COND Fair 24 23.69392 6.194024 +#> 2 All_Sites All Sites NITR_COND Good 38 51.35111 7.430172 +#> 3 All_Sites All Sites NITR_COND Poor 34 24.95496 5.919180 +#> 4 All_Sites All Sites NITR_COND Total 96 100.00000 0.000000 +#> MarginofError.P LCB95Pct.P UCB95Pct.P Estimate.U StdError.U MarginofError.U +#> 1 12.14006 11.55386 35.83399 2530.428 693.5593 1359.351 +#> 2 14.56287 36.78824 65.91398 5484.120 1223.3708 2397.763 +#> 3 11.60138 13.35359 36.55634 2665.103 658.0966 1289.846 +#> 4 0.00000 100.00000 100.00000 10679.652 1416.2707 2775.840 +#> LCB95Pct.U UCB95Pct.U +#> 1 1171.077 3889.780 +#> 2 3086.357 7881.883 +#> 3 1375.258 3954.949 +#> 4 7903.812 13455.491

The estimate of the proportion of lakes in Good condition is 51.35% with a 95% confidence interval of (36.8%, 65.9%), while the estimate of the total number of lakes in Good condition is 5484 lakes with a 95% confidence interval of (3086, 7882). In each case, the estimated standard error and margin of error is given. The confidence level can be changed using the conf argument. If more than one categorical variable is of interest, then vars can be a vector of variables and separate analyses are performed for each variable.

Sometimes the goal is to estimate proportions and totals separately for different subsets of the population – these subsets are called subpopulations. To estimate the proportion of total lakes and in each nitrogen condition category the total number of lakes in each nitrogen condition category separately for California, Oregon, and Washington lakes, run

-cat_ests_sp <- cat_analysis(
-  NLA_PNW,
-  siteID = "SITE_ID",
-  vars = "NITR_COND",
-  weight = "WEIGHT",
-  subpop = "STATE"
-)
-cat_ests_sp
-#>     Type Subpopulation Indicator Category nResp Estimate.P StdError.P
-#> 1  STATE    California NITR_COND     Fair     6   8.239162   4.712515
-#> 2  STATE    California NITR_COND     Good     8  73.722638  13.359879
-#> 3  STATE    California NITR_COND     Poor     5  18.038200  11.909638
-#> 4  STATE    California NITR_COND    Total    19 100.000000   0.000000
-#> 5  STATE        Oregon NITR_COND     Fair     8  27.152211   9.763817
-#> 6  STATE        Oregon NITR_COND     Good    26  59.670307   9.717093
-#> 7  STATE        Oregon NITR_COND     Poor    13  13.177483   4.901892
-#> 8  STATE        Oregon NITR_COND    Total    47 100.000000   0.000000
-#> 9  STATE    Washington NITR_COND     Fair    10  30.396139  11.938582
-#> 10 STATE    Washington NITR_COND     Good     4  22.711979  11.878964
-#> 11 STATE    Washington NITR_COND     Poor    16  46.891882  13.041148
-#> 12 STATE    Washington NITR_COND    Total    30 100.000000   0.000000
-#>    MarginofError.P LCB95Pct.P UCB95Pct.P Estimate.U StdError.U MarginofError.U
-#> 1         9.236359   0.000000   17.47552   208.4605   87.63415        171.7598
-#> 2        26.184881  47.537757   99.90752  1865.2692  940.12797       1842.6170
-#> 3        23.342462   0.000000   41.38066   456.3876  299.29104        586.5997
-#> 4         0.000000 100.000000  100.00000  2530.1172  978.65831       1918.1350
-#> 5        19.136729   8.015482   46.28894  1298.8470  526.66732       1032.2490
-#> 6        19.045152  40.625155   78.71546  2854.3752  674.02641       1321.0675
-#> 7         9.607532   3.569950   22.78501   630.3551  198.49966        389.0522
-#> 8         0.000000 100.000000  100.00000  4783.5773  706.53216       1384.7776
-#> 9        23.399190   6.996949   53.79533  1023.1210  437.69351        857.8635
-#> 10       23.282341   0.000000   45.99432   764.4755  453.48899        888.8221
-#> 11       25.560181  21.331701   72.45206  1578.3606  556.63044       1090.9756
-#> 12        0.000000 100.000000  100.00000  3365.9571  741.89397       1454.0855
-#>    LCB95Pct.U UCB95Pct.U
-#> 1    36.70069   380.2202
-#> 2    22.65222  3707.8861
-#> 3     0.00000  1042.9873
-#> 4   611.98220  4448.2523
-#> 5   266.59801  2331.0960
-#> 6  1533.30774  4175.4427
-#> 7   241.30288  1019.4072
-#> 8  3398.79970  6168.3549
-#> 9   165.25751  1880.9845
-#> 10    0.00000  1653.2976
-#> 11  487.38500  2669.3362
-#> 12 1911.87165  4820.0426
+cat_ests_sp <- cat_analysis( + NLA_PNW, + siteID = "SITE_ID", + vars = "NITR_COND", + weight = "WEIGHT", + subpop = "STATE" +) +cat_ests_sp +#> Type Subpopulation Indicator Category nResp Estimate.P StdError.P +#> 1 STATE California NITR_COND Fair 6 8.239162 4.712515 +#> 2 STATE California NITR_COND Good 8 73.722638 13.359879 +#> 3 STATE California NITR_COND Poor 5 18.038200 11.909638 +#> 4 STATE California NITR_COND Total 19 100.000000 0.000000 +#> 5 STATE Oregon NITR_COND Fair 8 27.152211 9.763817 +#> 6 STATE Oregon NITR_COND Good 26 59.670307 9.717093 +#> 7 STATE Oregon NITR_COND Poor 13 13.177483 4.901892 +#> 8 STATE Oregon NITR_COND Total 47 100.000000 0.000000 +#> 9 STATE Washington NITR_COND Fair 10 30.396139 11.938582 +#> 10 STATE Washington NITR_COND Good 4 22.711979 11.878964 +#> 11 STATE Washington NITR_COND Poor 16 46.891882 13.041148 +#> 12 STATE Washington NITR_COND Total 30 100.000000 0.000000 +#> MarginofError.P LCB95Pct.P UCB95Pct.P Estimate.U StdError.U MarginofError.U +#> 1 9.236359 0.000000 17.47552 208.4605 87.63415 171.7598 +#> 2 26.184881 47.537757 99.90752 1865.2692 940.12797 1842.6170 +#> 3 23.342462 0.000000 41.38066 456.3876 299.29104 586.5997 +#> 4 0.000000 100.000000 100.00000 2530.1172 978.65831 1918.1350 +#> 5 19.136729 8.015482 46.28894 1298.8470 526.66732 1032.2490 +#> 6 19.045152 40.625155 78.71546 2854.3752 674.02641 1321.0675 +#> 7 9.607532 3.569950 22.78501 630.3551 198.49966 389.0522 +#> 8 0.000000 100.000000 100.00000 4783.5773 706.53216 1384.7776 +#> 9 23.399190 6.996949 53.79533 1023.1210 437.69351 857.8635 +#> 10 23.282341 0.000000 45.99432 764.4755 453.48899 888.8221 +#> 11 25.560181 21.331701 72.45206 1578.3606 556.63044 1090.9756 +#> 12 0.000000 100.000000 100.00000 3365.9571 741.89397 1454.0855 +#> LCB95Pct.U UCB95Pct.U +#> 1 36.70069 380.2202 +#> 2 22.65222 3707.8861 +#> 3 0.00000 1042.9873 +#> 4 611.98220 4448.2523 +#> 5 266.59801 2331.0960 +#> 6 1533.30774 4175.4427 +#> 7 241.30288 1019.4072 +#> 8 3398.79970 6168.3549 +#> 9 165.25751 1880.9845 +#> 10 0.00000 1653.2976 +#> 11 487.38500 2669.3362 +#> 12 1911.87165 4820.0426

If more than one type of subpopulation is of interest, then subpop can be a vector of subpopulation variables and separate analyses are performed for each subpopulation. If both vars and subpops are vectors, separate analyses are performed for each variable and subpopulation combination.

Analysis results for all sites (ignoring subpopulations) can be presented alongside the subpopulation analysis results using the All_Sites argument:

-cat_ests_sp <- cat_analysis(
-  NLA_PNW,
-  siteID = "SITE_ID",
-  vars = "NITR_COND",
-  weight = "WEIGHT",
-  subpop = "STATE",
-  All_Sites = TRUE
-)
-cat_ests_sp
-#>         Type Subpopulation Indicator Category nResp Estimate.P StdError.P
-#> 1      STATE    California NITR_COND     Fair     6   8.239162   4.712515
-#> 2      STATE    California NITR_COND     Good     8  73.722638  13.359879
-#> 3      STATE    California NITR_COND     Poor     5  18.038200  11.909638
-#> 4      STATE    California NITR_COND    Total    19 100.000000   0.000000
-#> 5      STATE        Oregon NITR_COND     Fair     8  27.152211   9.763817
-#> 6      STATE        Oregon NITR_COND     Good    26  59.670307   9.717093
-#> 7      STATE        Oregon NITR_COND     Poor    13  13.177483   4.901892
-#> 8      STATE        Oregon NITR_COND    Total    47 100.000000   0.000000
-#> 9      STATE    Washington NITR_COND     Fair    10  30.396139  11.938582
-#> 10     STATE    Washington NITR_COND     Good     4  22.711979  11.878964
-#> 11     STATE    Washington NITR_COND     Poor    16  46.891882  13.041148
-#> 12     STATE    Washington NITR_COND    Total    30 100.000000   0.000000
-#> 13 All_Sites     All Sites NITR_COND     Fair    24  23.693923   6.194024
-#> 14 All_Sites     All Sites NITR_COND     Good    38  51.351112   7.430172
-#> 15 All_Sites     All Sites NITR_COND     Poor    34  24.954965   5.919180
-#> 16 All_Sites     All Sites NITR_COND    Total    96 100.000000   0.000000
-#>    MarginofError.P LCB95Pct.P UCB95Pct.P Estimate.U StdError.U MarginofError.U
-#> 1         9.236359   0.000000   17.47552   208.4605   87.63415        171.7598
-#> 2        26.184881  47.537757   99.90752  1865.2692  940.12797       1842.6170
-#> 3        23.342462   0.000000   41.38066   456.3876  299.29104        586.5997
-#> 4         0.000000 100.000000  100.00000  2530.1172  978.65831       1918.1350
-#> 5        19.136729   8.015482   46.28894  1298.8470  526.66732       1032.2490
-#> 6        19.045152  40.625155   78.71546  2854.3752  674.02641       1321.0675
-#> 7         9.607532   3.569950   22.78501   630.3551  198.49966        389.0522
-#> 8         0.000000 100.000000  100.00000  4783.5773  706.53216       1384.7776
-#> 9        23.399190   6.996949   53.79533  1023.1210  437.69351        857.8635
-#> 10       23.282341   0.000000   45.99432   764.4755  453.48899        888.8221
-#> 11       25.560181  21.331701   72.45206  1578.3606  556.63044       1090.9756
-#> 12        0.000000 100.000000  100.00000  3365.9571  741.89397       1454.0855
-#> 13       12.140064  11.553860   35.83399  2530.4285  693.55933       1359.3513
-#> 14       14.562870  36.788242   65.91398  5484.1199 1223.37078       2397.7627
-#> 15       11.601379  13.353585   36.55634  2665.1033  658.09658       1289.8456
-#> 16        0.000000 100.000000  100.00000 10679.6517 1416.27075       2775.8397
-#>    LCB95Pct.U UCB95Pct.U
-#> 1    36.70069   380.2202
-#> 2    22.65222  3707.8861
-#> 3     0.00000  1042.9873
-#> 4   611.98220  4448.2523
-#> 5   266.59801  2331.0960
-#> 6  1533.30774  4175.4427
-#> 7   241.30288  1019.4072
-#> 8  3398.79970  6168.3549
-#> 9   165.25751  1880.9845
-#> 10    0.00000  1653.2976
-#> 11  487.38500  2669.3362
-#> 12 1911.87165  4820.0426
-#> 13 1171.07716  3889.7798
-#> 14 3086.35722  7881.8826
-#> 15 1375.25770  3954.9489
-#> 16 7903.81199 13455.4913
+cat_ests_sp <- cat_analysis( + NLA_PNW, + siteID = "SITE_ID", + vars = "NITR_COND", + weight = "WEIGHT", + subpop = "STATE", + All_Sites = TRUE +) +cat_ests_sp +#> Type Subpopulation Indicator Category nResp Estimate.P StdError.P +#> 1 STATE California NITR_COND Fair 6 8.239162 4.712515 +#> 2 STATE California NITR_COND Good 8 73.722638 13.359879 +#> 3 STATE California NITR_COND Poor 5 18.038200 11.909638 +#> 4 STATE California NITR_COND Total 19 100.000000 0.000000 +#> 5 STATE Oregon NITR_COND Fair 8 27.152211 9.763817 +#> 6 STATE Oregon NITR_COND Good 26 59.670307 9.717093 +#> 7 STATE Oregon NITR_COND Poor 13 13.177483 4.901892 +#> 8 STATE Oregon NITR_COND Total 47 100.000000 0.000000 +#> 9 STATE Washington NITR_COND Fair 10 30.396139 11.938582 +#> 10 STATE Washington NITR_COND Good 4 22.711979 11.878964 +#> 11 STATE Washington NITR_COND Poor 16 46.891882 13.041148 +#> 12 STATE Washington NITR_COND Total 30 100.000000 0.000000 +#> 13 All_Sites All Sites NITR_COND Fair 24 23.693923 6.194024 +#> 14 All_Sites All Sites NITR_COND Good 38 51.351112 7.430172 +#> 15 All_Sites All Sites NITR_COND Poor 34 24.954965 5.919180 +#> 16 All_Sites All Sites NITR_COND Total 96 100.000000 0.000000 +#> MarginofError.P LCB95Pct.P UCB95Pct.P Estimate.U StdError.U MarginofError.U +#> 1 9.236359 0.000000 17.47552 208.4605 87.63415 171.7598 +#> 2 26.184881 47.537757 99.90752 1865.2692 940.12797 1842.6170 +#> 3 23.342462 0.000000 41.38066 456.3876 299.29104 586.5997 +#> 4 0.000000 100.000000 100.00000 2530.1172 978.65831 1918.1350 +#> 5 19.136729 8.015482 46.28894 1298.8470 526.66732 1032.2490 +#> 6 19.045152 40.625155 78.71546 2854.3752 674.02641 1321.0675 +#> 7 9.607532 3.569950 22.78501 630.3551 198.49966 389.0522 +#> 8 0.000000 100.000000 100.00000 4783.5773 706.53216 1384.7776 +#> 9 23.399190 6.996949 53.79533 1023.1210 437.69351 857.8635 +#> 10 23.282341 0.000000 45.99432 764.4755 453.48899 888.8221 +#> 11 25.560181 21.331701 72.45206 1578.3606 556.63044 1090.9756 +#> 12 0.000000 100.000000 100.00000 3365.9571 741.89397 1454.0855 +#> 13 12.140064 11.553860 35.83399 2530.4285 693.55933 1359.3513 +#> 14 14.562870 36.788242 65.91398 5484.1199 1223.37078 2397.7627 +#> 15 11.601379 13.353585 36.55634 2665.1033 658.09658 1289.8456 +#> 16 0.000000 100.000000 100.00000 10679.6517 1416.27075 2775.8397 +#> LCB95Pct.U UCB95Pct.U +#> 1 36.70069 380.2202 +#> 2 22.65222 3707.8861 +#> 3 0.00000 1042.9873 +#> 4 611.98220 4448.2523 +#> 5 266.59801 2331.0960 +#> 6 1533.30774 4175.4427 +#> 7 241.30288 1019.4072 +#> 8 3398.79970 6168.3549 +#> 9 165.25751 1880.9845 +#> 10 0.00000 1653.2976 +#> 11 487.38500 2669.3362 +#> 12 1911.87165 4820.0426 +#> 13 1171.07716 3889.7798 +#> 14 3086.35722 7881.8826 +#> 15 1375.25770 3954.9489 +#> 16 7903.81199 13455.4913

Stratified Analysis

To estimate the proportion of total lakes in each nitrogen condition category and the total number of lakes in each nitrogen condition category stratified by URBAN category (whether the lake is classified as Urban or Non-Urban), run

-strat_cat_ests <- cat_analysis(
-  NLA_PNW,
-  siteID = "SITE_ID",
-  vars = "NITR_COND",
-  weight = "WEIGHT",
-  stratumID = "URBAN"
-)
-strat_cat_ests
-#>        Type Subpopulation Indicator Category nResp Estimate.P StdError.P
-#> 1 All_Sites     All Sites NITR_COND     Fair    24   23.69392   6.027083
-#> 2 All_Sites     All Sites NITR_COND     Good    38   51.35111   7.472377
-#> 3 All_Sites     All Sites NITR_COND     Poor    34   24.95496   5.882487
-#> 4 All_Sites     All Sites NITR_COND    Total    96  100.00000   0.000000
-#>   MarginofError.P LCB95Pct.P UCB95Pct.P Estimate.U StdError.U MarginofError.U
-#> 1        11.81287   11.88106   35.50679   2530.428   683.8837        1340.387
-#> 2        14.64559   36.70552   65.99670   5484.120  1229.9485        2410.655
-#> 3        11.52946   13.42550   36.48443   2665.103   653.6357        1281.102
-#> 4         0.00000  100.00000  100.00000  10679.652  1440.4796        2823.288
-#>   LCB95Pct.U UCB95Pct.U
-#> 1   1190.041   3870.816
-#> 2   3073.465   7894.775
-#> 3   1384.001   3946.206
-#> 4   7856.363  13502.940
+strat_cat_ests <- cat_analysis( + NLA_PNW, + siteID = "SITE_ID", + vars = "NITR_COND", + weight = "WEIGHT", + stratumID = "URBAN" +) +strat_cat_ests +#> Type Subpopulation Indicator Category nResp Estimate.P StdError.P +#> 1 All_Sites All Sites NITR_COND Fair 24 23.69392 6.027083 +#> 2 All_Sites All Sites NITR_COND Good 38 51.35111 7.472377 +#> 3 All_Sites All Sites NITR_COND Poor 34 24.95496 5.882487 +#> 4 All_Sites All Sites NITR_COND Total 96 100.00000 0.000000 +#> MarginofError.P LCB95Pct.P UCB95Pct.P Estimate.U StdError.U MarginofError.U +#> 1 11.81287 11.88106 35.50679 2530.428 683.8837 1340.387 +#> 2 14.64559 36.70552 65.99670 5484.120 1229.9485 2410.655 +#> 3 11.52946 13.42550 36.48443 2665.103 653.6357 1281.102 +#> 4 0.00000 100.00000 100.00000 10679.652 1440.4796 2823.288 +#> LCB95Pct.U UCB95Pct.U +#> 1 1190.041 3870.816 +#> 2 3073.465 7894.775 +#> 3 1384.001 3946.206 +#> 4 7856.363 13502.940

To then compute these estimates separately for California, Oregon, and Washington, run

-strat_cat_ests_sp <- cat_analysis(
-  NLA_PNW,
-  siteID = "SITE_ID",
-  vars = "NITR_COND",
-  weight = "WEIGHT",
-  stratumID = "URBAN",
-  subpop = "STATE"
-)
-strat_cat_ests_sp
-#>     Type Subpopulation Indicator Category nResp Estimate.P StdError.P
-#> 1  STATE    California NITR_COND     Fair     6   8.239162   5.481100
-#> 2  STATE    California NITR_COND     Good     8  73.722638  13.653267
-#> 3  STATE    California NITR_COND     Poor     5  18.038200  12.512366
-#> 4  STATE    California NITR_COND    Total    19 100.000000   0.000000
-#> 5  STATE        Oregon NITR_COND     Fair     8  27.152211   9.592356
-#> 6  STATE        Oregon NITR_COND     Good    26  59.670307   9.845022
-#> 7  STATE        Oregon NITR_COND     Poor    13  13.177483   5.325784
-#> 8  STATE        Oregon NITR_COND    Total    47 100.000000   0.000000
-#> 9  STATE    Washington NITR_COND     Fair    10  30.396139  11.383474
-#> 10 STATE    Washington NITR_COND     Good     4  22.711979   9.039351
-#> 11 STATE    Washington NITR_COND     Poor    16  46.891882  12.109215
-#> 12 STATE    Washington NITR_COND    Total    30 100.000000   0.000000
-#>    MarginofError.P LCB95Pct.P UCB95Pct.P Estimate.U StdError.U MarginofError.U
-#> 1         10.74276   0.000000   18.98192   208.4605   87.91849        172.3171
-#> 2         26.75991  46.962726  100.00000  1865.2692  953.91452       1869.6381
-#> 3         24.52379   0.000000   42.56199   456.3876  306.37270        600.4795
-#> 4          0.00000 100.000000  100.00000  2530.1172  994.94678       1950.0599
-#> 5         18.80067   8.351538   45.95288  1298.8470  531.02949       1040.7987
-#> 6         19.29589  40.374417   78.96620  2854.3752  685.86488       1344.2705
-#> 7         10.43835   2.739137   23.61583   630.3551  177.79364        348.4691
-#> 8          0.00000 100.000000  100.00000  4783.5773  737.53853       1445.5490
-#> 9         22.31120   8.084941   52.70734  1023.1210  435.45383        853.4738
-#> 10        17.71680   4.995177   40.42878   764.4755  433.94100        850.5087
-#> 11        23.73363  23.158256   70.62551  1578.3606  554.91047       1087.6045
-#> 12         0.00000 100.000000  100.00000  3365.9571  748.29764       1466.6364
-#>    LCB95Pct.U UCB95Pct.U
-#> 1     36.1434   380.7775
-#> 2      0.0000  3734.9073
-#> 3      0.0000  1056.8671
-#> 4    580.0574  4480.1771
-#> 5    258.0483  2339.6457
-#> 6   1510.1048  4198.6457
-#> 7    281.8859   978.8242
-#> 8   3338.0283  6229.1262
-#> 9    169.6472  1876.5948
-#> 10     0.0000  1614.9842
-#> 11   490.7561  2665.9652
-#> 12  1899.3207  4832.5935
+strat_cat_ests_sp <- cat_analysis( + NLA_PNW, + siteID = "SITE_ID", + vars = "NITR_COND", + weight = "WEIGHT", + stratumID = "URBAN", + subpop = "STATE" +) +strat_cat_ests_sp +#> Type Subpopulation Indicator Category nResp Estimate.P StdError.P +#> 1 STATE California NITR_COND Fair 6 8.239162 5.481100 +#> 2 STATE California NITR_COND Good 8 73.722638 13.653267 +#> 3 STATE California NITR_COND Poor 5 18.038200 12.512366 +#> 4 STATE California NITR_COND Total 19 100.000000 0.000000 +#> 5 STATE Oregon NITR_COND Fair 8 27.152211 9.592356 +#> 6 STATE Oregon NITR_COND Good 26 59.670307 9.845022 +#> 7 STATE Oregon NITR_COND Poor 13 13.177483 5.325784 +#> 8 STATE Oregon NITR_COND Total 47 100.000000 0.000000 +#> 9 STATE Washington NITR_COND Fair 10 30.396139 11.383474 +#> 10 STATE Washington NITR_COND Good 4 22.711979 9.039351 +#> 11 STATE Washington NITR_COND Poor 16 46.891882 12.109215 +#> 12 STATE Washington NITR_COND Total 30 100.000000 0.000000 +#> MarginofError.P LCB95Pct.P UCB95Pct.P Estimate.U StdError.U MarginofError.U +#> 1 10.74276 0.000000 18.98192 208.4605 87.91849 172.3171 +#> 2 26.75991 46.962726 100.00000 1865.2692 953.91452 1869.6381 +#> 3 24.52379 0.000000 42.56199 456.3876 306.37270 600.4795 +#> 4 0.00000 100.000000 100.00000 2530.1172 994.94678 1950.0599 +#> 5 18.80067 8.351538 45.95288 1298.8470 531.02949 1040.7987 +#> 6 19.29589 40.374417 78.96620 2854.3752 685.86488 1344.2705 +#> 7 10.43835 2.739137 23.61583 630.3551 177.79364 348.4691 +#> 8 0.00000 100.000000 100.00000 4783.5773 737.53853 1445.5490 +#> 9 22.31120 8.084941 52.70734 1023.1210 435.45383 853.4738 +#> 10 17.71680 4.995177 40.42878 764.4755 433.94100 850.5087 +#> 11 23.73363 23.158256 70.62551 1578.3606 554.91047 1087.6045 +#> 12 0.00000 100.000000 100.00000 3365.9571 748.29764 1466.6364 +#> LCB95Pct.U UCB95Pct.U +#> 1 36.1434 380.7775 +#> 2 0.0000 3734.9073 +#> 3 0.0000 1056.8671 +#> 4 580.0574 4480.1771 +#> 5 258.0483 2339.6457 +#> 6 1510.1048 4198.6457 +#> 7 281.8859 978.8242 +#> 8 3338.0283 6229.1262 +#> 9 169.6472 1876.5948 +#> 10 0.0000 1614.9842 +#> 11 490.7561 2665.9652 +#> 12 1899.3207 4832.5935
@@ -361,89 +361,89 @@

Unstratified Analysis

To estimate the cumulative distribution function (CDF), certain percentiles, and means of BMMI, run

-cont_ests <- cont_analysis(
-  NLA_PNW,
-  siteID = "SITE_ID",
-  vars = "BMMI",
-  weight = "WEIGHT"
-)
+cont_ests <- cont_analysis( + NLA_PNW, + siteID = "SITE_ID", + vars = "BMMI", + weight = "WEIGHT" +)

To view the analysis results for the mean estimates, run

-cont_ests$Mean
-#>        Type Subpopulation Indicator nResp Estimate StdError MarginofError
-#> 1 All_Sites     All Sites      BMMI    96 56.50929 1.782278        3.4932
-#>   LCB95Pct UCB95Pct
-#> 1 53.01609 60.00249
+cont_ests$Mean +#> Type Subpopulation Indicator nResp Estimate StdError MarginofError +#> 1 All_Sites All Sites BMMI 96 56.50929 1.782278 3.4932 +#> LCB95Pct UCB95Pct +#> 1 53.01609 60.00249

Similarly, the CDF and select percentile estimates can be viewed (the output is omitted here) by running

-cont_ests$CDF
-cont_ests$Pct
+cont_ests$CDF +cont_ests$Pct

To visualize the CDF estimates, run

-plot(cont_ests$CDF)
+plot(cont_ests$CDF)

The solid line indicates the CDF estimates, and the dashed lines indicate lower and upper 95% confidence interval bounds for the CDF estimates. cdf_plot() can equivalently be used in place of plot() (cdf_plot() is currently maintained for backwards compatibility with previous spsurvey versions).

To estimate the CDF, certain percentiles, and means of BMMI separately for each state, run

-cont_ests_sp <- cont_analysis(
-  NLA_PNW,
-  siteID = "SITE_ID",
-  vars = "BMMI",
-  weight = "WEIGHT",
-  subpop = "STATE"
-)
+cont_ests_sp <- cont_analysis( + NLA_PNW, + siteID = "SITE_ID", + vars = "BMMI", + weight = "WEIGHT", + subpop = "STATE" +)

To view the analysis results for the mean estimates, run

-cont_ests_sp$Mean
-#>    Type Subpopulation Indicator nResp Estimate StdError MarginofError LCB95Pct
-#> 1 STATE    California      BMMI    19 50.48964 4.049094      7.936079 42.55357
-#> 2 STATE        Oregon      BMMI    47 61.29675 2.581032      5.058730 56.23802
-#> 3 STATE    Washington      BMMI    30 54.23036 3.143924      6.161977 48.06838
-#>   UCB95Pct
-#> 1 58.42572
-#> 2 66.35548
-#> 3 60.39234
+cont_ests_sp$Mean +#> Type Subpopulation Indicator nResp Estimate StdError MarginofError LCB95Pct +#> 1 STATE California BMMI 19 50.48964 4.049094 7.936079 42.55357 +#> 2 STATE Oregon BMMI 47 61.29675 2.581032 5.058730 56.23802 +#> 3 STATE Washington BMMI 30 54.23036 3.143924 6.161977 48.06838 +#> UCB95Pct +#> 1 58.42572 +#> 2 66.35548 +#> 3 60.39234

Stratified Analysis

To estimate the CDF, certain percentiles, and means of BMMI for a design stratified by URBAN category, run

-strat_cont_ests <- cont_analysis(
-  NLA_PNW,
-  siteID = "SITE_ID",
-  vars = "BMMI",
-  weight = "WEIGHT",
-  stratumID = "URBAN"
-)
+strat_cont_ests <- cont_analysis( + NLA_PNW, + siteID = "SITE_ID", + vars = "BMMI", + weight = "WEIGHT", + stratumID = "URBAN" +)

To view the analysis results for the mean estimates, run

-strat_cont_ests$Mean
-#>        Type Subpopulation Indicator nResp Estimate StdError MarginofError
-#> 1 All_Sites     All Sites      BMMI    96 56.50929 1.795959      3.520015
-#>   LCB95Pct UCB95Pct
-#> 1 52.98928 60.02931
+strat_cont_ests$Mean +#> Type Subpopulation Indicator nResp Estimate StdError MarginofError +#> 1 All_Sites All Sites BMMI 96 56.50929 1.795959 3.520015 +#> LCB95Pct UCB95Pct +#> 1 52.98928 60.02931

To then compute these estimates separately for each state, run

-strat_cont_ests_sp <- cont_analysis(
-  NLA_PNW,
-  siteID = "SITE_ID",
-  vars = "BMMI",
-  weight = "WEIGHT",
-  stratumID = "URBAN",
-  subpop = "STATE",
-)
+strat_cont_ests_sp <- cont_analysis( + NLA_PNW, + siteID = "SITE_ID", + vars = "BMMI", + weight = "WEIGHT", + stratumID = "URBAN", + subpop = "STATE", +)

To view the analysis results for the mean estimates, run

-strat_cont_ests_sp$Mean
-#>    Type Subpopulation Indicator nResp Estimate StdError MarginofError LCB95Pct
-#> 1 STATE    California      BMMI    19 50.48964 4.110046      8.055543 42.43410
-#> 2 STATE        Oregon      BMMI    47 61.29675 1.630357      3.195441 58.10131
-#> 3 STATE    Washington      BMMI    30 54.23036 2.930517      5.743708 48.48665
-#>   UCB95Pct
-#> 1 58.54519
-#> 2 64.49219
-#> 3 59.97407
+strat_cont_ests_sp$Mean +#> Type Subpopulation Indicator nResp Estimate StdError MarginofError LCB95Pct +#> 1 STATE California BMMI 19 50.48964 4.110046 8.055543 42.43410 +#> 2 STATE Oregon BMMI 47 61.29675 1.630357 3.195441 58.10131 +#> 3 STATE Washington BMMI 30 54.23036 2.930517 5.743708 48.48665 +#> UCB95Pct +#> 1 58.54519 +#> 2 64.49219 +#> 3 59.97407
@@ -455,64 +455,64 @@

Attributab

The attributable risk is defined as \[1 - \frac{P(Response = Poor | Stressor = Good)}{P(Response = Poor)},\] where \(P(\cdot)\) is a probability and \(P(\cdot | \cdot)\) is a conditional probability. The attributable risk measures the proportion of the response variable in poor condition that could be eliminated if the stressor was always in good condition. To estimate the attributable risk of benthic macroinvertebrates with a phosphorous condition stressor, run

-attrisk_ests <- attrisk_analysis(
-  NLA_PNW, 
-  siteID = "SITE_ID",
-  vars_response = "BMMI_COND",
-  vars_stressor = "PHOS_COND",
-  weight = "WEIGHT"
-)
-attrisk_ests
-#>        Type Subpopulation  Response  Stressor nResp  Estimate StdError_log
-#> 1 All_Sites     All Sites BMMI_COND PHOS_COND    96 0.6201042     0.624808
-#>   MarginofError_log  LCB95Pct  UCB95Pct WeightTotal Count_RespPoor_StressPoor
-#> 1          1.224601 -0.292713 0.8883582    10679.65                         5
-#>   Count_RespPoor_StressGood Count_RespGood_StressPoor Count_RespGood_StressGood
-#> 1                         7                        18                        66
-#>   Prop_RespPoor_StressPoor Prop_RespPoor_StressGood Prop_RespGood_StressPoor
-#> 1               0.03971418               0.01738181                 0.158931
-#>   Prop_RespGood_StressGood
-#> 1                 0.783973
+attrisk_ests <- attrisk_analysis( + NLA_PNW, + siteID = "SITE_ID", + vars_response = "BMMI_COND", + vars_stressor = "PHOS_COND", + weight = "WEIGHT" +) +attrisk_ests +#> Type Subpopulation Response Stressor nResp Estimate StdError_log +#> 1 All_Sites All Sites BMMI_COND PHOS_COND 96 0.6201042 0.624808 +#> MarginofError_log LCB95Pct UCB95Pct WeightTotal Count_RespPoor_StressPoor +#> 1 1.224601 -0.292713 0.8883582 10679.65 5 +#> Count_RespPoor_StressGood Count_RespGood_StressPoor Count_RespGood_StressGood +#> 1 7 18 66 +#> Prop_RespPoor_StressPoor Prop_RespPoor_StressGood Prop_RespGood_StressPoor +#> 1 0.03971418 0.01738181 0.158931 +#> Prop_RespGood_StressGood +#> 1 0.783973

The relative risk is defined as \[\frac{P(Response = Poor | Stressor = Poor)}{P(Response = Poor | Stressor = Good)},\] which measures the risk of the response variable being in poor condition relative to the stressor’s condition. To estimate the relative risk of benthic macroinvertebrates being in poor condition with a phosphorous condition category stressor, run

-relrisk_ests <- relrisk_analysis(
-  NLA_PNW, 
-  siteID = "SITE_ID",
-  vars_response = "BMMI_COND",
-  vars_stressor = "PHOS_COND",
-  weight = "WEIGHT"
-)
-relrisk_ests
-#>        Type Subpopulation  Response  Stressor nResp Estimate Estimate_num
-#> 1 All_Sites     All Sites BMMI_COND PHOS_COND    96 9.217166    0.1999252
-#>   Estimate_denom StdError_log MarginofError_log LCB95Pct UCB95Pct WeightTotal
-#> 1     0.02169053    0.8753855          1.715724 1.657555 51.25389    10679.65
-#>   Count_RespPoor_StressPoor Count_RespPoor_StressGood Count_RespGood_StressPoor
-#> 1                         5                         7                        18
-#>   Count_RespGood_StressGood Prop_RespPoor_StressPoor Prop_RespPoor_StressGood
-#> 1                        66               0.03971418               0.01738181
-#>   Prop_RespGood_StressPoor Prop_RespGood_StressGood
-#> 1                 0.158931                 0.783973
+relrisk_ests <- relrisk_analysis( + NLA_PNW, + siteID = "SITE_ID", + vars_response = "BMMI_COND", + vars_stressor = "PHOS_COND", + weight = "WEIGHT" +) +relrisk_ests +#> Type Subpopulation Response Stressor nResp Estimate Estimate_num +#> 1 All_Sites All Sites BMMI_COND PHOS_COND 96 9.217166 0.1999252 +#> Estimate_denom StdError_log MarginofError_log LCB95Pct UCB95Pct WeightTotal +#> 1 0.02169053 0.8753855 1.715724 1.657555 51.25389 10679.65 +#> Count_RespPoor_StressPoor Count_RespPoor_StressGood Count_RespGood_StressPoor +#> 1 5 7 18 +#> Count_RespGood_StressGood Prop_RespPoor_StressPoor Prop_RespPoor_StressGood +#> 1 66 0.03971418 0.01738181 +#> Prop_RespGood_StressPoor Prop_RespGood_StressGood +#> 1 0.158931 0.783973

The risk difference is defined as \[P(Response = Poor | Stressor = Poor) - P(Response = Poor | Stressor = Good),\] which measures the risk of the response variable being in poor condition differenced by the stressor’s condition. To estimate the risk difference of benthic macroinvertebrates being in poor condition with a phosphorous condition category stressor, run

-diffrisk_ests <- diffrisk_analysis(
-  NLA_PNW, 
-  siteID = "SITE_ID",
-  vars_response = "BMMI_COND",
-  vars_stressor = "PHOS_COND",
-  weight = "WEIGHT"
-)
-diffrisk_ests
-#>        Type Subpopulation  Response  Stressor nResp  Estimate
-#> 1 All_Sites     All Sites BMMI_COND PHOS_COND    96 0.1782347
-#>   Estimate_StressPoor Estimate_StressGood  StdError MarginofError   LCB95Pct
-#> 1           0.1999252          0.02169053 0.1139557      0.223349 -0.0451143
-#>    UCB95Pct WeightTotal Count_RespPoor_StressPoor Count_RespPoor_StressGood
-#> 1 0.4015837    10679.65                         5                         7
-#>   Count_RespGood_StressPoor Count_RespGood_StressGood Prop_RespPoor_StressPoor
-#> 1                        18                        66               0.03971418
-#>   Prop_RespPoor_StressGood Prop_RespGood_StressPoor Prop_RespGood_StressGood
-#> 1               0.01738181                 0.158931                 0.783973
+diffrisk_ests <- diffrisk_analysis( + NLA_PNW, + siteID = "SITE_ID", + vars_response = "BMMI_COND", + vars_stressor = "PHOS_COND", + weight = "WEIGHT" +) +diffrisk_ests +#> Type Subpopulation Response Stressor nResp Estimate +#> 1 All_Sites All Sites BMMI_COND PHOS_COND 96 0.1782347 +#> Estimate_StressPoor Estimate_StressGood StdError MarginofError LCB95Pct +#> 1 0.1999252 0.02169053 0.1139557 0.223349 -0.0451143 +#> UCB95Pct WeightTotal Count_RespPoor_StressPoor Count_RespPoor_StressGood +#> 1 0.4015837 10679.65 5 7 +#> Count_RespGood_StressPoor Count_RespGood_StressGood Prop_RespPoor_StressPoor +#> 1 18 66 0.03971418 +#> Prop_RespPoor_StressGood Prop_RespGood_StressPoor Prop_RespGood_StressGood +#> 1 0.01738181 0.158931 0.783973

By default, the levels of the variables in vars_response and vars_stressor are assumed to equal "Poor" (event occurs) or "Good" (event does not occur). If those default levels do not match the levels of the variables in vars_response and vars_stressor, the levels of vars_response and vars_stressor must be explicitly stated using the response_levels and stressor_levels arguments, respectively. Similar to cat_analysis() and cont_analysis() from the previous sections, subpopulations and stratification are incorporated using subpops and stratumID, respectively. For more on attributable and relative risk in an environmental resource context, see Van Sickle and Paulsen (2008).

@@ -533,65 +533,65 @@

Change and Trend Analysis

To estimate the change between samples (time points) for BMMI (a continuous variable) and NITR_COND (a categorical variable), run

-change_ests <- change_analysis(
-  NRSA_EPA7,
-  siteID = "SITE_ID",
-  vars_cont = "BMMI",
-  vars_cat = "NITR_COND",
-  surveyID = "YEAR",
-  weight = "WEIGHT"
-)
+change_ests <- change_analysis( + NRSA_EPA7, + siteID = "SITE_ID", + vars_cont = "BMMI", + vars_cat = "NITR_COND", + surveyID = "YEAR", + weight = "WEIGHT" +)

The surveyID argument is the variable in the data distinguishing the different samples (YEAR in the previous example).

To view the analysis results for NITR_COND (the categorical variable), run

-change_ests$catsum
-#>   Survey_1 Survey_2      Type Subpopulation Indicator     Category  DiffEst.P
-#> 1  2008-09  2013-14 All_Sites     All Sites NITR_COND         Fair -1.8867976
-#> 2  2008-09  2013-14 All_Sites     All Sites NITR_COND         Good -2.9648182
-#> 3  2008-09  2013-14 All_Sites     All Sites NITR_COND Not Assessed -0.2447633
-#> 4  2008-09  2013-14 All_Sites     All Sites NITR_COND         Poor  5.0963791
-#>   StdError.P MarginofError.P  LCB95Pct.P UCB95Pct.P  DiffEst.U StdError.U
-#> 1  3.5366139       6.9316358  -8.8184334  5.0448382 -2919.8839  4990.4714
-#> 2  4.7633367       9.3359683 -12.3007865  6.3711502 -4597.9365  6772.4175
-#> 3  0.2072643       0.4062305  -0.6509938  0.1614672  -363.1305   306.1656
-#> 4  5.8020788      11.3718655  -6.2754864 16.4682446  6598.4548 19777.9218
-#>   MarginofError.U LCB95Pct.U UCB95Pct.U nResp_1 Estimate.P_1 StdError.P_1
-#> 1       9781.1441 -12701.028   6861.260      37   11.2929433    2.7579622
-#> 2      13273.6943 -17871.631   8675.758      22   18.5076549    3.6712147
-#> 3        600.0735   -963.204    236.943       1    0.2447633    0.2072643
-#> 4      38764.0144 -32165.560  45362.469     119   69.9546385    4.3636869
-#>   MarginofError.P_1 LCB95Pct.P_1 UCB95Pct.P_1 Estimate.U_1 StdError.U_1
-#> 1         5.4055067     5.887437   16.6984500   16754.1954    3998.9767
-#> 2         7.1954486    11.312206   25.7031034   27457.9317    5388.5407
-#> 3         0.4062305     0.000000    0.6509938     363.1305     306.1656
-#> 4         8.5526691    61.401969   78.5073076  103784.6070   12266.4461
-#>   MarginofError.U_1 LCB95Pct.U_1 UCB95Pct.U_1 nResp_2 Estimate.P_2 StdError.P_2
-#> 1         7837.8504     8916.345    24592.046      28     9.406146     2.213884
-#> 2        10561.3456    16896.586    38019.277      34    15.542837     3.035055
-#> 3          600.0735        0.000      963.204       0     0.000000     0.000000
-#> 4        24041.7926    79742.814   127826.400     112    75.051018     3.823919
-#>   MarginofError.P_2 LCB95Pct.P_2 UCB95Pct.P_2 Estimate.U_2 StdError.U_2
-#> 1          4.339133     5.067013     13.74528     13834.31     2985.463
-#> 2          5.948599     9.594238     21.49144     22860.00     4102.349
-#> 3          0.000000     0.000000      0.00000         0.00        0.000
-#> 4          7.494743    67.556274     82.54576    110383.06    15514.525
-#>   MarginofError.U_2 LCB95Pct.U_2 UCB95Pct.U_2
-#> 1          5851.400     7982.911     19685.71
-#> 2          8040.456    14819.539     30900.45
-#> 3             0.000        0.000         0.00
-#> 4         30407.911    79975.151    140790.97
+change_ests$catsum +#> Survey_1 Survey_2 Type Subpopulation Indicator Category DiffEst.P +#> 1 2008-09 2013-14 All_Sites All Sites NITR_COND Fair -1.8867976 +#> 2 2008-09 2013-14 All_Sites All Sites NITR_COND Good -2.9648182 +#> 3 2008-09 2013-14 All_Sites All Sites NITR_COND Not Assessed -0.2447633 +#> 4 2008-09 2013-14 All_Sites All Sites NITR_COND Poor 5.0963791 +#> StdError.P MarginofError.P LCB95Pct.P UCB95Pct.P DiffEst.U StdError.U +#> 1 3.5366139 6.9316358 -8.8184334 5.0448382 -2919.8839 4990.4714 +#> 2 4.7633367 9.3359683 -12.3007865 6.3711502 -4597.9365 6772.4175 +#> 3 0.2072643 0.4062305 -0.6509938 0.1614672 -363.1305 306.1656 +#> 4 5.8020788 11.3718655 -6.2754864 16.4682446 6598.4548 19777.9218 +#> MarginofError.U LCB95Pct.U UCB95Pct.U nResp_1 Estimate.P_1 StdError.P_1 +#> 1 9781.1441 -12701.028 6861.260 37 11.2929433 2.7579622 +#> 2 13273.6943 -17871.631 8675.758 22 18.5076549 3.6712147 +#> 3 600.0735 -963.204 236.943 1 0.2447633 0.2072643 +#> 4 38764.0144 -32165.560 45362.469 119 69.9546385 4.3636869 +#> MarginofError.P_1 LCB95Pct.P_1 UCB95Pct.P_1 Estimate.U_1 StdError.U_1 +#> 1 5.4055067 5.887437 16.6984500 16754.1954 3998.9767 +#> 2 7.1954486 11.312206 25.7031034 27457.9317 5388.5407 +#> 3 0.4062305 0.000000 0.6509938 363.1305 306.1656 +#> 4 8.5526691 61.401969 78.5073076 103784.6070 12266.4461 +#> MarginofError.U_1 LCB95Pct.U_1 UCB95Pct.U_1 nResp_2 Estimate.P_2 StdError.P_2 +#> 1 7837.8504 8916.345 24592.046 28 9.406146 2.213884 +#> 2 10561.3456 16896.586 38019.277 34 15.542837 3.035055 +#> 3 600.0735 0.000 963.204 0 0.000000 0.000000 +#> 4 24041.7926 79742.814 127826.400 112 75.051018 3.823919 +#> MarginofError.P_2 LCB95Pct.P_2 UCB95Pct.P_2 Estimate.U_2 StdError.U_2 +#> 1 4.339133 5.067013 13.74528 13834.31 2985.463 +#> 2 5.948599 9.594238 21.49144 22860.00 4102.349 +#> 3 0.000000 0.000000 0.00000 0.00 0.000 +#> 4 7.494743 67.556274 82.54576 110383.06 15514.525 +#> MarginofError.U_2 LCB95Pct.U_2 UCB95Pct.U_2 +#> 1 5851.400 7982.911 19685.71 +#> 2 8040.456 14819.539 30900.45 +#> 3 0.000 0.000 0.00 +#> 4 30407.911 79975.151 140790.97

Estimates are provided for the difference between the two samples and for each of the two individual samples (the _1 and _2 suffixes).

To view the analysis results for BMMI (the continuous variable), run

-change_ests$contsum_mean
-#>   Survey_1 Survey_2      Type Subpopulation Indicator  DiffEst StdError
-#> 1  2008-09  2013-14 All_Sites     All Sites      BMMI 3.971559 2.561155
-#>   MarginofError  LCB95Pct UCB95Pct nResp_1 Estimate_1 StdError_1
-#> 1      5.019771 -1.048211  8.99133     179   25.88274   1.468744
-#>   MarginofError_1 LCB95Pct_1 UCB95Pct_1 nResp_2 Estimate_2 StdError_2
-#> 1        2.878686   23.00405   28.76142     174    29.8543   2.098166
-#>   MarginofError_2 LCB95Pct_2 UCB95Pct_2
-#> 1        4.112331   25.74196   33.96663
+change_ests$contsum_mean +#> Survey_1 Survey_2 Type Subpopulation Indicator DiffEst StdError +#> 1 2008-09 2013-14 All_Sites All Sites BMMI 3.971559 2.561155 +#> MarginofError LCB95Pct UCB95Pct nResp_1 Estimate_1 StdError_1 +#> 1 5.019771 -1.048211 8.99133 179 25.88274 1.468744 +#> MarginofError_1 LCB95Pct_1 UCB95Pct_1 nResp_2 Estimate_2 StdError_2 +#> 1 2.878686 23.00405 28.76142 174 29.8543 2.098166 +#> MarginofError_2 LCB95Pct_2 UCB95Pct_2 +#> 1 4.112331 25.74196 33.96663

Though we don’t show an example here, the median can be estimated using the test argument in change_anlaysis().

Trend analysis generalizes change analysis to more than two samples (usually time points). Though we omit an example here, the arguments to trend_analysis() are very similar to the arguments for change_analysis(). One difference is that trend_analysis() contains arguments that specify which statistical model to apply to the estimates from each sample.

diff --git a/docs/articles/analysis_files/figure-html/unnamed-chunk-12-1.png b/docs/articles/analysis_files/figure-html/unnamed-chunk-12-1.png index 8b93d3b506ea1bbc323316912933be369c93329f..73b5679574f3a29fa6e2d90a3cc993f6e6d0a4ba 100644 GIT binary patch delta 4993 zcmZ8lc|4T+_s3YSq6wAV6dEG?Hd!me5VDjd8cVXPQI>><>dFX%A!W_JFJWXiU4uK^ znv!*Fb1lifWu3-+A9erv{pR)jF|W_-oaemH=e*DM5L;RPYGtW;63JX!7Z!Qu4`B`6 zwG*cgSQf0n7jRCV_{c#k|cNSV`9c(+2ddX(Ipe{=*hHTqk(t2#>CHaM@K$p z;?dt`CwKzu^?1?7c(2K0Y6VnY{b_+aC>OSqTQe`2 z*?(gUQRCsL^Kv$1=G$C-{@ZR9qxJoJi68i7j<4N-ZMqOXIFXoEK#=oKq zFOvmis{E-;R4eB*8w_9e2l9$dP?}P7?0I@eS#@8ECQU6N*2ia>Hu{W6`wYku;t6QN zp6+rFs3sb@g;~4%GG@(_pJ(c0^Fa;F%{W<;AVc83Z1HT)hsd8Ds{7d)_BBe);gGLH zv;z6FvpV?aeWq^J5v)>yw+|n(#fnQ6M+Gf-L4+6zrV1PbqiISuj>619{^15gJ_2ra zf34{L+LeXETTh1(GDQFnp=&^IXDcc^V+0huJ`;($!5Eoht{5V=$DKniGD$?eknXrN z#U^shm)RGRc{wvnRwn|T6)u|Wt#KToJW9SD2`dnLlHHz#zC{z}(AM7Y#_pr zhzXI_2@1+OI<7w+KNW1!=ae!-WpgE5Q=2Jij4u3_5%mbM7712bAfqgW7l zek83_yS<0$_7|<_Y!3Jk=(Z$MblTb`0z+!P?soA(aM{GFpdb8XT3E^_s(V`#EQ!+d z7y_&`QhEVv-3F;)&xhV+ACZDsVg23!-Zmr70n>FMqpltM-kzYVdb=)Mr)@Rnl3GkL zd=rD+EMKKz45Xl6+&Q&=?w`>CT)ydFx)Cx}e$udEJzi3CsNcP0y67h`qzaaoOoDw4 zGd^Ohj_VLA)j;APtzHORain~OXkViPrrclC+74xAHY|$8s%`a`lWkh=EqRu;#pi~x zhX~<)E(P*P*qFc!$_4ey8ZOMaWwj^2okVLS#I6|j=Kp)p2by?qty{EK_0=D1(?WLF z_U9^1`oZ)PI_&8ta(Z|n1-o!7kP@yk=-(ID6QAoUWV+un%CeZVZl0Dpsx||lj~GUL zl`<7$;gv_{>dklPN4CmS-4}DN$d9UTr}u2P^?B=;Lr_wN0+}Ok{hD9d9ax=pGafXw ziXdOgX*|{Zg~Mp3WTaUdtK4*#iKZAGTmI;hPa7`vq!bY)VMx1Uv;A7Bz)(Fm;I7lH zI51UqRC;^rC&y1On9i5`0KLLs_!Z`6_D9+MjI88MA9)SBbtg&&CSD-Uxu|$mT?U#@ z+zT!GC(vq)(egppuz)f-@P5@>pfP5110{=}5U|2mpX>=aqbP)U+0A(eL^4zmb{)Gg zuN#*;oqpM;JyS@(tXMcC5%H}LgEXiE0R)|xb8Ehm6$CTGj{&8NN^T{M{q7r!gC6ot z@tdAgk9da#k_%kCS?B7W)Rl{wqRRHN;X60e2mHKbwMrU>uVr5U&iu`4pZPBVD~fr_ zOs*>DEtOxEgYv_EzGohSd^+phEhnBVYA?))hgvxMf+X`wG|1;;J#THj^3~Q(NPkga+dJN5(GPGvB}yQd zi;YR+4|m}^YC27#sg&aA4k)v*)Y8;>U8WQPeHlU10ZTRnUq~aA43+>n9g{hI!b=0u zPLhG6*|~f15wBi{NiJFGA32Pi;Kz-bMF9$YQXFTPu#hR1Njnd{?nG}vsAFP92Wwch z`EBqr50Cv+wP#2s&C12^tg=tC{)`I9Y<(fXlYNit^lX1z1CP z5fL&CZPrUUED=x7eE8V_k;JWKYeMuxmZ4eoC7R(mB zwx{oANh(I$^j%2tsMUKj$=RejW8A~E#&Jg~xwX)tL^jeWDl5t;M)p>%JVqlr*2lp+ zoR(gBRRhgtiae0H^dDXzlZSvO2q)7#AQm_ANQQ*n2vHYhQHfmwh6lc_!rNQ5Pl)9B zwnR3LdmwM#b~8SyG6Kt}fL*04blAt`yJ|_}BQ$HE4J^%Zghbi`kv>B88VLhz7xR_9Zmn2O zKessphG*5JGRK@w`m&R!e5=1_QoyQ5@q?_Idh#CA!OrZVlYvgB_rj=?t?Iie_tI@1 zwcDj%%}66VV$;V1w$U2V^_uH_cj>2GXB|<3MqO&Wjc@j9X~%ojGRoVox{L48Zh|$g zD^<+zk+>4@ZuuU;o!~}NPBmto!qw9dHBSa3;?B80hN4H6i5?4v?_5Bp+D*%(l*jNi z2eYi5tuh|XE}7EiMF_kDp9?5~(nuxLnsI z@#KJ+s17Fnorij0!;s_9W%4~PaxEy}{VaO=rHX;v;Ew{I?i=Vr?5^_k7I``@=w)PZ z;i@h9qCeM#K7Q*Z#+bnqkiHSemfut`_-ho4Jh-;_c!B5N?nKRK&O4>q+!WGGwb(3ko0M8 z6-f@&?KY^+P7~@G@g(J}J>|Mf51cml{0X+!D`1(`dbP<}(23bwfX*0yY}UlLyL(T7 zg!oaQ%FmZSOfhw^wO`pm_U#jI zzA7YN*Q*L07m#UaA_S#K$xh<-{MB)<=cif3gMxCEgT56H#h(l0;%l{Ph{yDu3^rRu zL6$A(8VerQOXX@CLc#?@^Mk&H|K7W#WKZm$JuH^SPOE_lq2CL;hz0VspM(PfM&3jJ z3>;{d2L7srE~}n-^vcq0jRNq^H?_{;4=dq0N8No(F~#V{VUBhxBHO-?--`TL4j~+k$5G9Xj}SOYpXNiG%14mJ@Kpe-oH? zB)*-MrdN-hYjQ%)4a)u(+WrUwV5RR1i9QoWzR{83LYgVv&JwB@z4Caoa_r!<9ye^E z?n7Z;c-*-wB4d_nuN+qTafV<6QI8dHQLeSr&%1S>Wc~ZjFz+kVJv$=2>G*+W5Epk8 z9=F}+>7OUAm=JqWRN~|8#eN9-=kpf#{e2zV$=G6-KM?6+LN}5 zH9X&&E#eRHujBd(ooW1Xm*5mq)Chx-ac5#ORP70)8 zblHSvAf@zSYwD&_Tg{cRZEL@B1ud0m8?t>0mR1%>0qc$GpPL)4ZCA!1)_!%1E<*ZU z+itx*j{>rSG72e9DI1MS1<6~|u$g=EXmgbWAoc>?zUd32j+3Z;L5G0*p*wn)>$EjL z+8qg1th_RYy7388kqjz;T24xg4p*h;~! z=&Di7SjCX|vG@@f0@p9Gn%UJwR2qTX)G z;F52a#NmIN&$1p@U%r!hja2v(ku7XADmLU8lvTzVsl_>JtTNFuyhJOE=xnY`29x;aSrk<3lCe7JwsR!rx%s zn30A}?GwKjR$?q$)}*F$f9#P0k5-VEy+mU$d%IM#11{u>QO&2HjKK-t3|s8Yj6jk82x<(Dn`dCK-fX zaW(bW#)Db-^lJsFUas&zrEjwi@^>fVKD^EbtPl`8it`)jbx1ph2y>iY4Vi4C18^!9 zVd;zP-)vSq=$WXOW$NJGY&G`%Qws$A)7$ljv&}R2)6Tc4l2m?zuk)}bZMiD+(9^kE zcgKgrIlhcOOLtHmH3Vga0wjL#-2uTG>yHK-cnIl)A%Y>P0fQVP5!}pxRhk6BFZ_Go zyKv8pd7od4IB3fM6H92adm6i+Et|XrKIc~cgjcD$Lh(?BT$Un>U5d8HwZ(mVcfRON zys^&Y*V)7K;8uUm1;Y;Nt0_Yf37aJoeiyKdm2=>%R#(Uu1Yi6q&lWNC;*fjpmkqxz z)@pDYPJajRHcAHq^Xx0tkZ>!o+Y0r@w0}){$u>Sb7v2{rBSA!u(vQg1a!^DlwUDh zVBT@`^XRA8c+sqy#-O9;=1 z*z2Je;ixy`L$X=xL$e#UkqhC=PwrHo2S6xzHojKS*dpA!zbLJOj3KiuZKJ2K%nIk1 zz~b=@g&SM@JpMN|C`1kvE|q&tO_fCUPY}Nk|JZy;)uf(tw(s}1r3O(Q#5u>~9xXiI zWzH`bgF!`-Do|gr?ep6XM{a{pN=9AGb5CfE>9YnWf;qvublx!?__A6*Fmt=8;r<&+ z`~AU(C(Ihi6_mrufrmrneK5GIC8#5Wr;XN4K-)=TR9$C|Jh%d3gV1fJ%izq5P#_qU ziP7HA?uA6q8gR2H@R15?<;5oyPFb#W)G;_Pt2ub^nP(qvV!LLvRcsvD; zVjI5U>>Zx3tGzZ)^3$mCsExQBpat2ZG0{?of3c-W`GYLTg!T~`{NYtt_U@@U;vy$$ zg+%fzH-&TkX4HQ&_u|>ikrN%|STe&rfX3_$ac0aO;vvhnlfR*L|AwZ-*~o1t(WD0f zLMpJdMwup2X2+z8DM+g}b#jh&bYWKhhTkTbkGxsUAn*x}8S&z9ZEPb5eE9hX(n`7Z zsDD_q+0`LC<_%e6J>m5;zkw?K0@`*#>Wc7V9>nXChhwlQ=Jt$c#!|#;@x+}YPWAqI zUI+|^O`i$%JQd3ihA}*nJBow7hKwp2y3cV3Mrfxj;Bn}z791g#RiLwz0ogU%T=cKx Ruwep!$ZO^XRac##{twX($DaTI delta 5002 zcmY*dXH-*Z6AooTh0r1rsjHL#QWj|{5EkiO0!Wc2MS4>yi-AiP7lYCybOeM@3?1o$ zkaZ~%L=-|_AWK<<(4+)RjC>c}KVQzxxjFB-@1196o_FS%yy;@??P6_s5YN)wgpNOV zN_;Hq@6?eNp}r5$WVV>yE$lUCq5gD^e)#CGSx7B7t`;i>)He=p4t3D3XGocX*XVPV zKefIp_BZ7u1iQ?OrGH;k9A7|_u2Ztl9U5k+z5SOzlwSSs9DhX3r6hQa`@ERV0R3lv z{hZa4CG{kDJ}%0b{PCMX??>_9q71~STn5~Qh2Tqj6#Zd_I$5-*=ds`2$&956Mm@-?=eAcyG zuMhEP>C!4mUG=>PB^!votH7N9$>MD%?1%ff)m%#enkq*G*bX6km=0ng(Vu7(J2i4` z@ZJ{7IY<+x7_!Z3)ZEY$pzBIR64NjUj3IG}c$N4*b}CJ!EZ`BFInHNXrr1kV&|0(M z;oTZFXIf~3uGfq9R~WWF#wm(-aoGDR8lnl&fo9k9yGO5o`86Td zf^)*}i}mx!2AR*iJ@cP?Sm0wGy8Y=@wU$zwW-1>neg`d7K>fb zYYKhfxbrB_i9wVOX2)dmv6@j(3`64Yty`0iWoFhbb`ZnkN>auHd zEg|RN-#CK+iB%}jycBTh*z(I%kqds9K+r(=Xoqmi4VmtXOW#obGf-4;)>lqq_B8YF zM=EwMbD73lO43&M9YnY+@aV4ypJtUrvWe!72uY>E-$-QXMSE)r+U3|pin`vCXG)8@ z0;aUvU`2MW@qDlb!c1`=(l!ASN6J*plRezuns?{y0idjI;ZCDhClBZr#&o$s8_iLh z`L%cgO(SvlJjI_}w?Z~dz9AROS9^z>FjJA47C|@rJ!W9;ihQexTv{Sk88k6(^(D8v z)2dSkwTaC6+^$k)G|Hxcbit>D+qqQQA}el<`yUS5bt1l+MiYFM+5m||`n0pRo%7yiHfLth;{_f1QRbP>2G1Cr(kLC7h=k+tldKG** zkA}-SSea|ra@X=MPnrfFZ*wr>e@k`?4K-StXcLTTyMIjWu#av~C4FB*6fUB8lYa9_Xv1;QXKxNfHa>=4u zPG7Y{amTU-2_HLV>f&XRkx1ar9N8MKi&2OrEI!Dea_~pBmDg@OpK%ikzg)tZYrevH z%FD!G%O>^FsFdTd)QRQUl-LB+N+QW*RS%? z4%2)2O6LlL&rwdym; z7b3V}U8uc&0biO~)reH+GiRVSiK$cUyuGcky3Q?$bsouK)wO7yGfyrxS536LtMXaz z9tZGxsf>T=#T3n|7C3XH69!i?-%m9Vd(}6%UT+&A`?(bG?EJ(reYr|KSDh89^plLru1dq1yK2GR!oO+b{-Nrv+Je>}p%kS#Y$w zdnFA0a+7uOZn3m|aLNU}cOF2{%eYeqJzwvrq(0t!PNuJcy#d;LT*HZ_hvTp)6+YZ` zamN;3Fz*_cwLr1SMz;xhsqmS?08CPur5o}rr%}So#HpVj0fo2$EOq`L=C7cH8j?w6 zPA$esFq9L>$5)qH;;tPajAx&a98D!2c$tX(#a>UIGFfE%G>cS$-Ok|^5_ zIw9PG4l&IilX`*Pmjx_2ENRk1b{F~4)}vcX#4US|K=1p#+5IXU4D&^UnOcg_|(~@!hE(Y<)j*06d(nGRWMx^cN30F6^*T((K~= zz=K=+#DtW>`Hj_OYJ>?l?rRY}f;1?Got++>%NR&fe$UrpH-@V_uiux2oFBrD=sr=M zQDmLZdgZRu1eQMqcZ=HNP}t@PedQW_Uw(5ZcK4dTtHcg%EB}nNT_|YI%MWn(={$(VO5J2hb?Q2q zo=u1V2{DQrb+JfJtzP+wGT|K?D(?mK!BH)WSOE#Xq)tHXv*;2?8c8EG+t+hP9McHJ zRhWZQHd2+@z8>!NV(MSkS(~DoXzRt!X$#MyCtTR6=|4zQdBx6}iDVUv9kXc-872L{ z)jI%agYLmXS+Qkp{X}nIP`Y!mLsM2_!Ah?;zd4RkT&n$e54b||zaC*~b| zG{`e!`mdy#bt8uAKfHN9`Qvh39vw zUyjNq_GRK?0r^BjVitiRBHaec6fwOoz^>h5^c_Wa6P?u-G7V}wnNWy2uF_6p-Liqc#!e9V?c|!weW4QfyjD39DHj8O>%xMZC(C7W{COLfKn!%a4?CY zg19u;C#)uv@f}HziC5%b-cMG;HJR}CepY=-UwXStlacRXh=4r~Lz4vN-#x(co(|m{ zK;DraDV~2mr$LycPsVkn&Wz~t_kHpG@ORGQ=%YvC9>ZX-dyy-{TAEbzlVy%nBQYMJa`Gb$?D1MQ_h|WR70)-}MD*o_jSC{ny(ix%O$;c|U6=HJ%z zp@`Q~3w?x0D%rpC{pXvcf&Die!IRc4wcQ)<;3yqm8{}5?gukz-;MiHvHjN{g*P>;( z>XAR#-qYkH#s(v1g0lmnZ2Fh_)6L%F(a8lJy;p~?0P+?4zAHw@BQkt@W&058QHD28 z#m>UDH%nTF*vt_O=w0P)Fgw`<6}YJrLfYXxy4$0T)R=HB9=c#$G~!@##A4yvNP$sKzJ;M zRBd5)v*hxG%!!_}yUV+>EG0i*!tBYLM? zyr=nncXElRu=UDubrW{m8;8|%ovak^d`dqkIuU)4s2h2i0CniHj28ewXhhGe+F4nY z{iK} zfOqj7#YXLr*Pt*^O63g&(fc+*ka(%rX>rL!r(i zbTxdVsqR-oA6O7R_X^EWF&zeP4#g>I7nSmTK)Okhj@#Y~Q@X)%Ax1S!X@@U-V-?o& z+cDe16Y`Yo;ySJX>(%{CR&`&nG>F~a9j=diT9}7>{+I*!hugzH!3X&Z^hi96{g>81 zk-D}AU!{q;NLsZ>u5C;4!M!-esu>e-d<@2GZS#OX7fq zI@iD8F|X-U^)p3>UlWDfAaI>pmyY_gTb4p}o`ApX{=g`*sZ%%pG z>^=kAm2Z|MoHTjyAle$o$N_gHK9m*)Z{)Yylq)2BWLvp*Ra^FnT+6na%6qZbdG^Rj zg07kQ-A0QbtP3;~&~FA%O3BPZk>(zr+=3dQeQ@%MN(Yl==lY(j$mrw=n3>0?-9Sj{ zms~5O?kBW9iRa2V!27#gyL~q7`pYgQA~MmSo8;t1Vr9lb9zcXyYOmT*TD+N((3xzrOD-mv37@J<(2Af@LU1l6 zOUe|b=t_+C?4|xid__D%`Q>?K((2)jB1o;<+Cvp0XU4%0V|w!cHjEZy%I$~Fc;2V7 zQj|QnD25&nJe(zHu|9Wi)!%<}3pe1-QgPV0{oCtoDFB3W4(y|#v4R(-1#T~q2qag{ zd_($sSxjJ( zRG8{$Ic%OYxh@8+9cJ({&QOql}Yv?*`MOlCgXjdy3xTgUa&7o3hQe;o$b2Eh{AUdhoq;&uTKAD>i!G zHWOBjkZMC9+G>^Ze)*C9|DMTLKX*ks;LGjWVbo(A{ddcH#w`Hy!} z6b+A*16pzyP!2p``C}jOxJ)@&I z^1%tGOCc)Lr-Z{eSgezmWg{ diff --git a/docs/articles/index.html b/docs/articles/index.html index 731b4e8..3747d2a 100644 --- a/docs/articles/index.html +++ b/docs/articles/index.html @@ -17,7 +17,7 @@ spsurvey - 5.4.1 + 5.5.0 diff --git a/docs/articles/sampling.html b/docs/articles/sampling.html index 3493b01..419eef9 100644 --- a/docs/articles/sampling.html +++ b/docs/articles/sampling.html @@ -33,7 +33,7 @@ spsurvey - 5.4.1 + 5.5.0 @@ -84,7 +84,7 @@ -
+

Introduction

@@ -128,8 +128,8 @@

Introduction
-library(spsurvey)
-set.seed(51)

+library(spsurvey) +set.seed(51)

Unstratified sampling @@ -139,18 +139,18 @@

Equal inclusion probabilities
-eqprob <- grts(NE_Lakes, n_base = 50)

+eqprob <- grts(NE_Lakes, n_base = 50)

The first argument to grts() is the sampling frame, which must be an sf object. The second argument is n_base, which specifies the number of sites in the base (main) sample. The sites_base object in eqprob is an sf object and contains the original columns of NE_Lakes as well as a few additional columns such as a site identifier, latitude and longitude coordinates, inclusion probabilities, and design weights (to be used in analyses after collecting data).

To print a summary of site counts, run

-eqprob
-#> Summary of Site Counts: 
-#> 
-#>    total    siteuse  
-#>  total:50   Base:50
+eqprob +#> Summary of Site Counts: +#> +#> total siteuse +#> total:50 Base:50

To visualize the design sites overlain onto the sampling frame, run

-plot(eqprob, NE_Lakes, key.width = lcm(3))
+plot(eqprob, NE_Lakes, key.width = lcm(3))

The key.width argument extends the plot’s margin to fit the legend text nicely within the plot. sp_plot() can equivalently be used in place of plot() (sp_plot() is currently maintained for backwards compatibility with previous spsurvey versions).

@@ -159,24 +159,24 @@

Unequal inclusion probabilities

To select an unstratified GRTS sample where each site in the sampling frame has unequal inclusion probabilities according to some categorical variable, run

-caty_n <- c(small = 40, large = 10)
-uneqprob <- grts(
-  NE_Lakes,
-  n_base = 50,
-  caty_var = "AREA_CAT",
-  caty_n = caty_n
-)
-uneqprob
-#> Summary of Site Counts: 
-#> 
-#> siteuse by total: 
-#>       Base
-#> total   50
-#> 
-#> siteuse by caty: 
-#>       Base
-#> large   10
-#> small   40
+caty_n <- c(small = 40, large = 10) +uneqprob <- grts( + NE_Lakes, + n_base = 50, + caty_var = "AREA_CAT", + caty_n = caty_n +) +uneqprob +#> Summary of Site Counts: +#> +#> siteuse by total: +#> Base +#> total 50 +#> +#> siteuse by caty: +#> Base +#> large 10 +#> small 40

caty_var is the unequal inclusion probability variable ("AREA_CAT" in NE_Lakes), and caty_n is a vector whose names are the levels in caty_var and whose values are the expected sample sizes in each category (the sum of these expected samples sizes must equal n_base). In this sample, inclusion probabilities are adjusted so that on average, there are 40 small lakes and 10 large lakes selected.

@@ -184,11 +184,11 @@

Proportional inclusion probabiliti

To select an unstratified GRTS sample where each site in the sampling frame has inclusion probability proportional to a positive, continuous variable, run

-propprob <- grts(
-  NE_Lakes,
-  n_base = 50,
-  aux_var = "AREA"
-)
+propprob <- grts( + NE_Lakes, + n_base = 50, + aux_var = "AREA" +)

aux_var is the proportional probability (auxiliary) variable ("AREA" in NE_Lakes). Proportional (to size) inclusion probabilities are useful because they can increase the precision of estimates when the response variable is positively correlated with the proportional probability variable.

@@ -201,28 +201,28 @@

Equal inclusion probabilities
-strata_n <- c(low = 25, high = 15)
-strat_eqprob <- grts(NE_Lakes, n_base = strata_n, stratum_var = "ELEV_CAT")
-strat_eqprob
-#> Summary of Site Counts: 
-#> 
-#> siteuse by total: 
-#>       Base
-#> total   40
-#> 
-#> siteuse by stratum: 
-#>      Base
-#> high   15
-#> low    25
+strata_n <- c(low = 25, high = 15) +strat_eqprob <- grts(NE_Lakes, n_base = strata_n, stratum_var = "ELEV_CAT") +strat_eqprob +#> Summary of Site Counts: +#> +#> siteuse by total: +#> Base +#> total 40 +#> +#> siteuse by stratum: +#> Base +#> high 15 +#> low 25

strata_n is a named vector whose names represent the strata and whose values represent strata-specific sample sizes, and stratum_var is the stratification variable (ELEV_CAT in NE_Lakes).

To visualize the design sites overlain onto the sampling frame (separately for each stratum), run

-plot(
-  strat_eqprob,
-  formula = siteuse ~ ELEV_CAT,
-  NE_Lakes,
-  key.width = lcm(3)
-)
+plot( + strat_eqprob, + formula = siteuse ~ ELEV_CAT, + NE_Lakes, + key.width = lcm(3) +)

@@ -230,40 +230,40 @@

Unequal inclusion probabilities

To select a sample stratified by elevation category with unequal inclusion probabilities for each area category, run

-caty_n <- list(
-  low = c(small = 20, large = 5),
-  high = c(small = 10, large = 5)
-)
-strat_uneqprob <- grts(
-  NE_Lakes,
-  n_base = strata_n,
-  stratum_var = "ELEV_CAT",
-  caty_var = "AREA_CAT",
-  caty_n = caty_n
-)
-strat_uneqprob
-#> Summary of Site Counts: 
-#> 
-#> siteuse by total: 
-#>       Base
-#> total   40
-#> 
-#> siteuse by stratum: 
-#>      Base
-#> high   15
-#> low    25
-#> 
-#> siteuse by caty: 
-#>       Base
-#> large    9
-#> small   31
-#> 
-#> siteuse by stratum:caty: 
-#>            Base
-#> high:large    3
-#> low:large     6
-#> high:small   12
-#> low:small    19
+caty_n <- list( + low = c(small = 20, large = 5), + high = c(small = 10, large = 5) +) +strat_uneqprob <- grts( + NE_Lakes, + n_base = strata_n, + stratum_var = "ELEV_CAT", + caty_var = "AREA_CAT", + caty_n = caty_n +) +strat_uneqprob +#> Summary of Site Counts: +#> +#> siteuse by total: +#> Base +#> total 40 +#> +#> siteuse by stratum: +#> Base +#> high 15 +#> low 25 +#> +#> siteuse by caty: +#> Base +#> large 9 +#> small 31 +#> +#> siteuse by stratum:caty: +#> Base +#> high:large 3 +#> low:large 6 +#> high:small 12 +#> low:small 19

caty_n is now a list: the first element contains the expected sample sizes for each area category in the low elevation stratum, and the second element contains the expected sample sizes for each area category in the high elevation stratum.

@@ -271,12 +271,12 @@

Proportional inclusion probabili

To select a sample stratified by elevation category with probabilities proportional to lake area, run

-strat_propprob <- grts(
-  NE_Lakes,
-  n_base = strata_n,
-  stratum_var = "ELEV_CAT",
-  aux_var = "AREA"
-)
+strat_propprob <- grts( + NE_Lakes, + n_base = strata_n, + stratum_var = "ELEV_CAT", + aux_var = "AREA" +)
@@ -287,16 +287,16 @@

Legacy sampling

Legacy (historical) sites are sites that were selected from a previous sampling design that incorporated randomness into site selection, are part of the sampling frame for the current sampling design, and should be always be selected in the current sample. The NE_Lakes_Legacy data contains some legacy sites. To accommodate these legacy sites while sampling, use the legacy_sites argument:

-legacy <- grts(NE_Lakes, n_base = 50, legacy_sites = NE_Lakes_Legacy)
-legacy
-#> Summary of Site Counts: 
-#> 
-#>    total      siteuse  
-#>  total:50   Legacy: 5  
-#>             Base  :45
+legacy <- grts(NE_Lakes, n_base = 50, legacy_sites = NE_Lakes_Legacy) +legacy +#> Summary of Site Counts: +#> +#> total siteuse +#> total:50 Legacy: 5 +#> Base :45

To visualize the legacy and base sites together, run

-plot(legacy, key.width = lcm(3))
+plot(legacy, key.width = lcm(3))

These points can be overlain onto the sampling frame by including NE_Lakes in the plot() command.

Legacy sites are included in the base (main) sample, so the value for n_base should be equal to the number of legacy sites plus the number of non-legacy sites desired in the sample. If your sampling design uses stratification, unequal inclusion probabilities, or proportional inclusion probabilities, you need to name the column in legacy_sites that represents these values. By default, grts() assumes that the respective columns in sframe and legacy_sites share the same name – if this is not the case, use the legacy_stratum_var, legacy_caty_var or legacy_aux_var arguments. If your population is finite, you may alternatively accommodate legacy sites by including a variable in your sampling frame that indicates whether each site is a legacy site or not and then use the legacy_var argument in grts(). When using legacy_var, you do not need to use legacy_stratum_var, legacy_caty_var or legacy_aux_var.

@@ -307,17 +307,17 @@

Minimum distance sampling

Though the GRTS algorithm selects spatially balanced samples, the algorithm can select sites that are closer together than you may desire. To enforce a minimum distance between sites, run

-mindis <- grts(NE_Lakes, n_base = 50, mindis = 1600)
+mindis <- grts(NE_Lakes, n_base = 50, mindis = 1600)

Here we have specified that sites be no closer together than 1600 meters (meters are the units of the sf object). In some situations, the grts() function will fail to enforce the minimum distance requirement for all sites. When this occurs, the function will enforce the requirement for as many sites as possible and then return a warning.

When stratifying, mindis will apply to all strata if it is a single value. It is possible to set stratum-specific minimum distance requirements by storing them in a named list (the names must match the strata):

-mindis_list <- list(low = 1400, high = 1000)
-strat_mindis <- grts(
-  NE_Lakes,
-  strata_n,
-  stratum_var = "ELEV_CAT",
-  mindis = mindis_list
-)
+mindis_list <- list(low = 1400, high = 1000) +strat_mindis <- grts( + NE_Lakes, + strata_n, + stratum_var = "ELEV_CAT", + mindis = mindis_list +)

Replacement sampling @@ -328,72 +328,72 @@

Reverse hierarchical ordering
-rho_replace <- grts(NE_Lakes, n_base = 50, n_over = 25)
-rho_replace
-#> Summary of Site Counts: 
-#> 
-#>    total    siteuse  
-#>  total:75   Base:50  
-#>             Over:25

+rho_replace <- grts(NE_Lakes, n_base = 50, n_over = 25) +rho_replace +#> Summary of Site Counts: +#> +#> total siteuse +#> total:75 Base:50 +#> Over:25

n_base indicates the desired sample size, and n_over indicates the number of replacement sites. Sites are first selected using the GRTS algorithm for a sample size of n_base + n_over. They are then determined as base sites or replacement sites in a way that preserves as much spatial balance as possible. The spatial balance of the base sites degrades as n_over increases, however, so it is important to choose a realistic value for n_over.

To visualize the base sites and reverse hierarchically ordered replacement sites, run

-plot(rho_replace, key.width = lcm(3))
+plot(rho_replace, key.width = lcm(3))

When stratifying, n_over will apply to all strata if it is a single value. It is possible to set stratum-specific reverse hierarchical ordering requirements by storing them in a named list (the names must match the strata):

-over_list <- list(low = 2, high = 5)
-strat_rho_replace <- grts(
-  NE_Lakes,
-  strata_n,
-  stratum_var = "ELEV_CAT",
-  n_over = over_list
-)
-strat_rho_replace
-#> Summary of Site Counts: 
-#> 
-#> siteuse by total: 
-#>       Base Over
-#> total   40    7
-#> 
-#> siteuse by stratum: 
-#>      Base Over
-#> high   15    5
-#> low    25    2
+over_list <- list(low = 2, high = 5) +strat_rho_replace <- grts( + NE_Lakes, + strata_n, + stratum_var = "ELEV_CAT", + n_over = over_list +) +strat_rho_replace +#> Summary of Site Counts: +#> +#> siteuse by total: +#> Base Over +#> total 40 7 +#> +#> siteuse by stratum: +#> Base Over +#> high 15 5 +#> low 25 2

Nearest neighbor

The second replacement site option is nearest neighbor. To select a base sample with nearest neighbor replacement sites, run

-nn_replace <- grts(NE_Lakes, n_base = 50, n_near = 1)
-nn_replace
-#> Summary of Site Counts: 
-#> 
-#>    total     siteuse  
-#>  total:100   Base:50  
-#>              Near:50
+nn_replace <- grts(NE_Lakes, n_base = 50, n_near = 1) +nn_replace +#> Summary of Site Counts: +#> +#> total siteuse +#> total:100 Base:50 +#> Near:50

n_base indicates the desired sample size, and n_near indicates the number of replacement sites for each base site. For n_near = 1, each site in the base sample has a replacement site associated with it – this replacement site is the closest site (measured by Euclidean distance) to the base site (within a stratum).

When stratifying, n_near will apply to all strata if it is a single value. It is possible to set stratum-specific nearest neighbor requirements by storing them in a named list (the names must match the strata):

-near_list <- list(low = 1, high = 2)
-strat_nn_replace <- grts(
-  NE_Lakes,
-  strata_n,
-  stratum_var = "ELEV_CAT",
-  n_near = near_list
-)
-strat_nn_replace
-#> Summary of Site Counts: 
-#> 
-#> siteuse by total: 
-#>       Base Near
-#> total   40   55
-#> 
-#> siteuse by stratum: 
-#>      Base Near
-#> high   15   30
-#> low    25   25
+near_list <- list(low = 1, high = 2) +strat_nn_replace <- grts( + NE_Lakes, + strata_n, + stratum_var = "ELEV_CAT", + n_near = near_list +) +strat_nn_replace +#> Summary of Site Counts: +#> +#> siteuse by total: +#> Base Near +#> total 40 55 +#> +#> siteuse by stratum: +#> Base Near +#> high 15 30 +#> low 25 25
@@ -401,32 +401,32 @@

Independent Random Samplingirs() function (IRS is for Independent Random Sampling). The function arguments for the irs() function are the same as the function arguments for the grts() function. This means that the flexible sampling design options available for the GRTS algorithm are also available for the IRS algorithm. To select an unstratified IRS sample where each site in the sampling frame has an equal inclusion probability, run

-eqprob_irs <- irs(NE_Lakes, n_base = 50)
-eqprob_irs
-#> Summary of Site Counts: 
-#> 
-#>    total    siteuse  
-#>  total:50   Base:50
+eqprob_irs <- irs(NE_Lakes, n_base = 50) +eqprob_irs +#> Summary of Site Counts: +#> +#> total siteuse +#> total:50 Base:50

To visualize the design sites, run

-plot(eqprob_irs, NE_Lakes, key.width = lcm(3))
+plot(eqprob_irs, NE_Lakes, key.width = lcm(3))

Notice how these IRS design sites appear less spread out than the design sites from the unstratified GRTS sample with equal inclusion probabilities.

To select an IRS sample stratified by elevation category with equal inclusion probabilities in each stratum, run

-strata_n <- c(low = 25, high = 15)
-strat_eqprob_irs <- irs(NE_Lakes, n_base = strata_n, stratum_var = "ELEV_CAT")
-strat_eqprob_irs
-#> Summary of Site Counts: 
-#> 
-#> siteuse by total: 
-#>       Base
-#> total   40
-#> 
-#> siteuse by stratum: 
-#>      Base
-#> high   15
-#> low    25
+strata_n <- c(low = 25, high = 15) +strat_eqprob_irs <- irs(NE_Lakes, n_base = strata_n, stratum_var = "ELEV_CAT") +strat_eqprob_irs +#> Summary of Site Counts: +#> +#> siteuse by total: +#> Base +#> total 40 +#> +#> siteuse by stratum: +#> Base +#> high 15 +#> low 25

The GRTS design sites are more spatially balanced than the IRS design sites.

In a stratified sample, spatial balance is calculated separately for each stratum:

-sp_balance(strat_eqprob$sites_base, NE_Lakes, stratum_var = "ELEV_CAT") # grts
-#>   stratum metric      value
-#> 1     low pielou 0.03680620
-#> 2    high pielou 0.04543609
-sp_balance(strat_eqprob_irs$sites_base, NE_Lakes, stratum_var = "ELEV_CAT") # irs
-#>   stratum metric     value
-#> 1     low pielou 0.0415444
-#> 2    high pielou 0.1171086
+sp_balance(strat_eqprob$sites_base, NE_Lakes, stratum_var = "ELEV_CAT") # grts +#> stratum metric value +#> 1 low pielou 0.03680620 +#> 2 high pielou 0.04543609 +sp_balance(strat_eqprob_irs$sites_base, NE_Lakes, stratum_var = "ELEV_CAT") # irs +#> stratum metric value +#> 1 low pielou 0.0415444 +#> 2 high pielou 0.1171086

The GRTS design sites are more spatially balanced than the IRS design sites in both strata.

@@ -459,20 +459,20 @@

Infinite population sampling
-eqprob <- grts(Illinois_River, n_base = 50)

+eqprob <- grts(Illinois_River, n_base = 50)

To visualize the design sites overlain onto the sampling frame, run

-plot(eqprob, Illinois_River, key.width = lcm(3))
+plot(eqprob, Illinois_River, key.width = lcm(3))

To accommodate the Illinois River legacy sites, run:

-legacy <- grts(Illinois_River, n_base = 50, legacy_sites = Illinois_River_Legacy)
+legacy <- grts(Illinois_River, n_base = 50, legacy_sites = Illinois_River_Legacy)

To select a GRTS sample with equal inclusion probabilities from Lake_Ontario, run

-eqprob <- grts(Lake_Ontario, n_base = 50)
+eqprob <- grts(Lake_Ontario, n_base = 50)

To visualize the design sites (with closed circles) overlain onto the sampling frame, run

-plot(eqprob, Lake_Ontario, pch = 19, key.width = lcm(3))
+plot(eqprob, Lake_Ontario, pch = 19, key.width = lcm(3))

@@ -480,10 +480,10 @@

Binding design sitessp_rbind(). For example, to combine the base and reverse hierarchically ordered replacement sites from rho_replace into a single sf object, run

-combined <- sp_rbind(rho_replace)
+combined <- sp_rbind(rho_replace)

Then it is straightforward to write out a single sf object using a function like sf::write_sf(). For example, to save the combined sf object as a shapefile named "file_name.shp" at the location on your machine called "file_path", run

-write_sf(combined, "file_path/file_name.shp")
+write_sf(combined, "file_path/file_name.shp")

References diff --git a/docs/articles/sampling_files/figure-html/unnamed-chunk-12-1.png b/docs/articles/sampling_files/figure-html/unnamed-chunk-12-1.png index 1dc0c84c0c00bc677dc60cd8e5097aca6b835ea4..7996c332ef7cde150b2794d0016e3f3dccb16d93 100644 GIT binary patch delta 9294 zcmXw8c_5T)7uW5UZj#%AN@$tkS|{1E4BcDOYZxU<2r2tm3WFKTtK8B}$UC-S&@#v_ zCXBTbHI|`4_OTmd8@ue^pzr;|ALe<^_MGRO^ZPx|688}j_XSh-7)XG72cO-N5ez+4 z8>Zv-@ZHg~dyc~;T`Vyhyv4R49i&WSr^sJPmCn2a2O)7g4J<&rLi#6lu83M$@ynaVMbbgrI@wAn0~3s(fYH29h=IzI8es-Hhz4iwlC z8k3Sung<`4L7(L(Lt}+(a=I37!9+O?$h-8dt8=Tsro{XL8g?|p59X^E_(tuspx~#r zPah-`S3+@U+C@vjXYi_}%kIpGjY{g_GsZW6XrFpkKBg~u{drxF?EHFFg82H!efOo3 zIh8IBai}^lR_Ycyl2)!n(?&7=SgktZo(|O=C{rYQd&g!YL{wtd_FRbmLx~1UDc#bGQ`=2ng7Q1m~4tz&G29sNsdob{VG`rQ6GwDV|8W}4W zf3$0{FTF9BX9yHM#2)dzdS-NW6(~B}3$OSZ;k0cM&(Z2&;mdJ9Ft-+*fC^ZS-vuv* z|Ljt#MEB#T*CZvw4_bEcmE~7yPY72U)#I&{JYgK(d+}j`J|qIFMkXK z%N{&r$Fz7I)LV8;3dGHQ?~X+0MB1t8tX;ixSBH|Gd{RT@&YDhMx9@fD0-`6(Qe^Qr zs(^ijO~u!LSlPD|ZrwIFW!XjQt=bzX&7_AGNR+SWDDK!dV_&;%pwNu+H%%HKbBtZa zY5lMJpP1A(Xf?nH>#7Zi9JN{l$Ki#M&ub{xjS$4xgmR8ylh{^WZc_}u91)v8zqdHi zxSur24RURoqi_StI|rHZ?f`E^%=f<2re#xgFAPn|9DJ_(mF7*Yq0stv9}c!A{twlP z@+wSxCy0Uw%hjP5B`0wuWnt{j6;R&d&XSpz&&>-$W!D%6Yh@}tJRsNBj`{i!o>%oV zNm)@a0v^T?F3OjbvV!ouF*AyuUt{8U?^T+~XT%LBJ1vM5rm^(>aLaK|W9-n@=A;;H zn%c%~h_rCSiIyF*?Dze5*?8ZH0UKN%e(I!%8L0i%M;HHPo|0yXZ>*a}78y&XUn{M7 zSb`^Jej8)_ z_URj))g>lwVL=k|=o`3i&R}W zR*|oVG=?w356t@SPbzWV&om^r;jH;ERE;Kt@+Q zVrSl+*$HMP&;D|rQY}`H3?ShPPQ)N$#0v7}KGzkTCMHVL%v#GFm*)qbKfim^#Q85{ zlT}31J}srDWJR_Dam&T?4DSBGAcIJcZlU;0{^xgJrRw)-B!KjHi#RRr(U+SnUorCd zevzs8NiVd=q6q$b=a2^;>#>+_2I1=a@F|p$)w5q>zqnj{dOVD|}zW!UWW_4s!6D z&*5H*ro5(d3b)?t>!P~Or5~gv$5Ql-d|687=w7&vUV%iefox774A?_`@ntpPkjuM` z_XKu@bzmRT@iQ3i-y2xoQpc>Q62>?ykf(6C#;G-sPB7i8T-4`6cIJ6GY>w6CNqz z2I|G^Z`NVOygN2dp4?Iry4=np;Y?DG-AfaO2ez#&`MfJwI6@HPSFaE^IWuOy@H;`3 z)eu$aiPEEq$~&hjmVE+C+t=;et=_$k8x@^iAIouYe@rI7 zsVn$=F9Y@{zZV9Kwof1dtDh?ImBn}e)(gq>cnKqfZPmE$7=AZ$JGjO>KLz5!MIt0J zVi(d#F-Vs4b>Kr4Nai?aa6V-}9tWD}b>lze9z>F5U z3tVXnlk3{W#u~Zhn$0gOQ*SelK(PYh_6>lY+>TQ-xI=z>ybli5)$a}5ubb( zl#e?h!-5eB!|R`GQoViyzNeryHVRDqOKT?;2pE_k+DelH`X+}NL`Tc8&j2?i17Yc` zhIMned5ZXPVL54yMv@gQN_Aufx^sazf3hN$M&fg@L%Yt7+*9j*JvD#V^lvO`u@7hKQ1y(RI||w`6R#IpxuMXxY(eL-n4|MmXEV+*E16MG zLtq(NCw?why7;Ohv-;`HP=OusvxKi#vHK%Vs5C0Y%Tq=_*2UAtL^c*q4JJ3vVF4PE zuqpW+yW_$~)-0sVBWls{*;?sOIXAIscb~K{RKZ*%f-e8l7BKz93G+JW4$9EwPl!BF z?*c%AQuBQ8=QlN}x)jgo)4&{Z1D-s{Ca%6ROs(Vw<24$8 z%UQ!=(&HPylye@6(Z4!H7@ETQEXg@KwoZ>7!6vVZZHQg>yUEIiW%Ua+txy{g=n1$p zi57H@&5QO)gQ>BjUV%8t7?Sy)%l#*JjGh$L;O3E2R_vjw9vVH40`Ff**N#_XBQyHF zumTQ(0Vi_bohVe#A8mq?5KS959n?JO7E*OL0KJUJ3UQARZ1?Pywlo`A_8CHuiLp68 z+iO!_lEcw(xgYNA>|W9k*d4H?4j|!yN5eXwDEi=>LCZIpWxU|g&cUR>FH3SK5e+My z{BI?h_;%)aeSI~pTE#3*jmVt%?zl3>mup#Eg)yv8pj>BUn3*<+P4BZRQdBkeTtsi` zCVL^K-FSCLj}Gna+i=^K&p#`xr;%G`IV$|V%SI`QBK$}jEpw?Tfd*NO%ScbpNdvG9 zZ+Yb{Ob4nM_7l6`_F6*`f~_Eh9}0^AC4rW?E9YH{Kr5QikKtq2#x@98sh zJSvyIMM|TYl(Wmx1{h9&58Cf*{C@+;>AJu<+Jml76E2&q`~~V4frt zPVHGtVQwwG5ZR>Ooo~w!^1=xK%Qr#JZ*;UU|aDR-38S)ILAzO#mc|Eri(SK>DRVD+y;?P2}skP8&k! zL#W7uouUM8J}Wl@R4JxuvBRTJ-wFz72lyGJfM&`0_SNl?-K7t|JhW8iWS3Ro+WSNb zD2Cdgw+5ydmVT{oQZe62|L>o#i|G4y46qR2&cxdis;^ca7(C9wz-YkUC6g1X2$d@a zk_@B>@S86zy|)@7oH#ob|1XUM1xHY?Er@S0DatU$MG{u{6?? zb*f~%xyh<$7rL{%tvT9uK_;so_uL01F81swd{ual7ZH58Uak8aL4Q2)cFL-fHq!@% zv6rHe$_u#Kk|cZ!X^jYrJ9yiN=)XsjU9O_t6%`*mVdIJWw81-! zA!uQkFtGVZoxkU7&bN9#@#aUnndv05lbLi^B8{dNN4%Z_dc?w6!(?Ae#ir2@w5l>tgWV6Iz+IjgIKt1Pp53?sWx?E{Iv>8)Nu|y%{2MDINuy@LX?I%aZ9gt*BM?P6 zs|O^I7}U1@-MGm&@1078g0YDy0+%)7nvn3ctUiG6MMBW%RqH$ZcjR^*+AhgI){o%A z=?j(sln!NO>8(v>eQitYlV?8w>J{Id1l<<(ak%$vwSC%${WcE}dL`L=fl9I+&~3-9 z-Gr=miKI*C9oMTY`~!Dn23vu%&-U|(CSdz!HQJU+t`;1-pH}n4WL}<_tQ@p5jn(#} zmRq{XdWI4!xlPgY^#gZzN{%OTyCMPYdZj*haJW}Z`Qy=0l+FjY4`Mq)KPGR3wbwB( zWHYx>MCJNNFDSxS$kNomRM&9l9TUq%Ixi;h8;vv|*xX-}`8tBQEUOi)qCMOy6x3uoC=qFIQnO;&o89K&MK7 zye$%cXuOYkbFgT23Y3z{>8=+yt9*FP-*JxxA2)VMbuog4p}Zl?8V7Zgf=6igGKA&y zHGM;SyF9{u7ed(#)Oy!@8<}0<1(4M89-d0gS}tV43pi`GuefKEB4WHMk~;B(3g^mELv61? zk*TC3J0e~watHSQ;J+-4eG+h{vh1I+F8UUC6=V{kG-eC;p5WhI)N+qI)i(;tC3|J4 zsahIAWJ9CMPc9S+%_Kj}H zi;k9M3xvO~71x3^QiGODGZ4}Ib4ISY`c%kNdK4{BYwYv;xOY34JUrg#thpRTGxmwx zByBkz(2H%^fOqce>u%vP0uC?eHti?eG@FRlG2Z#}>z0RIEp|2q(?jL$&bZk1)q%=!aaxiQ!qH4`u94atgNR#3@+j<}6&`gtE(qv);dQEep>1oZH=Wg1 z({hW1oVAjagN`4%daB8}K43>QPm<`iC$+?gD45Ok$kkPSJOGheZn{P7PAadm?rujY zJ|i835gjd$x%PA|)GWG(+}_=7wSQ+f=?4m$uXz23vU|VNN`<4L~h!^SZ;zV!`phJQLcst&Z zJ6tJ~(akzY`avtU%xZ@lCZ@y*Ys~!dYpwY9+IJY~x|X+(#+(S?3qpH$gUaukAiIC; zZ`5Zh_4^Wi7lt$wxdAE-Ze|QBfo;n_6KbN*){F}t2)MBE;tx)p8iunw^z%4r9P)dF zo~(P`Ssk(m;mRmpT=^;%AWdB>WE z789q%rPbO{)n6}pRT0=u0On1y>fGywKeD>v7j{pf>-W9ZuLx4v3BKgQ4h;x`TiHNX z4}4J{`uwrzrrKxA(L{S<&l|S+G5R32{8v_mwlnwez-rAWg#emE!iVC4Tv#vYJO0Hj zT&VmuLqbxc(23Tgz$*dYU4QuZ{pFV>Jq>hlrQ|S}IaHoF$i`jL@CYII0Z@ZPk(K)H zy3 z^5PKK+5OA9ZI6!4l9ZLi(_oDDmz47#R`M&c$9ALj3aQY)PyGlXup{7S+f|=Id z@9Sm6rhAR1T6GEw8`yb}rrMeT?c~rgyqd_aBkDyZDFc7J8j3IVV=5$vndprp(y?<> z?FaXZ*E^kFppA>w6HNMsFwdQzldR-H8lmS{8z!VLnVZWP)(-v2!{em09n$g4=hV;y zR+Do2E#H-ng%mLNKD6d`&GlROKu^!uo`?fG3WHU+l-XEA!<~07)BB(iR9%$P4WqXt zt!U@hipblfTQfl#>DxVG` zj^XU^@{5v>Ul#$uo)x~;$-5SKQ_-x1JXu9zcSC5XwTY-wPxZB1>UcT1obpFmexHl# zZp4BS$o=I%jc{q2J;i2jcB41DRZ_YY8Gm*xk`U>J_=TSQb2;scEcBr!V7OE##w$XZ z3Z8_}n2cJ$Lw){W`iQ?Lky33B^89G|XoHT>rS*WejvBkWP2MWCU8Z z-U`ISejwhu`y-n4CDMym1uRPLdd?LOc0TksX`56GoKJq)dWEqcXwhVCH8$kLQ8z2S z9M#RE$cF$d-5Yp_{`6R-!hDy_;|Y+u&|eex`SIM$`}Azftz~BT;wJ;Cj419T*k_^k zeQhLnZ;vF(L;c*_vllsE#`$dsJWg2<`~B|&02|2q^jyqmueoYPi%fo#*i9406UhJEdCZEAfA1`2^dD5+=(lJN zxk}J+Br?`(NoRVu%kbE^Z@0y+F0Vol`BO!K^{;A!9k(WXwf#M+t$;e}WYNSX)A1vS zL8qNBcB{xrE#1bE*Gq30v;53wKjsXJ?@5DvPw2f1S(Zmtf(f&n0tn zAD4w>uXm;}AMs=RV#vP!Oa4>kf2e+4d|YUtCoVjzDSD^yLsLuY0AcC&F!en&Os~Q>Lz7EMa;A?2gJ*&-(+-`wa0tt(g24g zz2A!AUicbfZfwiV{}z7fDZ9^$P$zM#Ke>63;hzM0Y+YdGMtR34RGPhoR`p7oX<}9; z*e^0>CJjh$n|4&>RRUaU5SIss-b%z%Od&|tr$da7gx7;`?w04;7xlYgwAR*L2*fjq z*k3+&;~!KQ!8mavJ3i_hp>mC53=$%o2- ztA88!?Nki^GKVkoK9%2OUq5oW94ied@J)8K;8+wiWao2(t1L-G8bCL0?B>wNpur>j zW4B%Wd*Gd_u$*P``<4Pe>pq-IP)l4Syw{&gmnsq-(?;mtMXY;<`goroK;c*Y+|Cww zF&yr}>FsFNKpq9DV^r$E{W4Xh(cg!cBdH&sP5}UjI{8M|)2sS>@7k(zt2hi;1eh$b zrZd23_k<@JJ$)MR{o)^%+)0(7(X9I%6?W~(7oP0b2|beemxe_F23`};B;SE8DJ#?U zOn1%53%7!?MS<$F)O~rF44*4{T^L9y6W@yk9doQ#`rjE~zDD*?f)?I|VzVbOJCtqQPZm%;of^OY7ZfIz0!gg}RTQkOAWP{691#77G zxAmP?g;R7 zd&%O)S*%8>hk@RI?gxER@{1Pm0$P&dTmxM|}`EZCs6EG+rNB=s%fIPMCA zOG@Tug)xtFkiYFlP|lWnUG^&qXG&+qMQ2k)d%0wOTW$BLOwxSxa3!0}7gor(x%{3N zwe|CDJG!f2AbNbbbxh>S{*;T}^%0CCma1as0U3sWo>fd&Vae;ny8FG9%CA1EBNG$a zYbJWK;3zCZeRiJXA=dn#gA8S?6enT){8&&7NIfmqNT+S7mi*a`%8X_=S%TI@G zZa_$9gYxCw$%}{bZ(R24D<@RJ%Jffq5c$QFu8KtKO+ z)&@$fQlL=$C@w8kGHgjG0`iU~!CL5BCiOj5;X&2N$YFGb;n?PGsDgzqaP$8H7bkO( zxRs3aw^DM`VY3$bj-T;QQ4pWgB0UnHvGnv6QEU7=raJz=s(2~D78G8pW~}fzJ~bS} zV3!YNWN4)NQsm{-9C9V%k6U%ixta8>uAbd{Y69BJ|6Lz=$nOWwu(P{)mC^e;wFaCS zXV7OFlkDh=UTKY^3-s7ZAci}z!&ORt_4p-j6IF+5pxUqZ9)-brPa0ksOT~rC2xmyZATpN`4D;crEf>sa!;(IvPgJaai%b#E&v5s~QxyCSS<9)o=CXGy z+Pkj4GT<_m-Y4ivWh?zv>Bg}F9gZQyTe3d7Ud!uN;(;$ug)K&r@hnpqbawEuxYDBT z8l3U}6XWHU$P3R4=Y=z!g*~c3n9k-=?gOYPh~d&1NwawI&%EPHn0>bZsIt)La;67uO^A8_+mqECJL;LCH@cc+)r zkn)8?3EEv}*c^1GYUco?k+w3guIRh6Kw6*c&6{nQv`l+py+ymC{ODCh*L?q#+B*+h z($_4OxARTjx8*B`{8K^hl;;ff?R<3;Wzg+c@5zY}EgyRz)*$^eU!iLT3$&wF!Rrhj z;H|-`>HGuVvIZm!;j@tZvY!T_!d;ezKfJdN$>p(?No|*B#A))Oac!`=w zcC}bVyTUFJ#dF#5<6&!WSBL5GxY5%mV?;&+5IXc6pp!Wwaefy=UDNM;=hw3CcB$oss`vTnj=L-_J-42 z>NgaF)bVqOX(vw4uZpaBV&+Y~zYqH7^Pyr_zq{zWSFH3<%9vYa?G-I$P4+CI^?RF- z8h)j3z>!0Kv#B?%#n96>tUi?sMqUq7p4Og~3R0pn`BY5P$w5VDm9e=Zr%IGnRZqKd zNL*GU18k1vR{hKE*fvz*{@Qzw3Q3c9i7et|%Vi_)@01pVWgD~e*Nx2$-h;5PvTZ9r zpLEann|IXG404q0II=D-=xDI&ukqzqzLg%@U+!eW9a!ZRs6>bXQ`WPvV`w93ao!YQ z3!afkem0ydMWd&DPsVYhwf#UGOn5mF*fn3Aa0l% zxwXzmbOio+XxE9medSAsgXPb`J#)xGP^_IDm|OC2d&ZNdlO7b4zrs@Yt#?EUT)n!x z{8g6i$FLus88D)^Wyh0^KvNAz2*k9!uIICi=jiONIrI0SwwWhZw{9lOJO4|5Dz^bi z4^GL@5`M;V(YMlAVV!L##p<75@-X*4h9P7VCIwuy?r4Blt?z?9;dEj^pfqsMFJ$TF zE-S=ySCxB`PjD_h%z%#b0}koQ1~%nWYtp~Go=G_|Gsq_ruo@}?H$jbC-d5&(^IJ>f z7M7PvcZ|rD5~~kIYW{y1vRsVuIl(&9!4L%%c9_gA?Q6SaV$c^NxINuCX9aA>pZi@l zE}neZd+GPINRB zG>wUH&rsQ>qUNX60JcP;C70-_*&BC!M>5Zt`eQC;vI<3It$?P9LHPvv2WhM;G4_U+ z=Ihsk!DYiRT;=>5T@A0ex^+ze&A1n5s`#P8>z4ybFoRlCIp;q2`JCl*KT(N?{+D>@S@8jV3BaV`WV*@a z;{xyaL;J_>iQhVSQ3u&w+Phg*@}gHb%h-*h#6XkYpzFvB?9o+0o`<5Qp2+N0{u43;8Ls?L9sr zxvA`I8i9$W{=FZQIkzoPK%vsw94UL7!#s=I;+KW-(>rg_l_)SzbyxSbd)snWF&eTfBtrAoLVM^3A_tyJ6O!?`}^SZ>dix* zpmd)-TDRz!xzM~0>eowV2Wc$JI4ZjyCWJCPDQ$FD`=G$ z%9SgZuiDG+-fO>P=9qP`fNCo8vvr_=qDVga-{oeGyX=wtIND!```AQ>A!}#jnR25HsEBeydp-jakcY*$$L`P6|ZVKFLH(tK4Lw(g_9vq{`OoGWH zyx$%cegD!Jy+i#$pH!zJtrr7&X-CGTE+0I02M~_&`4>M?a|n)$lpnRJiXn&>X}!&y z;)~BVO5+sY-Hf&uv=Q;r`pY)AHpO0$WJRi?|L^dgO@CkAH!1kKW_WD37U?aAykxDQ zr;Tf&jPqk}Z_;%BOF};9)>cu-XsCnaCBA@Lq{SnjsfT=7t*ho4}6Wsh++)WM6QwaRpT%~4uz1Y6DzKv(l z1N9u8VEDk8PpTCjA2)3th%ys6j*&{ORV(%wh!GIU)26IgGGBdQ1~>A==FRm@y)8KH ziE#nQSBiFHVUi0RJPyb~#uGpO&wU%=yfX0JBBiQ}XG5*TXlYC(Fj(;R+gxsoLIG z^qx&i_3jN?w*^+RQ}`Cz&zYLW2}#f%AS|Taw?xK06jU!FyoVLnoUHa-$@UvK3jw6} zVExawseWM*b8{S@CuL^ln*kUNqjfO@;EyR6B9FR;z~_F{KgfTWC+mQ2dn?aakgL!V zU%A3Lh?~Y#VRqgGzQUEeFb8aMhtxh?kEhnk{hbQXH%@YJZ<4On>Z;Q-1Gl(0=h=zv zPUm-8CkR`4TnV&d?yOrqMIN}AY32J)S|#V+Xx$w?p}2Qml-OegFA_nV)W!5<$Ap z1BNv);-C-@b#g9{BOlGTY^!)pHe+!QXg`vkD!xz*GQWoZSo$L^y8EZw?HZrElM`k7 z=M>@9UgQL{#PB-VjuQy}>Bjzg8v)++v{VVG$63fCoIl2stEKu~EN*SI1*IcF*-O`! z?;Z_5c5u(q5%j}4&JSDYc}39P8z{5huefIN^9i!_}oB`O|wVE zNPNyUtwvl|BKs>FpVj{ot@|vPw74O!#X>dq-3hGA9jn%b)8;KMNiZx8_;9DcwCX&QVXcn2L`FI~K{P!X6csm%>XnG?Rg1N`gV!DuWhzn2Q(bwu1Qo?p6xYNl%w+OAafg+) zhf5?41li{`4zTarxcUw_x97&T>Y2hfSGzdDnz5ijDI??6{~^K;Ck=;QKCvu~`IngZ z*l|i1B&t?ASp9Cal0{GG@-o>wwPUEqg5^+ivkJyt^ZmaojIt*+gFPJ_>c; zIN(u%5vcJ?7=$rqSEo!k$Yc>&#H=C8sc}Gl9!%K|Y*=1!-}IhaJwTY9NkeQd_;1du zJSCOhGv2sGY+JLd7t!6^sln7#J^V)})zu>c78SbN@Oa5ZhatW;(^5gyW@P`e;&dJOX(Yi-SesF-mKpquAz! zi%%Z`WVgS>It3=yL8{xCKA>s(ja8C~UDq@~e)vS?E&>h0q6o6r`#7fzt7_=Y8fzM%3Xl zF1raF3=QIJ%F7=k|Gu;tMN79Sbu}QztNQBX;J>(QXT2w5uwuP*nAtbAn`rXK_$*3xczic6utS z40ktCp;t+NF|{6@CWA%SziUC{)L1^g+x8!Ts4OU91llI+dnjQ(z|c)i!Q`r~Bu`U> zx3}+3PmcprxaIN}mz==)%l?G9PoxN(52Nb-+> zUHglDci41pUZ?2TJeSNRgV;-ty%pD{Pp(^k$)uY}mVLF)kXYkwur&iYwfm)Q;-Ya% z8^9?mj{P_b;*&LF@5p#5L)T>QEQ}qUcXX;Ohe_?OkJ0}XiMHq6&b^U70+d4kc^ybk zO5|7%X72O%sDCIg!~iy` z%tE^)hLdstK)KKFrlX4%v!Az^+#(}pWN70LTHv^XW?f+5lyR5*`uI=21-e+NC(%Eo z&A{`lJgv8C)x_rhNu=6iw0=btZOED#8(uL|`E;vlbvc_D3QNK`OwdnScQ~k^zloDa zsKB(++Sg&UCCQS}AA4f={#+ngr<^Lv+cW_UbzP%?!pU8p*D6*!(VbUhz_Hor#| zW3YMCZDINKAW;gI;~e@Y$O+>o0d6+s9OFB2IHh42WOT+0>X6Uc#kVfQC&-fL`-=+sNfAijmW1q+RF29 zo;UnRt$Ae)oBP2#Qul~M_8GD{z{99{l=Bh)>i8TZNYx3ci1qPKbcjrj^m)q|asc@n zyG~~&FpaT7k}g}Z&k>BN@D`~kpW7A=uKFGxH_SJFe|t?{-SX=>YH>Yit~^IjOSsIK z(N;N-=*J{n(A}Z}>}5s1y56qK??YaMHuC)^;<{kDZ@`DS{YZ51eqnx`4Et4i7sM$z z+r0E**vfZr$G_4I&79mO*EIc*&C-q?3*K@PqjtY< zcIQnjmRj^*) z_bC_G`%Z(&5qKyFc(}UVejj(yw6-rA=*xmC$Y5-+RU?@?pr zzZ>6ty~H7mdCkMpKNbI8D2Y{=i-m+c**h8OmKr`=51+N0p(RKWp&dedCA2wxqbh1 zcqw9H}5oxHh43}(#opW(?&HH&h$mR)-_K)*}9HSbZTl2jhQ^NeQ{(%Oy4&J zzb3u`g5vH`E+3WjGt3fw#@^wM?z+yd?7M@_7ibVW$L8bOi~iwhOrAYOM83oF@td?) z;T7DzE)C7r?4mToD<4pg%Lf~vx~aGJN<`oU<_dbL3e1i1nOlGRR-^WtD@x}sZ%+vs zvu`L{;MYC$o5*E;fkR#S#u9tGj`FbCW3&6leImhKw+uGFk%M zQ$$<~kaCL4D*4eIKP(qOfwyAUNe8(1 z6TOX|@9zvrm!Do*K0aaPIU%z)Iy$q9BrW5-l+I4GXQg}A#Ch+ftNIUq1z2RvYX2Q{G!L7{ivzIuaiP|MPx31YKlnDOQh)_XkgCD#QUU3AZa%|OrM(-9~)Ok4t3<->OpHYZ(l|b z!4S$Bx6OL73PVBPyu{U@jT5pBlTFc5E}w1Zso>!Ddybn|_J63sKlapzjcv#j%1=Q+ zCEi|X$Og3fJ*3L*C+^Z1zx`CdGmU|x@gg`>+G{83(pU}8GzJPsz*#XXGyH}HQj$2B znfx3tLeJWX9L(VM_WcZ_;5e-|P@22!Cr{-%>*x9Yw<{BAx;ic!1$7QfjpWIaaI8(u|t!zSi)%xP!&;gnAEK!Pe zz@98@vdTmXxO4H6W{v694Xl~!nhCHMZD5QJi1SEPm&>EEegA9!C)0(H)0|DM|Mtzn z$AE%EsahkSKZ&EYg42Gs@S4QfoIm29r+w~XU)MD^a9(}n5i24p&yqV2u=xNldl+Fp ze1STolQJR%>Aq7$cOcU6m7bHXa^Xg_Y7&^OyRg@SAAifaudKrXa>Nsj|B|z&Q=`)a z#n*%os%nNK#mJf=^CEb_=5}@Uujd9wSZi1I*IF5xMGAA@`4PWuhpVn}EWI$Yq5JwS zkNK&#*7v?XYWqu{<^Fd-wuAe>SibZO;3L^oCXMS-?+1+$CP`kRMrU;!+J4)}8hJb4gvr~R(zmkbEDD!6%mvqDrZ0Nsdz z1Zn>Qygt&`u@kJY8%ffA5jPkP;BU8Jn%E@{kL z$y&efhtyoPbuO!Wel?&_7D5v$zKT!mPUulU9}s__t=O!MAXD_?wL|Ti55%%wuR6-o z5j1*rq=CPwi+6M*}aIU%^${#68mdQ*&XA@h2 z2p@B|Ye>vDtmzF^r?JE>fj^*H=i%~Sd|8lx6Bl6H+BkJsvHP8E zyojaY^q!V76!Uc3`T?J%zB+ha*U&@ zZRpB%!G-iRF}ZVM3}klSZ)1dcKk&0C9Z9gG59bCxecJcvY8MK@gtdlaxJ}if11467 zW^d_+b{WO(1R@N@dlIJZ#yL*Px(!sZ5@{Vj_r6Bi3Ls?e(LfoOSyF7x_}nldZ0l~l zteQuT?_x{hyi)LZ!UBTC`K`vt9~t6**RAAZW}&)nMEU{7`iUjhhSFBozWjHD>sG;y9+hPvUcUxPS8T+@b!3JcrS!)d$oHFOZ5?kFz(h zKHdIQ1e&2E6->dKHsfOe?T=XV({v~f-HydYhcDaiT$>!MKv5&^_V`0vZUr;-JlcL| zPXJ+4;?6G;X6|Z}Ch^f)V^)E5Ud7<0;pN%u!sb=(4>8ip2$Dq=Io?x?h;Ur>K3FD> z#`IxxW4rFZS^lG^%8o-;ISINLz;}!l1||WXyH}=iBYnOk)S9M(o4S=9L}4rA;P1_* z#%;`{n%p?yHxjz2?+j~wn3nq$mmHY58NEZ5@5V|jj4@bxCwCTGiU2bz{siqW8!rFO z45+q9X26-3l&qwPamybh-{%TMM1zql)^GV4$FFrg1$%GM&Zv*nszF%-uv_(Q{omA_ z@~hztvq9X7dzKc z(Y;csTbQS7zJM4{bKRv_L8V=?RaoV-uR+{k zY;-lj)6kBxtPM~V-eL6z@%H%=8Qb}>9j6=LIv6WlPZ$Yr**As}yfCZ!k z+=B_Dcp7@=Ej_1s8&5BkIv5v z6O$@Ge}wx+;>*O}Pe<}q=a%$yUvkOQAx$SdB?Cz%n28suiaAMFT)Q@}rYh!QZ#cF# zkxo;r$-l>11RaN|{ky@40U}7~twQ%WvFT(LnWxU4Fy=F8Mlhx!I(|M5QFt_8urI zi#T_oB2cH0Q7h7}%7Q7tmIF=7$~@_47?IlguI#gd{O%z{icZsmBI@sPKh-rK&GKE- z-W)6C?A+^w3nvs1I*Y-chTi?BQ*+B1-Q(%Z&HruHs@!lOet0pT%Pq0-y4OSSiuXVm zaGqSeLU^>Ig7MJTdE;?x6<1!i66LpCYei}XYp7Z;@}N0sBMoR#WAID9>~XLI&jeVJ zj$nr~^TLPEEc`K#WgUk+ek;&*9^ zPx=Gm2Dcr5ef`nXdVX{LO(Hp55Gb%~?l`GZx~)fQ_pQY(;9`#psqGBv0;>;hHpfvX zJ-K9Lgi|Y*7qmAE@To8%aYD}7gdN$pP19VPIRneVgn6+3!*(}Jn` z&2`p*CYWQO8-~r|me3@xYFqTweth)nL)s=)!%o2vWyx-hxD4H(MEdwSyDTmcHjCwh z(2`g*JI8*Q1ejQR@RH}?N4AK7YUb{_cu z{44bQfUNTSG5YpP*Wm`0zX3#~`b((A?{f8G==Oz3yHw*bluu=JjPgtXH%Q%>Nz^`U z&}#~Qf}dD}Zg2OWXJODxob(z!c_{S|*sI-Sq(d$FI-^864>5kfO0xGF zi0kVXP%=~-EO89HLK8#GoOV-IjXV-8%54*cuY7prV-irylBuEfL`aD3*AT?>+btF1>Am<}!z zYkGrSdu79#hn71BE`{iYz7h(WkKg{?ebYzq}F&VjNxB0=8 z^7IeWz}CULmw6MhRhtb;T6ZUoqif^7Z|<4Q%U6Vyxx}%is9{MwP~V#;k19K0g;w z7m%Nr^7HZWVEN#0VF)C1s`8RS4T~1nZ(c!`7pQ$MNhrxsou$kVEEJ+SL)3OP9RI*u zjpuOn`mHZtj!5!kuXzfd&mffB*mdQfQBN2gIh5#%La7f$Bq)=)c?J^_1;c!OkPxep z0XQ2#uPJ=ks+?&sdtp~lXNL66Z(-=IBL2Qq>AXpc%bA&G-Q=)o_|-k*chB7m7-WHp zeWiBbx-gm~@4dqlS|qVcU?2Ol_o2h=*2Nj0GL_=u2lWsxU;<1=j+T;4)m84t?}FX8 zQFpw_(e_jA(?6@BUGBA%8m5hq6%+*-Uuta7&0-27D$! zi>`KrHPf)=ds=I8XedUWsxTq3A#~;B0Mo(py&jL(30ZAH8V5-SL+Dx@qN1z==oq>( zqG?fK1nO1F(7*1eWhKcIYfCmdCSJ<4to>ON@%Jm&^})T@HR2RdsPWhXh?vFI7<+w; zA#&FK+>%Srqu0eYw^;H%1Va5_yG#O|$3@9f1+cd^1fXkMY*4T$;+X&K)%$-2w1FGfMCKh3N6+} z*Vut!b(zVHwou`@7OTq)222SNYGpoG9M<;76+Xs$;Tb3ZWvgiw1x#ubQyUd-(jxn^FELwAX~oT1kqcr`BwGygqYSy_y= q^#A{s>$hKtM!hY*p}pff_1PRuuwa6(U=592MKjkP`&i zDhY@Xpg=%oP%9Wl5C~xe2uL6T2|Hl~lJ^|?`{Vr!KIgu#abNrTrZ(xT`lPSQ)joqA ztcoVpwN*<);KSR4oIif0K5(V_Y5P4uef!=?>A$an3LwRAz3(aMhBy`X{jE#qPTo7| z^76}!i&}o6CkWKN8M~i7!39zszy0yl7hiqn@*UKXO=N(mpFO@ZxZ9C-+p^!NBg1fY z-kkRk^ENz=NW@s{eZ~l0QI~D3??#9xV+(n1}y$v+Z zMmH)5EzUp0dKxKav34jZD3sU#yzusLXoTmgZH2z)E9P_VXv}Fe#*PpRd7_!NI zsY_{&mEw&Dl~dw9_@?(-9n!gb#c4S>)$mI=dzF)7Bf(09X9hHD+g4B&<~#>-!*E!W zsM(9_Yn27O&D`;huMs)Li;s;C?_kvuru7pun@|r6rs8qLFindp-ir*PM}yzgu=;V* z>sn8Og(1_Pe6-h3yFWtWVH)(BsB7-cs&S>Ss{)pJH?ISBKN!tpX~%7f@IC>xQcr5C z!@sAcSK<2{Xl99{i6L26@hOrNOQwwfL0Jmm}%=7w-Jvz z#1OYVVsJ1`Tg8BfhYj}-Zgvq(-G?95Xw4%9K)tM{ut77fCfljsai1-Ezr&0gJ!SNL zD{Fo9H~g2doPlfTDDTvO0PJli8w-?CKaCeMtm@Qp&c7Wb(;CPAF`SFN5z>3vIv^4c2{npl0tn zXZfkp&}F$?DCDr;rF`c<9jhc7!fLR0F`Gz@v~i7B4TypMqw)M;rFV@J$3sxO8G8mBlIIO zC2bQc2v^by3gPP%r(?9JGA3uS;^s^B?Kg(OZ*0Q`hsb|{+@OZ?!0e?5H6=3{OE&|$ z8mB&8*l9Bx07$Si#s}>%qO5lZ55T4wX;~+N<4@n#icWI%yX`UIrCZc=$yIzOzze5~&`lxX1f&M4MUV;2H z`4|`ziWQYG`+y^oLE7{E)v2hw~3K zZ2xm3RsF~vEjAcE@;20Gf}a6QJTVdvYWQo4CD3N?8$;5qAg5_U;w>xq_MMR&wT5QB z&%)W1hGSO!Oyd@-v1;aQB>|mytrfGrP)SOR0vuu z0yZ3G>p46N+1vlBsdcuNnuJWYVMZDR8yMS8X+WoS*R)$q*C&-_nfLGCBX$*Xgky>j zN>EzI{{Rg=p=c)d>zI;86_fQM$^1>S-B5#H%dj$=tq9- z#}?B>7Jv<;bg(d#i#75z!%o|y9L(OPjVsB4c7_v=B5;lj-W4d)@sliMhOu*6~&*WrUg zwoDpFLM|`Gqq4ZYYxU1ryWo4xdbouz0Z7AeO6G=>p9Nx%tPdfXgA0h>tSh}%JY*J| z-c*UQB~vJyi`!l0-Lb)9%EOvO-(b4#3gWzbSh*kYea`ahx#Fk zrcrY6=SDhvv-|CYfP~I4`!#x-BoZc(JK4CWo|+Rw31t_=;{Sj4+&hGP@Ja~V zsdwR%aMZ{8NtK;0`k__^&S9RA+CmR^khWban|TdVmJv;wOV7V)w+o+pWt$X8r^lTt z($bvlUbVFW2{eJvPxAXpj*)U~&gMr?JvhhZUt1}{G#251+`Dv)5_4jn-%N5v3A>A{Htfvbo%?9>*T?&7W}T zXSuD6i5EA_I2OT!)`wPf<9x7bY5d<4<~>2n`a%I6F{*ls3PRjsY8DmU;=8(1MTfdH zGalm(>1OJ$u4tW%B%_q@EUBOxmt-3jVnd3Z`Ed)sFTfcg8hCILCX(cEC@(dLsc-c9UrQujpI%* zhfrN2q1%S)1r=q4bHuf8JROI%`o;vyePg!$Aw*kQhOvXPJ9FRF9n7AGm3g< zKMv{vne@dlK7c2O7+Y8ne*N>uTq`T3cqm0DAmVrSab%+&-NF zkz*sCE#z1n`qs<3j^LE9*{TKDtaqJYB0f;4hx=ZaGgj9g!i9|rRbyL}eW#K})kzp; zC3*AKP$;H>bn^c^Yy&?k;_|Xfy2iRUr^N->ux*RZX>3owMJmS6Yq`csuBEg5R8Kl-nVe=m=^|k3 z{hZ$+J+E1p5=Yrl9^ia?)4%_e^T<}bYflcYtL=9gPb3t{ej;qy=_EcpqS1w=Y4!8} z3t+LO!Fto5VKH8mO2qul&OW>J%sP=wDFUk}C#k7TCi#*o=c+) zGufzo{R985tOb$vrf-*J@od`;&#G1SvTmR}E7H7vD^J;cC7j2LWz6@xE`1VXVh2-J zF}IdqU2~V+L#n7(g2O`d;Z;yZmc@g(=Kf34@HE}mw!9Vu)q%`4M?=hTERXBh6#6N& z@|eS%<>;Tpddu}P>G72}D3cjkEJ<3N9>-sQm%cp+Pe)C#5+O2S7Ak9ij z0}QAp3&Uy|S?n3iS>S9{4W(T1kk+*BXPEi*#t#A&!Jqh` znvf1xlN+K;*(5qT4#FBumbHXTGscina6ZLI;6YqGLAwivf~oA9LjG2OG-<$$Ss$@b z4eNYZowOz%Eoqc7tV~;;(Hh5hsTlizy4-pvXU2bPez5uT;)D|K@41hAmFJ|5ar@R* z(;KGCKw|7HQhD&q!#cDJw1(v;D3T?-)wIObQcNI)D15nE17Ma9ydmB9VQAUWA_I750`g+A&*(f zl5P0hueB1?#7J1b%eauxAz+sMzO_pZwngAK>Ug=C_NevljrtY~@RGGP@uM+Zdz+oh z|Hpi;uJ*~_IftKTW%`xy)Hfajir0yYu`wPo^Es7denDfwC~1~r!IO=ch>PJu@dTxf zk-zcG-B@U`mu+mV$|S%0R&L%}^1#UF*m1eN-Q7kn4WqiIXLCIXxKDZ4v;YyHcLYC!qpxP8Y1YqL;PUq^_Y z*}l_ZP7~-aaoGXXnuEZRphPG0Ml&Q|#){y~I;20bqRj9YR|(W2Cq|`muM2LmBlz~I zYP>~*ciY{pvv!vOl0kG?xRcs~5HoKQ+qUc>9V(5DT$oS>Agi$Dq{P0gYEpY;#A?g-d!{kd|ZRL@YrRou|Bi!iYx{?Q{9QY zpqz+~QrXXPt=x1GbxzIpoNO(adPWI6S!DdAr|#3(bj^z8(rNv8E1=1RY+T4OsRUzV zEbCt6=hrr7AbXp^V_CljP@EF7FU|&LcV{H|Uiwwqa@_-RMQE3DVP8yujY_)p@%d{G zWcJWnzL|8Nyr#1MR2&zYUT)eN7$la}u01wAJts!frs-+-$#wc@%n#J-f6uWbA$tob zH;WgQMbgAh2M#ZnujrtBEDE%RmTQcAc^vs&NSMc-KV=y)w+hu>IF1xZFJlKQQw8%3 zVp$Wv*|AbI3y=%}8q*1ixr7T2VP7ewHk>M2CSS4b@x-xQ&kc9*1N zZp;N?K$3pq(xNzkTjt)~-E9uNYIK#py z@3KxLon25mEcV;5Zh)}mK<6sbvwZn$3-5`nc(CfdtErHDK0f(}L7+k1(pdrB& zU*@vmmgrb}mKpTOx5MNVl`Y!W=gOLPiwGI4d$cli$xv{tzA>eAsLz=jxfTwP@>5Sa zpSv;l0-sCzoITRN1z8n0>7uRspdyXQCJL#ndeZh$a#rlS%af+WKK$y_RHk&8=*6KS zO9zO>HH@wB>g>rU9C09{sB?x-GfI2*ZV3c`aM)#LeEOr1YYH9OV>)u$6fa)7k!8fg zwgo`u&V;R7K+ecXnhQM*^OE@hI7{Kv{ps#CUY$$%)~1FqSA}=2`#h|2aA6@d0BaHT z(XdEr9`osPXXE{*f!}w}8hp$P)P7=3COYZJsgC|}8ca6DBgJxn{m??FcAs+(#=E8g>8dU6>u0?QrWnrbgl>3K&z~xdDnoe3&L5)ri9qDwaZu&tR!QTX4z6Y_GEeURB z62SFDwEf>eRrNERhS)69au2Q@qdBM*B%V=h94Rc|EUks-G^X3ZTjJUwvVopa7MW5& zS{d$Z2PcXw8O0GsXYFO{h2%{fBzKKmU2Bj3WSLv)I-3FlINRdLhf}W8SP1G~|9B3u zcZ9C8%Z*=VesHJ3HQA(*L6a+Km=tNIM@n?-PZXznT(u?joJ_PJbJ__yWmp4!<`%8m zpuYRnGPxt<31>zzuKnPZEK={GIvc0izw;XD2ZFQnaG)Nuz>zu4HT%+gps!-J8s9?W zrTh){_>~mXHGNhr&g_FF-^sCm)BaLC?V_d(JKDsDcfTe(J$1E!{~m}Ag=au)wb3(b z8dxGq#CU`as|K6E2_^HBJ})y zvt{^dxGWf=1jc=KE1Db=>BMFGyMclk3$7c2IX4d!j`{q;t*(?z%-0p*$K&r#Y1_<% z8i~i)=1-w4H+uAYXu_T$P7!YdDMeys*7U5*5m-M@$n_)(3Inz8I~;e3iLM;nn0Vyd zDeqq3^*y_u$4{iDIccnScs(Q(=f0+|>h>#N+YV~0WY2TG2f&E`BJ(Gst4@}oVWL~q zOVClpwdn-y@R@v2X;&XaS+;mmQ{o}ZzS~o01o-z=tEV58#~%+2@%@oU)q6!>oCh}C z+}fVo+GP`0KWZT>s}~9Zn`eY>G2R51$9#-tLYW~;PK#DH9~?4X4WH*;DFr&0ZJAmJ zSx==P%R2#qJ(|DvPq?Kp_GggFXL%*cSi^*{oEC<~&r=!e7iU=_5y`)Didz&-f>fpL z1&qU-XL~ts;Q@VTEO7D1UtoHLgu`Z0);3@{2drp?Uq_YO9H!;0_GS-XfLY^gV8@xH}0k8hCm9a5H zk_--}@al3>W&=Nz(Nt5Qd%XXsJjK3i=5+vSDQ8tgjSZR$Y0#rL=`erSa;_-i-2U}? z!03#SUV-vTA(?A06quU9QO>qtMgNXKu{>m14WS`pRwJv1zc4RNzv_d{%#HFG2ZN8R@DDKU9CeR)^XzdCHb7ov_&kS?(8%`9y|ahS(3e z!J{e9q2W|iQMBaSn@G94qxJ$m?7IR@@vB51e#Q=wDJcf04?IUWds)M3xR0cvCNi^< zhu+kB+CxJFrrXGlIsjYY6$npMnf@KB!iz|(W$+b&V;_zwlkhJg&=Qv}y6v-sVi!&R(XHKOq6~SOo zHT;fc0ZU~YqqjGn&T z!Bq~CW^O!PCH-PEy9)n$CT|?aA{9o#-tLVOz?z#S0r_dmPz(;*QEkv@@t8luuDHD= z6Xm%tzD?3mKl~r$F6r*QL&pRqMu$WuO$k|1Jhj;28hB1N>4`2p@zobQQaG%*8bMsYy3`A)~5|w zpFTGF0DAP)wCb&{q!XdPemn5!t9-0({|~?T|Fj=-UGe|-Mwxv!z_W<{Fnx^)Jos)qb!DM z&@4lco>ET_@YywbDoI`Xv5TNN%rR5l2txsGU6K&>W?07e2 zxmhp1hYt2X*LBc6$s(Gq0ni15=!qdgt2^=5Wr3N6VB$^@*_yKd`&p~3&z$fq_x%H{Nw33ubLM!e=OucPC6sEU%bi9ZtSJRep+WEs+N z<`wb%7v!_{vr>@d%~`%i6*RBt zq_tFdzG_>EWYs!u_|b*M0j?0m@fqd zK{@!Yiy@jCpoT{9N6V!1Uy|xRqqDarbQ318hK$zgiF2e^Q9j}%*~6_2GecOJMyXf( z&I@Ow?ePGPN(j-5F$HM;M|L&nBbb6yPr>H-;xmUK28!!gUtb^nAg*}UnvwuT0LGi$ zH;JQ|fHg#mejtL$+Ie9K;}z=zO@n>9dy)qJ(k_%Oa=7a+b8#7_2FSWnZ+N$JmiCtJ zR7T!r{8YSq`CPb^Px5o!U#42%EYw6jHAVd7VDdNc^?62<)yE+dbIMO|56j}nL48g# zo{*lxf03b+C-j5nO8To06j0VhZdUsc<)(-!BW_uRk4-dLW{43zEi7{-Cs^C&mg(qAE8~+jhk3n; zu!(E!SNR!U-8b6XnYtqlTSQxA@+qp=gUIADB*UMFr0|E?_l5C_MMwW z0u{XhK45M8iB8&j6>29b*4L9l-XA);t}?A6z(MYpmEZ+0zv5DSO)u%RpDglnm2B;7 zWHQy+fyW2dW^tYO8AU!=*F1cTx01v@#cc(ja;LmcplxBPHe>!*I&Gyf3XIaFtiRrD z&qT+u@2-me%oR%-ppKeC{Ut?d=RT(}y zTH%F*0$#gpeB7T1+zs)>V|h^x)VebfA-z`rFK2T8o36SWJ8$BOr7 zD(m5R5b5|FhF56NuU*r7C5$jgNAv1Xn8u5O>H1yq^42Ap$oy@QbpDrF>!Fl8?~&M? zN5RTytYq*6c~_n6L}!}z0_7IG z8$7mHTCR+M4mAr?{6@*Pq|kMV4BW zk7+3j(B#1)sM;Lx_or<9rA?YO8g2zAm2k{i7$G})pJ?BS0`R;Hh+(ey(EN}n$P$+H zi5AyU)!sE_E}2{-c`CAQ(-}sFI(LMm;+ij!p}LBkYAd<_lkeDhFRN$qwdF0f0d(UG+wFIugd&e&ymnpztP&Xg6W?N@!5=2D5}g99gq zuq-!L&$`HB;+4$Q1aCY0(HpgR!rlQEZ=++|cREL&adWd{ThGi9DDl{>A0a(6%BcfD zByRD;?_z%}-^3byUZn@EmF6K{9_(E)rlkVQ`sE?#;1uGUo7oo>Xh5MvQhag#Km)sf z9n93x_IesSu+x!~m2ess`LFN(3`d$cSGsc;M1UXsjPhzP{M2YWS~jMI{LruXrWtv{ z;bfPz=Ud_m>u4h*9t)uV&8wp&6H5M1i8!-2Xz-S=sPz794#H#>S8pB;WYUhuuu=5aC;i3G>Q2zDyQPGAr@2 zwJfuqrrWD;S?o)sqTIu5Rx3ETEbmxvY&vQEdre|y_*q0~FmqoLWoWtN(0n7R$2)eG zpd9J$$e~ zqQ3)Z?1jGKy_FLcKyT!L=I`HsgS?$v{-)VE&CCD_`Ps-he5zySC!jYxHzmUq$*LN2 zau9iKFY$zYD=)qO)vYnouhiTE1z^{*&-1o#x(Tgir@11moZ^ikgJ zo^bxt@Z-<_E5}Hy(|nwAHu>4K$O`tGb$l-srx)7WrntPklxodRugvQ>mI+NUgg%i< zC8ONjuRj0sWqyI((V@49I|nz{T+a^-<9)Hn{S_Qm*5I%pG!2Mzajrf%n@YB7loRVv z2sNvT+8#-36=8fX`SNbW!nV~gZP0Q(%z)9> z(D^@hdO0qN-w3{dB{a6ZKFBg2hz;ayA>cKBziGN1N*W!OS~hV1_5XsZsC{P>vwA7P z(}ur16?#{EN%m|q8#%E$I|TS+65OdcD7{-ujz%dm4KQhg?eJ%SAY*?FP*cuSD)T zQmzvd-8^#o_?JP0I*(eUE?~+t7xmUX z=5@_XHN9r#I!QPEgy^<5_o8HaDsWIGB7sy)Cdk${Y z$(rIzdb{+R)iyB&jXf^A3t6#k9om?qU!#$0&^LyAxR>Ul_Bi**n8L=MQEq&gh^ref z&$9HfafdV=$aHk-G=fb(MgX@uQPp1>=b&^w?yNp9E*L&*zHEk0#K#4fRK#s9f~^gy zC9LbwZefq*1Z)FQd4r=~e|5=77gOAWbRNMU;QlV_c0UKjWDAQ6D$5T2g(^GKWfMF4 zf|L?gA?@Kr@%KZ%DSH7=en-3Tc`;l_NdB&mKd!Ec)c-C)>SWt%^!-mdp0F~P{h<(i z+&tRJ&Y{fyVgM8sMFzoe;^d_GwbPTh=pG1P!!fV!|Hq+G#`;k~#@qBaRo_wJeG$3R9AxW%B)VJa~P#>L8Qs&LcchU}7aG#RzX0 zzM5derz?{tiY;<}>Y)t7_`k#5_S7tiK+NuP4`Z4BWB09})y@X`PU)B54Ldlej9=dX z6S>z_vKQpdO3C1x^=j4!#|?&4jKAaAz0+WaP0QTvYOu#4BewX()_#>YYe@l(5d4>J zyL*EH^D>LTCeD-;A4`G0u%B4T6VO-I?n%CaO&$N+%Si92uVIq(-F`*Gg4-h8OwRoP zU;b2U>t+j4&@j8)a~QYC(j-1|R(0#TPMhEegoRd-Vake8zQXP)`_fjr_Ey&+7*+nR ziM_>=52Fs$&tg1l2rO1#9{usWyAxP6t)Tcvy5>nI;l5zL`HYbf|9c6Ny2sn6sGHx7 zSAPgBl$y9XeTr;6s1p#k(3C=m?J^g6ahb!d(gG)n3xfXlyKt@0XcAO< zfj#yBT{1jue~Ifmd~=WC(fj9=eZ3&9PCl?xlI8|UZxP0>lW3N}-m++72Ns*+>FN0y zc(rmnQD`D(AAk9BG@qk6p2)wqU{-GqcxHJiCyMWEvQZIHB}kJKEW*v(T3g}km3w6T zNmAdwmt~WGF`}%P4tc$e?_U>S=2E2R|MO)wl-goW#*?C77sk5%4L-S~eH($m|!=CpPh@T*}L}{XW}OTv=|;WG`eSel%IACRY2agrRnN zsf$l)r-I@Z&c|PTHjBgCkq%^-$NS)7tjhwPyvtf9e_6%|DZHsGQ?n2B$(s)F7As5~ zS0_>6lp;LrZuD518Tueof=?dVRG2SjV30Af&A9wlf<}_L_{ zQgtnt7z58jU*_QiXKhL1PK$uEBoJLeeqoXeae-bdmMw{QbFs?k&Esw3KZlL)MLG_7 zqM{9xFI`1pJn%;FY@R-~FpG?BW(E~op;&PqqabXprEUP@9vcPGq<^yeZA8A~!rpMt zh<-zVAAyIm2*rZd^UP}X0*>ByaL76!_g}aN4{$O`x+|Eee6t~}Cp0}QEv1NO2B=58 zn-qUTo2MW@6ab`A)m#M2bGTEv)Bjeo$mvhDVvo>!ojEDX&z$J7X_7y<*clUxiFYt@ z66;9Lz|vZ3x^9j z-H{UExh5hCR1nRUiV%=Tc32|uu&lo$sH3Q%r6qd9#BrXAvWtu^=6t;I8)4{;hlpk` zt9KBp6D`pU;fUnO`FSlpOA zAK-nJz4iuVNEf4dFEOA!NtIT*JtPHt-x~|HPw^z*P;u4RZCZQ|9 z7cQa0*1e=AVh<+9%`}i*`J`3-KeNzgvgNtv5aFi0q9lE_XjHQJ{zPT#5lc4_G;KB^ zW~A41CU&}Kmw;R06OJT)#R?5#Zj7c~Jn|^{rk=`{|yD6PQ>Ik}5gfz5cprGrE5HiY*9i;{RTgEPz7?bqx2~oWaojrypIr*Iz zcnu_96|SWk6XqG;rsv`R0PD#DPZX_|-ZNi8b7!07O}` z(^U~D@x;(xzE6G250#BXo8}Aq>_+W+p0aY2DNt@*vE%=BQ~SSZz6IEYiR+sCmAb&P zI~-$|2t5%@wsU$QQBr0nTrpW#V_2Q!=b@NP6W2spCjoreqj(sYdB6u;=ApQ`QjEih z{X)&Vr`d$ltfdDiCRjF5?-R%RXa?{GQ^U83zNWm4M~BSgVe+R?^pSq(^^y4os3?Hi z<+R}&P{Qu2eqe@)$?XsWvt{f&5vrg_s`B+O7!Du!4fvLWCCT2a{`DuZyLllFF33xR zJ!0P-4gzl`w=g8GQhLkC=<31uk#7?>?8fE81y6dz!Kepp^Uyh$!w4IDCD0qrGfO_=L?_FiA-BUh$49eCh`^u!aAc z6&WpvU!=JZm~1f|X7-sEsL5E)?Pt3Ej022?KI%tP43|{7zlQ^+)I3)Ztz(coZuOP2ka;hOH7o3Ri#Z)+&ZhYSix+j$U2EI zjd=jTR&tEkb2mgF=w|olhE3XeRwn3f`+5jZZ$VgM9T10TK0$@qzXt-%0ee(@DGi34n;OM?w5HGp+aDl8x1bJ~o1qU1+pl6gV=q9Z^-%{z zmzM+A4ZQ2*BdzrO!=%;%+LT$t`MXi7#jkXBXcYcnEY#5Wi~=1038qcj9z40OXFNW) z-_NjDNPpf3*B;^W(u!o@>7@;HTj_hxEtd=j(iRq%ZVyCuo+<0EjO-jOJELn2*B>Q* z_K~bhZJIerPV8|W=e+6M2_tHIg`2N=SvWjA%#qx>O39?vi=;2IHx^v%<0o!R{;iu9 z>-Dm@G)K`)ww4gPejIOMF0lY}mv)HHp1iOdzuR>laih%3u84UjvajX43^n)>VlPIs z3Cni^AM0AIiI=N;JVE6nnF4d#-Q~jcBQ5p8y=ZFm)EoyF6xiqJ$g*w8jU`9UHpS2W zT^+y8<#Zw`wC%$w7+Ui7VbaLvXj`69S#F|t1W7%IaLPwvPeo7B{$&$&cu_^$On?}S z(iGw5nbQ32!B>?5WAP;tdP0G82ObEbSbp(6K}j!nTR&o7uJT_H_g^-nJY`8Ac=KuM z(y#u@1bII=H1tXEVXM~27hN^1k+FF9KPM9Xd1$xY|=pU?Vyd;WG}jD_}`?kYk>)Y)4b z%)DCu_i7`Gx=ia`t~rn0rdW=ZkA-^2pN0A}hGT{b?m;7WP)y3?!4RZ1yi$B0emUR) zP4?Hxx_|W?qB3%9j~d=Xjy;$N!|)lUp?1^!v&6gxf;%)ccx0Q`DFxcQj31`EfB-GR zN`K}!oW8g@(lx;NRgi8v=_!OX0Byfo!d9^DXMO=_Ws{HMHj;yCN|%a72MYc=?3#zN zKPN=Evh%vzOoP+ivC!;~%z~ZZuUOX{2J80v3t3ZK$?J0@*A~Cg!%Oc`cGTplzggE! z_BJpOaP!j6aP2GL8{3uN#W(vDMyrvYLG%!J?Ar0lfv4eb=OpUtT$~g4O%u7`@G6bA zPDgQ}5TD9ZgeOsx*T`A1mk}i=VdHfZkzCI4Xiyp*>TZa^*0od7I zj&&THvPbqf-`COS_t)?7;Ggrl?rUGyecjLduI{JB_tTb?ISO6nzQg?bEo*^w4kAW? ztvSq7UEI2ix$!MD<@G36Y)=^i6sK_94t`Z_K_wnvXPkGE4@kV9EDLjbgeqUOPXf_vh+A7p!j(d@faI zcMlw9g>*S^$s4rsCRM|$v)AS?3b38x@OnNFHefcX7ihCaBCeS7Pe?xmK(F z=H5YJC_t zQ!Jw{0bsxsnV48$=w1aj$ZPRO{_>$R`f_5s%Iiz|`u+j1KneZ8 zLz$^1!95>78y%`e^d_KX*(INjmU%SG&N;rTt#IjHmnu>d4SO+@IG3aygf}y8xHNIa zZlI<-)HnusMl}j`l&&p%7nNObNs;3s@OrzChxI_CTIoscpD;CUP2X!J3FEIDv&u0y zCI1tq(hr|tp(^-3$5%~q;tv56Y2rKVNcMh!-mC=`CkzNm`|4s%od3K9AvpTVQdq3?262e zr;TE;WR$bU+70W|{+%^P85r5*8%gwyPeSfW3bqAOEr&+G0t4!F@9h+m5jvIWjzm7d zKBKsSm&0Z+uB0=qxsJ1Iwl+7ZW*rOUGxmT(aye~1Ji0%4Z5*9l6Qsd&x@xTBL-HdT zF(40j54aXAr8q%jMJ!`s=H32#m-C6!rXC8?WdE(?xLLWq8V5QDtfeGXT&(#6su3tT zFqMa2e9H2{7{}w%c>xan!;zF-T#j*q?_R{-T)Lq{zmmMCw6vGmTv$L?jwl@~a7g(@)a7>AtFn>SPNyoE#`d!x^`QOxa5 zMln*(Fg@iK|Bfz-=gxO5GhDNb%qLu~eyH@^g>O_WJH!j~&>-!+??tb__jU~MxqaX^ zZ`JywufKe-WlNTM`^AVB8Q;BQ zn=V7K0;WFLX}G;Eh;Gqg%fI2Cg1Bv3s_@aJjuCEr$uIitK*FKVkyScM`-gcK#SMwd zc<|2)Z&Yb|Rfs`K$@++D6O#hNeL(j|v^&3^zLV^sDmmc&&Fi4Tu26 z=L6O1ao?G00umZrG<H~EQI$46T*M`hQnD^YxHWBWw_OAOA4B?i22$en>9p(JKQfC^LwczB%a{&G8yntWaU73Jh zJQIzr!Ko-em|K5mB3%QM-$Vr>Rxsc3*jcdcLDP3}XAGxxLMZ|rVNY%%2g)X| z5L7mwY=&Rg6@|?^Y6tIz@s0qlh9gp~+8odAxN&g9O|dT3@zt?Pr4&%(Y(_Zf*4N*R z6NJ~yk{hzs@TBG0c*M^|Kp|Eh?I@lEzbny}ACg4)Y1Z{NHWqH_*7pO#iwI1Y1@^ne zFXs>Mn}2J22DXwW@g!)jP2I#o;-dfGcpkuUq0j|x@2SY)a9bRRZqb)@)_}J+tWQdH z;pZnEDwJ|S;Ua3FaK3AW4!i6TdwBL3TVdXa_gICJZuxDWTfvF8x?I&R{en^=c`D{Q zs^%k=sw1O#P93++0{wUyk818g{GxN9@;N#t*S+(%Sq%=HyO zl9Xd`%7S|pu)g?TgGLkO%&FU|jL(2^P0e+wjp7>riLxNepnw!1u$wuZiS%Q7CsMPB z+5aHD@pyck_5QBLozw>f!@G;o{8JydTC+y+@mvG6>~Et44K)$2L5;g(7c83`CRi13Z$HyT~&-D3QF3;`*Ij1MeFpte%?j09GD@8{+`rTSp`pNyGy;$KQ4I z&9wBpdp=u19T6jO#;DBFif=Z4rke*Z%Ne`Irq_ApY1PPyQXIH`gFmX)3JAn zx0M-z!IW9doA5jJMfILP-d4T@_rJRv4RAdkxCc_DL}^-6DL(c?FOonL&Dz_S+e!eWAS!T#hvJ{+FD(n)54TmVu zUc98IObJoU*jq}w9Jy^*n5^r)x>#I1=v=V?W>sc4xWmiNe4h~086PHUpfYuVwy3K4 zj4p=PpS^Y+6N7d_jLEW;yjV;9SpoC@Y!%*}a{5M`I6J zP(2_CQA$iB%WHTqPE6RG)&-l&qg3j^hN@t8q15!7eWcCqq8ycV97t3Ra(`@Jy?hb0 z#mx(}1>`7FpnR};2H4?JFG#8$a2(+G`zG8Ql0$bE+a%Q_k_K|gmhJ-Q5pZ5f515Y9 zavN6Fj4yxvx}d61E@;V+I-d=v>2ewd3al%ukqKQ$P@#M=Z<0-? zGJ%5A6G}GAb}Thb=eNWgW9`|$r$S!P{`~YuBf4G@5OdM2RpLH%kT+_2qx8KU!l=-w z_R0iS+sb$C$K3M9e6hQ0@V2~K<)g>_tq|tJDfGjP___9#^JX{xf&s9?jh5B+rzPF|H}<|sSl1h7dk(RZes(l)QCv4^ocMZoUIK29;f=7HOsu=pUW|Fj*u2p0rVc?vP z|NPoR!;*Gw?P8InLuYMyY36>xlbd6FV0X@pnE6PQgS?&7$`yT+?Vl~`sfmx$T;5H@qgCC5#Q%_qtxx~#jFwDLhsReecM4-@WnfCkV z8To+##+bX4bm|YLH4(E0N>NB_U6Zu`+_syS^w+ArtK@-*TeMVh3PbkoRVG6vY4ME zLjr{%hN-6`ib>POKeatPZd7FA<--8x_4uS(m9PsNALcJR2zu^#grd#ab*=l`Cw&Q$ z90yjV&YQKrm)u+(-T!VGAzGiZ{4{q^W%Uov$nU1Bbs&8OPY7-z;Ff~Qgh}Wxrze$& zmQ>0Gr4$1(eilI;1uh|Kx7sJ)BVy0tU!a;AT_9yw$vkypO!7Ar*{n?M^ZQu+bw#cd zX~0MxnNsW5$ve`ynfNORD zi299ru~0R-*k^wXl%h@5!93k>4KoJ&nme#Lzf5#&nw2bkn@aP`Fu!={a}qQf(@=!p zW|GA+vF!e+rmmM^-{^5HvO#=DN-=l__t0;lG5C{q?bQ zIpKPnsFQ2IkDE(HKgjtKj<%&By5=0{<@4a=0xJK|W%T}^Hb}IV4M27rFbv-uQopsX zR=V>Q-*h=Wvy^!7U)Lz%+xj#j_5#S*>1c~4mNCz%cVJIL04%Pj)bng6ObXo#p$#Bz zc9DJ18~RCygZIg!0Yhrp6VT|~S$4!Eh32t^BC=v3&uJzw4o~1__kv^ z0xTjKfqLdA5Z6a-lRDu#_A7Otsu%Rq@Y<$g^|Y?+Ye{BZgv2I^FPYclJQ>yP>u>DG zkb^*3>Dw*si*EH_^aMwqgROL1ziyNUY;{c<5=IS0?MZmZK9@ltzI!0(mi=0Hfaxfq zB0w&$X(~LB!B+kkLtrrxyY=NnSx2|2kg8EV3Tmba z+Z1`t%dD2G?@{|za2;%*Z#s{i#0xgo(+ZONF{=1mHh!n2=!~Fiz&fu%GiCe%x5ny$W&-0J)wiTlqbz^OGXdMkn)eQ>z@K5$>b+|FwNCYrwd#2do zy*)YnHT0X-WjM_Tq7ND8qIp5G{yUUp0tpPoB84X`+1{;Am;_E(WSBl$;N5xnRiD|< zvEcl$gDWQ$wE)2X?O2eqJO}b_4cjgG`eOLbO?89s=;q6b|5UBeG+A}-`T3e3GLJpC zMjB-;5(3yC*eze`lWIU%( zmB`yJ*g5GbQDS3yf8SH2v~(9d4e*C6^MF&=Tbl&dXl=cJjQ?Ql8uMXdVd5FdEF^~A zWN)W!;cDBXaP4Fz|M^shcOcY`X^)f0=0Isr7VM0JcIB)cmMrr9tKW4=2ggV^yaL3g}=(@C% zDseAfzU!qN_4-T36<-CBmY@t^*?fT|5y(`z0>(14^@q@TQ0M0jGr8KGmvJLoZMSOq zKd`Owj$=(%N$rDDC>tQuB{TwsIC?-y?UjDBl}$DCCPoR|;K60KXY7Ch?Ymn{%Pp7K z7R*Wx<~Oq~l3J7OC?v&qf^Va6kAr;NUvcS-oTk=SvMe|kIGtVZ6LM&anHz;bE<#{; zZatR$q9*p)pPoU(uu0bWu&{~7i?oi3mX!iQK)UGq z>iqwtT3@rzwr&_Tt<8uGJt^Ea#Kt#%KZ^U5r#t@qR<2@J4#~axJQl4Y8LR0qLS4a+&K} zsm}XOClyZUG($gttYpD*yVrB#yv{8D?R92r7nF{(VX1kcgLU!V=TKuJ58DMI*3)`B z@23N2V8nEs=3}caVW0HDWfHiOd_H_l;o^zlvmVOG4#$Chhvyb_w)A)hkK*Q6)QqE0 zhjBCgbW$Csfd%Ar+)Cl*sS6w+JhHjBku71lmSz^z6pS7Zs9ojKg4`I#?c};>4 zTEF2`Ul3-xZ!L1|`-p0V=}ZaLQ~Ol&t__Wtiz?85EO-m|C?M4tUnpO69}kB-Udt=h zy$s{j0gM&>=}P3Db}3gQ`-DAA=QKMEf&p282$rhu^*Vy}LMa@X;rJQEZ8D!S;_!c% z3E?4D`c{EtO0=JagbRk@;-Dz{T!ueNcH;Xa%gUv77KmLMF4|t#(%XbJ*(cmY@zokN zI}KTXJF8?ygU7PWrzhV=(49W`mW1cy1R@hgnF|=R%bzdPHD64I>Y5lfF{{&hIEyDC zSDR+-&qSN!_Ai$3cxoH4rpXBK9;X!8=}@oopGiPkjZ(@Bur4^PeZPwN%><~fZEpbM zkvs}cb89-wZj6L;SXl&id}Ki^{}Tv1#?tQ^eY`)}LhaI17!zvt1Io1{cqr>5sVQSS z6`HN~-Z5nr(AA@kL{`ZpoI~N4nh>RD6ZgPqKGN%!@qA|Ev>kPq95>C>mh{6M+#w`m zqxhI>q}OxpnnIx?kZtwa%6x}iuBA>1Fb#Zff`e$!HLn8%j^PPYyEq?Q@aC|ura^~O z%zC8FSzVM!1#qIwWrCn2GdU)-qc;BZ^eAuY2Txkw2*`+f;HRiz@@D!>dL6i#L)~b= zaik)>UAgXt!WDhY#yi~(!NnD_*f=YM>qnB!1$~fN(aW}m$KvPwoedxBvzWY_Mx9bU z(Ozt~XtrW{B-qQ7j?@4v42A*M%9+&x7mh(_lV)I)UsE>-oU3?xx?F(Q4WS0Yct9Svd+}bhC83rvNeU|z@3Bv z7_#F6{f9r#s9l(=0(0ojJI|xo5J9X`B$zZ`XapfKf)nLDSb-cmpAZ&#@3aVrF-@%b z%Hg4TEIXttV@Tc)Tfe+#NgH_T!}YHYv2H4s3?v$5o+>9g(@I*&kEV?5I9AUG3#DiM zRXuGM%K1V^oVan?bj>sxd{wFkK``K8D7xK6>9|_|Zpp1rFKhg~X)LT4HZRS3QZ3a{2Y#VZl@1n_KJuH3!AaBP<*i_X=0I}U)uRh>V1?e_JRHlKZIFLMZ5A+7QWjd5cb;K~-}@;RU9LRJ!k&+j=?AV zy%&%*arUkIolnO$PK`%Bb&=wi3m!c&P(P4PU@Kg6;scW8|D*OP#_uVTJ2rI=i;c9(Jqi z!aH&Ut&j#9a(l~IFHdN3Wm7S&ePt7nX?mCL!mSNVcwD=iN-=GHU8o}GD{$-Y5qU0Q z7A)*(_rHl?8H3Fyl9ZnO3UFnvBkWiH!d7O^L3+)mwy$|}1Qg>P$>WQc$FpQ3yO3rW zeg#)@Q+-z^qH~2yC~(U`3&OD*lAm9(QzeN7BVu{)a3R? z)rk-u&#~nhWPh~>d+{JS&59K5 z8;-+-YAH98v)rO**~T|n$a8G_HFF-5F85DR4?bW}bG}w`RXRPSpCkI3BS;u9>ZKdrznMSDJl;2Ls5j8pei{P;PRoN1v!^ zf5HD$2j2$^-HlUI6LbHmSq~}@@tyh+(JNhSGxU0H(c83sj?rU%0jih=DfG-64j^=U z>gKnumC?avGspB|B~*As^cdq~zUrn&uc8N5Bmr61g92UKA%Pt(Pu|rq4pquv$=WSh zxFW@6VKXVEYU{-_aAY_Rk*=y0pIoq-kYL(1QnTYS@sJ*9h}5YJu@%l4?Y^#gtn75aJ5TTG9 zT6~W(eA^NZ;i+iS?h(JQ-NRaIONR+^s6z<-p;cvAlwPdkUFa}v4ia9saU#EW%S6GM zmho}JZn9l_{H?8pb99dBKUg|a@@E)l_3x5xsTe9XqpA`h4d-S^T{IYht-S_Ef!Gq! zj`dBgWNm05&pBEF_6u~tg`VUFzd`>hc^pyg-E17w9GydVt-+9xV?stmAujuZ+>z(P z!tHYPpwph$SDT6cR>?n>Vr1bQYK1r8J9?AIO`2loApJT*ux#X_)i3cE6fT7~`#&dm ziWBXsq(FBdqkjD0`=E3Tb{s3kIZ$8N>`3Yy;F7;70nFa$oQbMc_rVhWb| z>X08I+EaUF*qyLQw5dvQTBfhB-P}vxR7Kv{j?alSkKNpaP;@sINu~r

|$Sy5J|% ztAf7*3OsIf^lSmzJByavzes6;j~6!k2`h5az-@3YqE`pU#YaP2Qc>*|Vqdtvd%P_> zFst1J4){jW{<-V0cli^d;wy9E96*zpt4tO=?9#J0AKn zuDV$>bgXav_ic8pl)M*PSx@9M8}L{5l<%10tiNCGSXX{y+lH`4*a%@_M*=(B&lOgo z$=a&5@9b%UjK#XNozjJC{e;H4>N=-^`mpWq2JIM6Ilt4TnO80*b|P<^8j8|L@gr!* z?)ke6d=B-9@sOrQv*%9b|962A?BAHP`>o5PW|rDCEb-;{AL>JbN#|FXo(wgKXJ7?8 zypg8|6K2^aVkUKonO6$Hi=UFRyn6j|l7-If9BKzpw@+1H_ZpX??|L)-6U1$Bm5Rq( z0qi`0>{Xrx4YlEvn`QXcq{df%$DDYja4ze)bu|l!GU}RY=*-rg&WojE_^ydH6Ms9^ zxsUg;UoVh%9Wg<6DTVnXwNjsKb(mT#n67=2)BJZ@oLaFTZ!K)53r(a`{93CGbStaz zj3b{nnO6FQI#f30U}ahkLGan>ha^dO^}W$V{ktm4)35RYHV z7!aMUCGOAlDBDyCf%w}a;DKSRJcRw_fnQL60bDC;2aRjUm3nf-F&_BQ(!L(4EPZ^c z&Saj7m-TqTSfb|1+i`naWITm{cTB+Je$@^QNlc}CK0i9OsI$T7wk;sP_GrArO{anZ z+;<;66d(u2aAx3e=R4k-nFf{IP*y;)r^snF9#=xo_i{Es;oa_9|Rdt+KwxJErxH=%4&iEJv#wc2NNpiqZG&&a?yqQ4{-`%?xVFW9h-fc6 z76*0e6Zg-$@WZL$N`(ze%uAC@e5aOh|DLRIsSe5~NIM8r? zf=->I)ef{b!tJ**8GM@4C4rua6%^$BnS@)UZGTmp`Q+vtaQ@KCK=X;%N3b79bDAT~N;f zTgp>&`MjmAm@w^!hT(=B^1dqGo9y5Pza75(e zLpEIi?_N^8e`QJc-)<%A2fp{p&5+%zVSibhx#?|JC_X0Oao8fY0zOA_{OhY$d_qrW zl9wS+Xg?;{{%`93#{VnP^DyiwfZ2d({KMwU`Fr>f-qV;X+y(vsef6j6ZsgJMFwwl>WR)UX zG!f^%|8q?T#5zICWK}_U#P@}=LoiPx2gL5|3dy7zS?oVG7Yq3VIdJk^;*R+zuFnV@ z%5L6P$-w%^V^XR2bW1g#%pI0#`a;I;to&>&g^3=k)hBRFCvFz(^Htw0WU1}OOk;*6 z(`exYPm@T}ap)dWfr9ySnw|kZ?{lWX>$j5J-SERvBttD*%gN63Q~v){ngU^J&~^5G ziA)EOLF^M_%5BLs$|`FIKX_l>j`n=dZ+pG%RhdU;qi`VSWRhL~j@QsYkXgoCeLZ~s z0fRY@Mf7?7H{+M3@lNS=NKLoRys6KA@ojBU zswwFa(UhyvkkG9TO|=9ME*H^j@3~mnHaiXzTjuYE(OvYTE$56sq|r+X-ufX{eaNKd z4v#XxA8M<8a!Dy1;n(=5JZjh_g-LBSQQdENsu91k)qQ=Jk5Ro_F!yOPCe`M2| zYOKX!75ah8lRs`08)e~A8jx~cF)}KHHu%Ki9Zy7thdUg=%lvz0n7a90LogP9jUXeu|jG_L12tNwdvm)0fYFPuv!3qrtBD38jYqiWDp zt=asGR%bXoUhL3bQwalp%(PGPQ4!^lc&wK1X-H#M#uYftB=~sA;d?WrMcHw&=h#l! z>b?;$P8D7nIyD%5Z;oFK2)#m%$f=#s{smnnWC^e=6WOj4;*ii?CEJxm`Kn+)^vi#) zBTAc7eZ8*3l*cd_6Vl@U_nhXx_k%s9AWp^FLI%hIHX|c!A@gIG2DyHR?Xa$H4jc70 zoTI{i9~=}Mf{mw&njkRauTB;!V%)Bd%M~C5lX9r7Qry0WB?R{;HwBItly)kF6{hGT zx@INBmP1dr6yp3Z{mX?bv5xODIb;)_Q;;?z=0&kz>d)L__q@FNuw_8Q@?nw1KCn;* zET>2}Z;5ZL7p?!gE5LH_x!&!tFeO=#MQVq&k&osKIj*j5>S!*I+lxv4bS#Jj8ayuC zMKmYqAIGd`8tfz>oS68$A$pvJLz!*Imr?MAa+o+9>!ce2O9+?Qhyq14ucz)>*l>#| zp1UaBd11+m12c=09(z_=Vx+Z&r#7 z*J&US>#LXjX^bQ=?ftMy=n~GpNO4CeR<_~Kum-#`zPH|~Fc`20+0X01${ru~5^;$h z_fgKHqf;%LcWb6bJnpUY!O}^_@Mh1a%Xu|xc^&Mjxs6#VuULGHPeoMAv_3-bslyLy zarZAtK_HOSqO-M-{2F5LWmsN5AFKsvLL$i@gLO$Xwa)M+-zDrQ~u#T zl-D;yZRGcTz@?ip++d8`3f-rKcFj%Ti_qB)_ClkG1&b^GG^jr7YmZuA!kn{#o@BxG{#kZXFDh0v$#gzZa&XnU zFjxhahaDKOZsv6{<#n%K&_*i@wT^YxPyA|@QwDm^V|RtNH#Z_IQ=E$(Tbog?y52Ap z=I;DHI<+6ApE=WixU5m^O4;R!)xRosY^Jg;>qS^);PN6=qSbh$Up~#G%Qa28P;&Wz$0-A-%>a&mker;pb1;zcOFB8J7v((>qi) zPV5iVD3O%59pVF8dnO1}(2~p;-mNtUW(WWgP@{&e-l)&WMJg>#ZS@Gd*cYvYx%tG|>aO%+;>P=} zrtrwAmdc8f4dFtpkZE;C<63524whuv`mF8uLEcswbgV9Up6+n5)wnX>LrE@19P|=l zDgwDm8`v>_=x*Mho`*f8b466w{Rc}-7~?mtPJxyq*$(x_=I{XOz#b(5tEVq;M;??)ryTyY06FDJ@r8cZt;=f~*^5dCE!>=K1R{iR-|gOy>?i`&By7o1)wdQUp5jl@z4m z)s=fF=Uw1sl6ZY?hhX(esLYLX&%e20f-Le5i=hri;D(tVjubg_j;h1$N2|2TEuLdV z1IGQ7_MdL9_3!%dk9Ienk3P(*mxwp6m{!c6V%l4ZG_Ew}=heF=4K7-x&l+d&KcT~d zw;aUQd_qMEcz>K(dAOStd^BEIn5E~X3=)ZkKu=nR6z5-cb9y=l-?qSKq8vn$3M(4) zqg55ko!TOX!TkF0Tq~~o3NX%`t9uiY>I~|sI9IOU`mnQQat&|{7ZMdsV+MIa1XvlQ z^v~(+`_+Clgd3uCP_7nr%J5AU9_y;9X=Gq+|i?wn-shE&{(I=&x!%{PX`@8-mQl~P6|@5*gAqe zv7|a&UR~~rR#$TM?6{)Lz=ebCU`2D_Zc>CxdGi=uTEDFP8~=sYh;z zr_0u6ej>ZBRv9|O>EAHHU#f@Uf0Dj+6Tdkj3{hR1qrbma?ynl_xtSd+ASmjeWG3n{ z2q3zhtC7zJ_Y#BZyyaoT2XXs*Q;}-vecC8xo9Y_*^qNd6{p#<_ApPhUyfW-6Vt;nm zYOhbI1J@Xb&iIQ*XBtWtTh&zv!nLTR{^DnA@0at4!my-D;>)4kL%7Ip3Up3#)Rzd4 z5u*kk;z|#CEBC5I?gk35-5UIjb{Tb%h@VEodW7dT!Q3KXvwp3K7gj1V5u>Q4qM4nYNJ_NoX~+)p);%vipep z?D2vuxj&F=dRUJE#cz2^=s*`#m*`T%Rt9>-d4L??QD(N7?)!JQP>UkeUk`}3mYD5_ z4(-ydU~Ju~t4&y_sYDLgm1m2{fQ#m%dhu}2n`D){~J6Vg7vSfc2Q^QUSih+Rh}X2_tcJZitEGWxwo?hkLe9T8MGnNLvZV#7eX)PNCvWxGE| zx?QerRS5e&08mA4QQTZ|VRO#{^Lh@V!1fj5lsV3jtvBl5Kil1kv@(`ZOP&4G8a3*%|5ITqJ%jt10(oY-kNCJlX*tN&rCm4%X3yFyajH!_D8}qFqjNm$d z*HloAuWuIMhYR)jYI@%GSif)WrAum~jNvm(U4~iF?jKT$f8Ivr&09+29VkqCLC?Tt zA%27EFUEwV@Qh)lI7SH3KS<^O89#GkO?P00nf%kjShSoY%D zFNp)zC9@4K@mm`C#YdhON~uembQ@Vxx9npig2AFN^KSHP>uw{Kl~S}oa%?w!{-MB7`D zifZkgZkJNU34o39+6`yVKiLzNh4NY6KjyRcQKYy&HRw_*v`gRHl=#!L4mb9E9lJC? z5~F)rk}A_C8w`AB&)3exiVBQw+lJtQsg9~aVO_Oa<)QJ2^|j@%5 z2JZzaXt{GyB5CX(Gl+l$Sa$ha76G$gD(gNy91uaQYuqQr6UlvoN-OU^^H2r$#)T#3 zJ|3_*D%O(87!j+!47<7;nXu<6yj|g}ub;o7GmH@Xwn+{ilyvb>u2Sg!1yDJc=z+}$ ztfryLnXC>$r&b@-R?_+Cq7QXjznCaL+O2=F;`oDf^T-MDy>%-qIH@CbWPjX*?L%sl zBJBBs?&ou>s@>g7P|iU${FaxpI2fmPYS0ZyYO9^9hZ_%fAEI=$v~iXDe22cMzZTo1N+g96l$kbD=Od->jYQ%1e{^rjDFjlgd}yh1v^+u6r03_g zQGatUnCgJT#Nk2Xc4b1Ws3N@T#+VZM1(kD&7ueh5oqfGfnKQV7nqD*K$6_1t%Ltpd z)PjZZ={2@J&sA1|IroiX)3K6@Kr&Qfv%>2;RYZu_gH>s};Zms6sN+Zt@v6CTy{*@& zPt z)2D-eJeB~s6zm?epu6IqbX6vDgz`~XPgZaltMI;kW&1&*-;9I~dwM>f)QH@Z;Xs8}F%)SuN78xV z!p(rZjble;WR2Thm5^FI=&sm`fy%)4@4IYnJspm4KqC{hH~(hVeZlVO!#Z`>`{#$- zjO^ipI~mN)RPTiN8mvlV6SkK8Z{^{$gn5+P2l<0A)myK^0mRQRYON3$L5hCoYae*s zRrcOy2A3G(OU%;JrXyiN6?qhFlFJswlG>>0%b(_|)5ML_pF4UJ-O7*S=gSn_Kp} zTzk7lT-)z`_4z#>{PljF*Lj`Sc)rFtx3-_Ux}UnZ)c%SOo3P+@x#F;lIYoa3UdHcK zB_VAhv|>o-D?Ual4?A2H^b`8+mH8NGI1@bFQ#_tz7af?<%EzTVQTYbV(tJX*CbH$7 zAmP9T7$!xdB9eU65jlQ--G?r(_vh2O+mu6ZG0y$GnODR!QI3Rat88b6;s^4luHk;( zKC6=TLhZ-zxB!~78*fa1=q*PXnvaZwRIt>CV~t|kR31a^w+`m(OA9u)a9%>yxxWXG zzJ%cIF3Rh6aHUimRp)M`3i4Aiv3ckZhRs@XxFCFBNRhY3f#XG?gL4i=e%8Z7juQ!^ z4g!X&5(o0H2kN9E>2OqM8J@iG!s{+)-lUo+Iyc^fvD&K~Ni#;~ytx)r?R#;(+Gjov z3Pa+;j8dPPwn)@T>nKk3l`i-zrr<@V*zOg!T@QxECl4B~1|~dld?Yc{Rf+c>Tk^5v zLYwU_v4=90D@T+Io2)+s&w+$Glrg(vxBu|?j5&~%1=JGS9KQi;g`!yB8(3S0FbO7H3HO|ns7wwb1l=EeCq4b4 zcMzkPe@YKbvoRxcu1N$0M187P6nHCMNV`KffDF9o8A5y-HX6dmzMuc8wy>>UQ5mCH zN?8KHfN2&BSkL=`p`9f5aAT(TDI1OZ<(MFk&Y!5YBb9`!$(^ckS9G*|HDG}fI=)S1 zQ+#$O)zKxw6#1ydeT89qLr(y5l#mIN%ma%7jQt+xU>5tG@0%T4?}QrQXq09AdS9s% z!32kDRxkN0C0>Xd3ez);PlucbegrH>(I0;r5<@OPy?3bT^D4NZ=fX z(Jb2T9`K|0c*pj5bPi;WB+u`K8v=1sQJr+c(&TR8trI|%L!!2fP>p$3T^=x~;i(^g81TIi_mb#y zt05j!^)+|}cae>3xSM(|SHk?5pn^FVwrRVM%S=f(&sM4CO&w1^52WoI-Qx7#E>I{^ zg`L`BUz4M*hn`6yg?!~}63zYp0jh=#0k8OK=2;|D$ema66LFa~GHNOFohO5Ug8%Rn zo-0m5o5;IP(WAEfmWJXi3#LVlgnuL9pQpTSPSQ`3Md#x;Dz<>p%pAuE1s|f_@aVyc z=ct(_{occ{c?c_w;oU=(()~c)3-kB!xU7*31BwoECdGZfu+2EQrC6{Kyd|GNHyR5w zXG!C~#vG!$4}vrMj>1a2$v{X@erfIg-XwtWHj>mjZgEm68!BTvzG*4bK~T3b0P2dz%MK$!$&7v|cOQH4 zVprA{8SxE;74APbFpdiwI9X_H{@W$#VdVgnk6rTVE+dz;t~x+d7^u#BXz*5)@^&Fd zzK3>%n8EmE%Lx+rOC7%4SQWpWX=)BC1KYaKP8)tFWuK}`cE3*yzFktkRdw@OtmCL} z)2?tLh(DmNMgl>5wfZnz&9Cz;XH1o!YezxOO|@BHe3X`_TZEIF$w|a*5Hx0oq1G^>y&L%8zk67NTpwIx>~=2mfvJc8K`f(BG2Z z&?AeUL^7^BU5Rwo`l9x!lP(^Y5`jdGICoLp6O+~A6fJ~(q14*g)Ti>{TW`+z(0x6@ z93I;bVq7b>?}n7d*T(3ooCa~uL06a&_Z?bw$XB`(r4d;$KpA!zzUoHTJnFk-D%ZgB zlIo&Pjg!5!(FD!yMmaO3q*FP2lAbq;MXw}4Qv4q6bdNjAFt)q60h!Dy(8;_%1-os= zuX`7M{O))iq7I>xcT;yN8~C10RZ83`X%#u$wp_Rm#DmmGM`iT!OYh~*W#mwHI+vZD z8)O)BvV2BAy2$Z>FWa|-NWYDl#aKw7xQdHN%UAkMGt!S?u(a;nhqDC*+XcJ3zVrPWaHhEUmf1I3l>%L1rTIZ0W$VN_ z3hV4TLG)D`;AseMW6^~BZ48^a!E2?%JKiYJJa+)@1%KA%sj)szJ0s4P3Ca)f)_KxtHfR2)2T&^4<^V{ZRtR*QW55nML z)h=*lYWI2nV>_3XOAHtt$<=X8K^2GZlNX0yueVz-F?OHKt>02Rhz)#^vVB5rOLP8a zZN2-R=177uQbw20d;6zO6cQEc5+asg0AOe9f>=*#%gFNSZbx3IR7Y22oc>^h9g@Cyx!~~k4tFgNIujqOj3C_BHnFx1@5prPz1L*2(&l(){ zjt14)LRanbbd2r&V4vX@W}~^s)AF8rL|O4$moM6BPg8Q|f*9w*8)x^>{GG7vkM$eT1zCpXt$u z;`gvyYp47AYcI`qF z!Az(RMvg;!gV0qxLaqN^S`-h3h>AF^jg)MHK{|a-cI3rM9mUa+Nzd)@L|^ z4D@Sn740u*yI)K50OY_@Ia&-CL-ozpn z3RqJ8NKFZd@gaPYH^0T~OMhF}>F~L84b+m^Os}4wC>?5HOi)_0B(Qb8|+oC!;CR?Hjkz$OdghkWeH60;ZE1^ zw^!pxU+ou<@sI~sKk}xk^(~~80i}jN0-iVGiomSJu4R&BH{kd)jokv#XTWJ0xHew2 zx70j`0Jf}^H4HLn<9?~DU6VDXR4kti?t%t*&Y^$*J9@j{sh$%n#xR-z;;Ms}@4axa zXukzk{QOV;8NBC=B%$~UDXL`(pMK)6#5*sfz_|t|>g;#KLp3P5{D`ovhh$vfKNdb2e{}L(K zX7GDxQMqy%X!YExa3j!-{K4|9GWwm)FL8uU5jt~w6WH#6hZvV1&Y9wIld!<^XWrIb z#Vc$!PV*bH8@l~5j2%1REQ%(s;s~@-+Rts!hGP#5YO5pb!e+E_FI%H>bvot?hvtjb z%atpwiW>s(f`t%%77v5OpP6t~n%E*KbB_mDJED56KYgaTh6{q&fup%n9r(2<;6$zk zOiLpG6pRR@%%XwQAePQoVVyAY7{z(d%?*Fr(WmkZaFc>osYf|hi*FSfKi6O-RV zZT=oLW0qK4izZrz1saHuA_ZGia+TUm4g_}0h&cmy*^On(d{v9RXitm^OjV`)19*5+ zd9YXm3(tkH&4Cmh28&+{j(;E|zRF@S^3vM)Ks0rD+L2IWC$d6SfYzRvLjl=vBTMOJ zZlcclG6lbJp%%$cIUeh#Aq8*AnxytdZS9yQ!=&Ns-ZU0zuy@|K!LklWqV!~`W1mMp z$<_$PC6QYrQ6L2eE&Trgz{wTNyR+N))>kB$P#!km^^RC26 zzn(hHXdjbI1>hj01=3%>=yY^B7Cd?}rR(d-NpAZFp;BGmwH1PB%4wR+kTxUjTP}J3W!oqUBVA-xcw!qcORF%hI`s|(he@b~4sOycE zO#@!g4$mzh*YW^L zx$GNyfxQ!gYDZis_(tDgkdN*5@4}Q`S7M<$F#p7r{7TT$@{`(q1SyH06S;2a`4m98lFz4wu(YPCh86rjC% z_MWrmrg9jmuk?7&xO}DCXFdTM9lM}Np2sPhvBLE3fjxn%)ef;oG4G;Hr?Br$w7@2$ zA#~UADSBba#6vqEfxR_9|*;FIP}Fzg>2P-?7!*GZiLx-dTpcStd}XGmxE84IpoGo{D-g6p3KGkIKlA1!{Di5H*wKcKIJS#g2=| z%a0rD{qWbms?o0)aKMvoKw~*)^j-y%BKW6myhiNLNrVA?rN)oT#;{ct?!;eg?Qlr$ zb~<_0R2SfHbir+*Qbzft3!j}fm0;wD(G`iHH73$IX#%JkPzHB3-Ik0<&l^jXzkXni zOL4<{%^{*SAOGE8G0UbA1rrN1fFeLG>xD7M8#1q|R-C1<1^b_z zgO)I(gke3Z*4+_%&Uy)GDI% z!_MTR=hj|BtbH2Y4hyS`!Uf&ML-D3|N_JdA1!!yput! zzgNUdI{mDCz)xomFR%c-M|N{TKc}pdv&0gpa!O=^Cie!Jw-ExoZ4Z$r;@KN+(e;XA zu=@LKsL$=1w(F$xQjQXP7HDoI1%D%!3fZc^t7XnnEINpBCyHUX@mF@Q++hEl7U>03 zi)TARdm>!E!!X8J9r5~g@@lvE-$O;eR({|sEBvE`MxBPm9ML{TSf-QeD&W`o;R9{R zZY2%m7vg_@wn0=V=l$KIToE+Imq(U$hyKLln{dzaX>I=O=>&I>q_^o35kIv7uZqwemNbtZtInO9Km?Lo|fHh;_L$!g-?EuDz8Y-F{r{C5VrCS7{jJ<@)-f*64Xk-;*i>;=IF!&G$mKGFcg~5fF$V1a|L^ z{#SM7&%RK)y9UkLaFoC{c45_}TsaMjF&myZdP)S&TN$96k3Cj4v!Z3B!d}hNfIS=P zvQ%3n>nv=`u-RjtAXonebp4#RCU6YsAhh}3FV^)B!tx0R9HGHxbl#6DML_Ipy+L=~ zEctE_L3Hk{o3B-^*Tbi2d<^HgNYT~|8sdlu6j|I7=6t&Lkz%WI0) zolpucQ=QB{tdK4oaz37f+GgVAkHQ~p?{DQwSZrjN1~u0wOom21tF3oqAPhpM?`ON|l zYM-%mZ?F%0WF>Or$0&Zhz|)w*D2QU%4=bx^c3zezhCc)34A;iRVk~^**DpizeYb~1 z-sime0-$*7sEpH!H8cBEmyneOTT^pa8`M+Poj}{=ez34A-X20>b!C2o9Z%1V@KM5_ zd&E1qqC6=z(uqcGVG;&UeSRea_70qxq`E)f_!q&pM;B7sJ*rtIBBfYP-&K95fVasP zlqMse{w0RLN8^+a-A^INnd8Y$Li8Kpe#aWEAx*D|5;@fRyf#v#;QF+$V5q!&Qm3lD zwHG*nK#vBU8Dg)>{`$I`EA}1bU@s_zMUz1ZN5~6Qm&w2gX4JH7DN}+^3n^0Sph|PX z(^eZQxY<+cwx(Q)*ik=JOr>NLPY1GQSRl_65s!NyJQQx|P~bru;2&RwBVT_@-awUR zLINm*JpPvSdRLic`sB{hY(srGj<3Z13tdspwY&u`g-<2r0UA)!qs_asol|HKv63~L zqiNw>d*!#LAxM{y06~kv{<6cjKJ%1mkWz*+#RLj#b)(dUG`306wX9sLHJ`uE$!PBV zy!loH#%>DG4ue<*=h`5#9SW?wN3JnFexQ)~EOgLOOZd`6F*Kt&I-t>N7-f$ zaHoIB>+)O3onzfWkhs=0Lf%fjyBQ-2G8_CpYk8f6NdB5md`h` z_(?1{@56pN9lPXy)TAO&7t#+v0D7SQ(bfsxRlVJ*FC-a~Oa<7(=a+BG-@wYw8(N)T zAmC&x=q;$y84o{tM+byt(Qwj4+}cm;SfxMYT)#_{Bt9m368nYBtt$-+?+`n6%>(A2 zZCOgUtGG;pcNFEBBdHm9smfX#{D>xE=}|uV~C+GQeUV4USlOz$j|8$w2*+X)%BjVBPLgm5AExDb(;2 z+BP-HE>IN?6KYMryJcx=)HeW@ezj$%=~w2_ow9V5;_ZDUVi1lQjo+bGyXS=<(cy$b z*)^-WD{$MmCetD*n*ERo>R4B}7inNyzWiXvva0Cn5g^^gS3mK&df7+J3h|M_S8n|b zkq7N$v<%OCTxLIBw!KeJR7D5&h8j_koNbOS-(cKjkHekCMVN7A4eoOby)onn(F*P7 z`5=Fp(ve3C#_&{O<**y##4TK>;DmwxPu7mlPTD3HftXge+uby+ttW+Oiy$ko-gI_z zgdqXYwT`=;*TfJ9p?OqUpZ$2h>o}|p1u=D5Gk-J*S(E$j-91z9Nxn)vPvj;V;V$Cp z!R+qZ)Jo?@CGHj-VZTPL#$3g*E4$8aCA>a1AT1L$tg2BpKn-%l(`WYVXS(K?Y}Pvs zkyU6Ef`&%4BBCwTzhg)khIQh=ZeKLenRcFnQ#4auoQEaj((65)L&BYGy}AL zcmD@Spa``bg$e_nU}p`6RQmufyaH!kZZ}wQm$Qrd0`Vl|=i#)gv3=&vgNGlTv1&G0 zyudl$VQ%1@g4-)6XcxSEV)S;>szc_{fu0px*H(ZgQYLC4V6|p^9xf9Fya<_qxILR8 zEk@yt%%+WKq|K()d&G07Sn~GpjSuE3GL5Jv#&PLqPtzEC4TnU-KUJj!MNkwdjEo;K za9ZP&v{$WoWkEbLTQD{2@d|Z7Zv=2vpTQ2oW!&6-pzF6%f6l9-@hq3*+^i?;dQ|4g zZ`sriq_Z1zhclXh=H;yZgO_Wgmk)#2#J*^H{!=Wp&X-C@!nTNufATY@#W7a9kvFkR zW0kdtHj(<~SCsTX(L~O*XSIC%?E-Ffif!gJG8H&s9vQbWSvFN*$d|9n%SGOHx9g`J zmAX?jnQP}*N6sUfd6h``fDVbE(fRBrxyII{mR2zijODTN0AB2aN7vV9*v3z|yLu`# zycpK^=}23zg9uyl8?qv_lwOE(VC}Q4!!Dfv)O+_P4ypmYWy<4vucI5PQk)P|^7DeYydsmGL%FnZZj&ng1ONs;$OaE#L%7H4)&2F%Z%=*P(WjUmy0t4Tdh;^E;IY0G4aP$#c5@ zxDB;#SMtc!tCPR)tru^EHZ_kzA~4OOW3kJzVyCqbMd}1R0sPRTVn@!};7t9wM5B3A z-k!g@xL(Pfnar00tUD3KiDu{xQZ=ddU5neyKADN92ncMNt76%eD5m*E6Ii!>9QC@( zYy1hD!O41y2XJM}2>y7oT zIDs3^yvy+UyryQdU4$ofUU_o>HLGj%#F)QYR)bW++#5E43gpv-ClQ9$Ozks^l#$`D zqbFGOd8(WBBBBRLl7Ni!;fnT)VgB8V?p*8N+0;&kz~jmw6i=L%x4F`)c3y#l)Bh}_ zX2~OW3=tB@xG~mZzcz403p7OSlr=R+f%ZqZ5RW22y_SV4Lf|;%2&@IrvW}=K;^GZv zJ*jF!RMCWJ(iBC2@2YHFcg0P?I9~$JqG2HOcG5 z>%cN9bi(Du@v9e&VrN5Cz6G?DidkGpsnvfX7CCXjW)I^#3hc>OfQ2{3zWaHEyIc1E zPMhIRs8zz};?Fcd3aQmt4q17|7teJOYGU)M6Ub*$zbr8kM{(y;XIJk=bTwFGw*_2+ z(DD_98?;2%)E3de6x-kac1~+8A=4rAG^`*vtdkaR5Zh#81AW=LsP_vEGh=&Hw0u`J z>azke8i61>(%I|}>XXhZg3n=kwJ5vjX@zw=d#l~IV5)4p9!_;q?lwGS?*{5+I#%yk znWZYfQhqCMl8{@hF)?s~wdc_fLpZvK`m@^EG&N%oB3oG~{? zrC^U&6dVQ1re4I9?muzzeX_%^>sAkWc!IouvwI&J zxkgv%&DDLbolaVMXkYTJ?+j$K3$G)6B8GY>&wpeQTjvEs)SJPnoAdb8A@l7!+r@x{ zz@t-h!_vTUL#iV;xxg{Hq5~>t=YZRRm_!+*rT&)?OTar9?VI2QbnO{enq1ZlrTN8d zc(Q2sgxX}=?O}}Tz7#n3J=GObgTm_VEj5NG`gIQFTKNvqez!APQIuCNex0R%vDBdt zyxPC^RoyU2E0q4n%BSNsPB+J3iu*qrXSjV)G}im?YY%923|)~7-OthPhMSY&x7pfk zz+O1QbwOqP^y(mCE>=Kbx+A4>g{kv(U5>fZJivYAp?lw4Q$PAj6ruG{hZvUtjk}^W z-8RHJR3vzrW^LJnAwdCC@82Kr88K@$O8s}pvnT-et9r&>@@u$7zwbPf`ME^_HX>3i zLv#rtalGt^^dmcB(|<1nkV>z>U^<;vpp#4zDF0pYcL4)81O!&2UV8Ei&C~A_aKAD8 zYkp&XWLgbBWu$)c$!`fQ$( z%xmhTX?to?Ag2Vx*>BeG4UPynrbzq+M#DhCu(4lbl-pC6Wwa&pSbCdYyIEyWKjqZ| zWev9g_?SrPf0@z^QAGEUTW=9A1!GtvN|fJ8{}sqq#6L}$@qmBR-C;&gH80f!theE4 z1cMcWCadMamr1%&Iy7-B39xqtptDel?HnI4?E2W=mipfF(m!%6}>cI2ANU4vhRhwp+%dycf+}2EHdoaNu4-j%BKR7+d~s=O_jiWqhA9e~(nB>9kQs zl0JlAXlVq4BhC$U8sbn+!l_t}tQ5M-VA-lTDQb$_nN8jNs9O}iHn7fUo$xoVzEK7R z-tVp`pcUH_z~@{7b>H^Fj|c(ub^NX8x_PH5?fd^9u;r?4UoyiXWax{z(aHZLGfpCz zyZBbJ4hj-H-t*lApEZ=ab>9&VWS=sz>EHDj9t?8Keyj7i7IjEx#tDz+)`=!QxK-S6a)8}n!a4Sy8rv;9_lg%22P{@eo^WX4bA#3{#dz9J_NkVdzBEH%%2dK z%=+Iy9gv#(nLq^=lV;$Pj{K1dg!RdlCzaX?-j;k%8LQIt*U^fS1yaWT?_YLIOh z-ZAur16BDgzN}T@7BK=BLz^tWKj%{kP;M7N))~!U0h%M>>b{t6cfr7%=8?|S%>HB4 zI2U+#G?aj_ zYG+CVX`b5C$v761AB;5|;tl>Qlq&`BHg``2yfsz2o!xLyd}YrTHFk9O`?nYM+?!w6 zHbf$&AiYAyfO)rgeZ1D3dJf#gNuPoGytz`UC#N7d%tB}cGKF-~v`A*0Dkwn<94jHc|mI#A~NJdUTEQ?%ZkD@km%Ld;0 zy#}LCcFmC~?xk@0NPpS$#@BO?&8iM-L3G;cD6nK)F+)3aGIaAUzY`j&*?SLWw$ds7 zuOVapQKFRNLmiNtk@PU`JJv9A1GvrXe&muE+aE{-L@GRxW=42+1k(UWf^T9Ky`1s4 zq)69U-^_U6q?SepCMv$|m8^$NoUc18IGHg#s=Nkt+p!@av>OXuCY<;CQ?n4xdw*Xw zYCi^HtUS{bMh35Q&o@qoTH38&Zf$CtiW3}XF=tePO6y1+%m<5u*<05388RGlW%}K3 z{>mq2H`X19wpKvPr<6)nr_NHB+i^yi*HRPd)G7(dvJ4*mBDtqF%;5ls<2lbjC@*7w z47r6wa7r)d6<8M7dU_7a&!4|S58izhUOS$Y{U&?&h#`oD1|YUq6OS^(-GaaBm7%}b?(q7P?e(P|dS3ZwS0*DvXoU(j}5d&>MyVH zYZhwu@J$5kAtxSe&eYc^zh?9@>W?;Z2_`;bmL$lSf2e(~(3t_tOzmT+nV!em{NqOj zfe>GQA<`N5V|MPsp27*mF&Sw{ri4JZqwg2(TwdlrB$q%Jr4Q?6Nd+p#s}rJaUwMv( zHSA2I0J%%=_A7Q%bH-C%Xko?_%xlO|9Rc&f0e+-0DJc?RyMA&2ePS#jFRCbp4#uia zcM7?N4$pOU7q(GIn&ZiA88(%XxZ7;)~ zqOtY#%H75t?d~0L_0$% z)=WWC;1!9YHH3h_%>ll_H}I*+=`m+7J3(NjvtD+h4zT)>!urJ@{)S@Sh@Kuy#U#0Q zH8ulrU_S~MC~9xua$O8Axn66k6+{p}@CjNjUTTKIQ1Yr{E8mJYk67zO+X9w=*L-+h z!-E)o@_YTYMa_;Zd-bD^EEuv==aw*N!Swo(92$rUf1lM2=`sJoH&A$kf>IeX%S6Kf zVRF1$9W|q@fri&P9ODGsURERoAdW^Qw>4qik34e(B(U}HfMs7)ma($#Wgs>zjOf@IU0UhV;C0d46+V z&5AGoW=J`p`P$lDSYkw1RnfEE4>`;<=8Z7P!h37|`T`4fI`yUSpwSYK7oe6P{OV)j zoJ1!>5@IxeM<2Z^VAavF$_%S1KU}M7CqPpOUJHnQwTZ+TKt914wuCY8*2`xx!en(k ztUgFI+-?ruI3yXZQEbc}&Rz#WIZhOMy*9{#dHSGINo3xd$;r9o!iK{DQ~CYd$Q0e0 zdAAzd6Yz4gyRtjz!2UzB!R)ZZuxX-HdD2O5mPa$m_X!s$l}gD~Un+hpzlkx_Q$Hi5 zeuq>i@M1&T<+wG7HT_%TM;_OMmF1_afUsiO^#D6E@0fHv4qS#~PYvTF-g$lCgRRd$ zwlj3K-ugFZJfl4;Z#n7uw#&D=&%$^UKJ{O2mUX4rrB?T_cu)l)qF3ppaCePOhqk{L z_A@7%|B0iK0FvABf3_IhTqL~TPE+&*713R%4ul&xXfY}`)RIPo6IG^@Q~bS;V$~gnY{_}EvaD5yvrti_ ziUcef+P^uN{fyk+HMn-N3-tuG55f6+C$K=K_2n%$0Olswop+|zLlDS0KFUp7IBIqc zYp|*vB=0}aDa(LQsh%UsZ+9pv8>kz$<(bV62g%n=&wP&|rM`5f$Y;zb>YL)&!RW=% zTPodVcfbwr+2K9@bGNI%UJK6~Q^EhZ1BDDMBx!I~5F#2p9eYm&*jH%m=u`4*>IR|= zI|%Ge0}U(7iM6nvx!AEm0n5XU95v(&S4Tf~qfeL)+$2O(6Qp0#Ak4y^wvEc;PkQqB z9qO55(s{p3WI)lLen(4Rj;f?jSzCW1+N5F?VEMBZ7|G6VQiF8c1XK~RSXfr?W!^{; z*-8l1)0X4i2kpqs1RYLU<+dM;fVbSFG_F5k^iUW+l zqR_1mfufj}ZABa-^2gI&EPt(;_*%K*yFZwQZv1FA?(_0;n=lAjh$DPf>BrLrS1~Y# z5Rd$z+HNjGLduL;LZF(%2}U3z(5QB2ARwXtIk_Mk?6kyUjj~hsQj_4853A$jsH>R(&o}IfdO#4a))wQtBebE zDwq4Lelb@D@3i!cEbCS8-VqQ$Cym#4xS45bD{)TiCC=F~fs~Jg=%j9VFEyj&Vjqtm)Hv=j!tmI}xSTA?T@qLKExhjXvS}>PfCH&-Kt>L$9;mx7u~QVN;&aZz z>bf|IuvZHU&_y;K9X3{L`hOki8Lz&h6VB{Q~NLO_E3o4#Zrh2oF>3$Lw(0DRRho?nh80=6Dl$0;8)0WE|D&`kqd@QIv6a| z=OO@=`TnK4VCX&?0nGgL05^5NqwXjH*ZT3&>0xw#Eiwm*U0u3ssX}-2^vvdI zFCih(PZH(E7c@AR^sFjURvJrrm{+Xolu)MEHm9uU@1%HU<&-C z#r~EV+;05?c&2Z<;ac*{l`hz8iDHIQgyfl+oa4(5^H9HFWSNQK>t*awZbFfZ(S(ol z|2$5OB2DqXBo3eYoG(YtrkN*1yy@l}$JMT*lGTP0`taY-O$wRw1&|E0R8wuoWT!Ea z@^U^GBSl85_4^1MrorZ^6P|r*1bi=n=x#N(G$&@894mqS=(PI1JUt^xiltXgDZu$4 ztGv-lW-$2^gy`dSds5VXNCf{I}hP2i?%IZy=Z zf5^URwrj9*Mltd5euLlQ6hkry)u0|a4?__2CN;TX0XMg-f>#nmFxewvM z9#Hn0uuzncL#mmtARL^KgjU5#83BIC(S$LAR7^!>c||O z*;Z4qnpm7?t*^v@HD7fTdT)F~gyNzh(b+_se0@|@0#u>_JCHH(G}|<#=p~*#M;5XFaTVAvf2j%O#@UY}-y)nYDWsT7RjNx$2rf`(?8H&IV zO3ujF@30hseHrjZ{p+~u2kYrMcI2(5e6->PwVvF5fXw-VEp)A);u$C}EnYs%u}IC? zuQ)Wb?qZ-&@jPhk&`&WLJ7$pBvq#!7#Y(}+4}dM%OPx$+1mp`nB%)#uad542e9JDZ$t3AL8 zXe-E3Ru)8sC4a+|yR|SrB}hnA6Q4D&EgW=WtXjF-z)r| HRoMRl=67Al diff --git a/docs/articles/sampling_files/figure-html/unnamed-chunk-22-1.png b/docs/articles/sampling_files/figure-html/unnamed-chunk-22-1.png index b4b3946181901c8ff73800cefc84ddb528b7332c..e77ece0bd33a8e5345cf4ca434b8705c43141422 100644 GIT binary patch delta 15953 zcmYjYcOcd8_rKimkt7YWm7P%briiYQ>=0L3ab25hzm1Brua#X$WQJ?cls&SyD|=ph zuiyLLzJL7wN<7bb&U4mt&g-0aaw{~y6k8s5_~E9;5tTJ-9c@{!+ZUG&{pgz(;&`n1V+&jZ^{<&w{nzHK#q z*A!^QTD@bl#i^j#VJl%-N@S73hn@5yTlx*cenT9piOkHt@Eww%2%o&hAMDnxNiv>4 z*Wx%R>R}v!5i9nx#WDDs#zlG6wMVBzy&b+V#Z!p7<%BTD2fC8zYJ8=9se(WZ*XxV@4p{m3Nb?N zUwva}lTY(7ZO%C&zl)H=Q@1v1*8qPdE5d46UtAMuVQGQ|0-=oz8rR@_ZIeGYc*`$6 zvn=bw*irNam6ORs+mkYP>^lT~itfKX3Q27AnO)oh;zu6yS5fDo!J`ei{vzb{8izoG z8QsyxD|I^Sp1Z>yjWM*M;sto7VCeVa3^je0=tYgGLOmKepu1Hc0{ADt82w@$zfiJJ zn|+k$Ay6Q#g?qd}PA*1P^I0!WuDI>rJuMut4gjzKL9`^yB^)LlQ?7k55a zkU^xop3gQ6Z`XVn9!g)nd^bGT@<{IJtB}b`1u0C+-W-AG#mq7V-TXzwKK^JuRYk{_ zv42r^1X!}gGezIT1Tyu!+BxXP4HJ?H1A~$-sUak8|K{S$^EVv1T$~e(ZT|CPgWs;2 z>cIN0#grJ9<#v5K{W}&c6-V3F(^^C9#D7zNSa2i1`;+(H7{xP*%w7q+9w?>px24vG zw4R!KAI{uL%9CB(R%Q!{AbviVdEUhd!06kZ7UrPebH9sm92uBWO}hmY62%iS$v=_nOLTtA_TLG7@U;*Soai zw(3+jR$D%yGw*NF6MF$H*<0#+W4}6aX}~YqkSm zL_6IGb343#pe>*zgmk^k1wIo`)c)wbvikABxPo)K2VyLeIu74rhbidi=XH~%LMQ$V z)GQP&2rU{9msC<*vnrp&N}u%|+<3^$8r_qhBC-63^j9p%_5eiG{j1e?y*71PPexw}ZbEJ)`ZWO3(9BeiPL{M2fKR_4TT;U~%RV{^@wY(QW+fEdDuK_$G(Mb=Hu> zw5fs*%g!v9B>l5>C2H!63HznN{YeUzMrTyAQ%OwPM_;$39uLULGCcg2)(=|rXTMrV zVvw%=>TLV?%BopmR~kML^qHCk>W^Ky7qM3UX->Jp1jAp@4hnw!InvkqG#pd#3J$&c zAFz%3-5!hg+0~ufkcg|}W%eCTMt&hL~)&YG^xJg7(Jl&J~_7tYkD zRow1g$r1-Wl;Qc0(nX9ys->vJ#iM=hX6qt6P9`!qCsY(gC6h9n|Jxp85BGDrzL`Ij zw_IhqO|7}`sNrK4wYuCg_APiOniPrxg{Y}kzgE!x-A5TMarH&t*$PnC;44p3LG;?` zhZ9!+cfyV>?qk2?ILdDMr2}re8;VnzK`D9*d|15~I}^c|LSc_IsM=KE6YCl)03D37 zCS5B5Dy{O%ad3yL9;v-2k!w+%-bq0uxYO}4KR*|%04gGm@r$Wt&d8Bj_&ay#=Az0@ zqJHzqnEq8;Lm0XgGrH$@rWc;C3O zV<^?QkV>4&-8!by)@CubFhOR;xLjDcB9lm0Ee-VuxsXXq6y0{H2bzlgqwaj2dvX~b zBN+&NpwPoayU|f(NG)iDvZ4^}k=$hrLuc}}Yxs>1dE^tX5i?#|>pvR{pTv+sf!jqc zHemQh4`^Get=a;2sM&7pUv^LKG#VbLDoB!BhzSyH;pjfx3Sb(}%lBb=efxpc#@N(1 zOgNqPJ4c|kAcU5>nl zat4VpB*(Pm-27wq{GeE+`K`Fu)H)@_eUQ6z2hz=wFmInr4%836oE#1N$M2%JDVaep z${8>1erMkv{%+Co7jNp)r-6(A-s`^C{pMB%e5Lu_vKS`qcqCNWJ%&jp`C-K_He8`5dF4Y<$XP{GowvZNP=9?hOXizBT!^%$S zYA?Yf=p}4M=Q#IAq@agxWX9cu2_Rkr~Yq_EJtiTgH^aq`dZ*9L?@}+}W&ez{Pm10|OQm@Kcup zk)!5!C&WEaX7@vTbyctGg50uwqXDs-5w?}qdOQ7%~plnat{Tw4M$A@e4wz<8ZaHkAAI`x|>Dc(AO9RabwJYPme^HMuyF6TdjJ zGCCbws*5lvb70@3{!9ZjqR^K9cAy~C^cP>U{e7g%vT?VucBB%2`fhJGThxjw=? zLMk44-1Ulvs9YPHTq-L?d_ne-EcwzJw$@i;+I_mC;cTD?FHKDxCeqim&n$qPGr5cGk*v&m}X5AoPhwCx3!WmNs=Zf6RxH+>} z5^4+`J3O@Y#{hP84Wr`h;bo8uVRYFB(5mGISi8S_5g;jtof`KP=hOGcpWe%%Vv9yyAZW8GL7$YNTuK0v=r}YKCL*B zl+krx!Hs$OW#ow23}b*BdlKalM6^2t3%DC-&;Gr)xW$v5Ins>|PezpOG-J7Dy~JUM zpPb90_sqe_0&W$0n)po=l~zP^D7FHW-{DXN<5 zhgXW2+RBAyvDv>V5SZi3ePNeEgsczq&at`w8%Bj$wpV15zh4U<8ekbCq_Bh$Un&&@wR`LguwhgJkcX-Ux z;^@Cizus8Ql;gmz|A?7-{N&mG@WAJNpF1ESasR( zX*F+$hPt~hrgB;8+myrT7C{NCxyZ`D?TgyE#*}N990&6s#6XCHCwne>>B zDCbJZ^;@wNx48A9j;_1pq1=}`-m-7Rx38W?D;3=UDEFE-L$a}Jd5d9P@AI|2pnF-i zk9?+Z;-*(Okt|XLVY1+;Fy-cLdp(pSI}pi|f-V4VnX}(SmAKlo|6ES-FD`>Y84}EUUiq zXQZ|}RrPgs53k86OTQcsS|ygIWvBsG=YvUMM)|7YiHB0t0w>!5{Vi`|s;_dhH?I3#gp~tDBS6gdU)@9R7vZ*E zO(VW3t1itEv}@u>>l1&xu1btb2GgkUN)Z-j-=tU(Gx91u!9?e5xUU1&$}3Xd0JK!g zeskXzcOG**^0r^pv35hVUZYDoRg&S5dqvE~(F zHEiJs08Dg-Yfl!nOYa+R+D(5_VWqs9Nn8^_-amU!btI`wRbBVh4e5TO3z$fe*1Pqh8ZQdPVz?3UkLG$mrT97xM!Fzwhl6tnxrz}I!S zwL#VN*E2^jK>@RC%Y*+m=b3w2cE#<8?J}qQ-W|6FIr~L5IA=$=yHjrRtf)_`SEd{% zPa?B7h|k3}CXKxq9fUMeQ>v?4wyqAKSPu3bT?L$wv5Y`3t97m(&+AuwNA{5Rtc%n! zkNI({2+v_Y4W7kgV{U0gP7Jptmk#4|JnIDwI?2~{<84$#K761&cT>jwpb!6L)Pqo>2%i8 zy8f$glW=wfs>1cgqQ1Zg{y`0~*>SjM%sxPDa?{`hsj7UUFSrc^&y)p>h$4>eNsep4 zW<>U$9KlPJ)jv)4^~y4{woxbX_S8g0vy1{S7soywKbuR&p6voWN1aoZD67>^4|N4I z=8t)=wySt}UiwRk3i_0-sRnWV`Lc=xs-@cC)F zOsiuC|9fudg;k=Nm;!f{AbAEOseFzz}9MUi9RGXhD1csSG zeAsw=9_mSUko2hT(xJ}vVJN_QBsaYprDpwIL=M=`-in8+8FY)mQQVy)S2zMEOb&e~Ff$S*iTZqlO(?~R$hd%(+;uKtwjG;C+I)y)2c zgp@UO@eOGm`P%R-W_>tkxpKBFjPih{XUXxji@7B?Tg+{_yDIqD=grWf%d~L=Z#H(I zYXL`E5vbo6>D(+bd<9-|7N~svcZZPkaIp7-4{&6O&El$n^!|v5kDQtJEqC=umdV`x zWc~7Rx}7cce1JQB-_h?%o$SdUYh#~!OEa~)FFtZMj8N&Z3Ei_+PFhGwM6$asXjB)( zg}GOAlOZqr3hxk}D47(hQ)`(*F(NiU{oXV3emjo6Epi#LotKY&grN7zlrPX0U|M}AV`{`_sZ->~4D_0m!u8478^kY4nmz^@ zNz$g4msMFdpFaF%yT-<>Q8xMAKw5I<{#|%wjr9?&Vac9Pes5Kyha#UUZB5W|bui-I z;0(~;vwK4SR9)93ZSN$)ccY^aKo#0wiI1XSn{_pJyz&oGvt|v$`R+E$G$i@U7496b z57_7J|GGcnT*a~~Npbl4;Mm7sbJbfWN6e~_B%JsvNx`UmT&_Pb-xg-+hiO1$Z$MK2 z_@umJ5N~0c9Iiw_;j|!KO2K^9I6!!EaJT%7*I=?%O;2{;{b;cR>)w~4U0_tvGPZCF zdsjTKdRL5Hm3wB271a}(!3ux2@GVI9JrlOi@n{Q~!8KL;10nNe{f~7nzLcQlkYo4g zF-{@FIj^93r+~IkH!k{0?6$)~+;ViPWr=ENS?@kGDz_}^SUS&EZ?iuJiutoouc`!3 zp!x?1CQ0<1_&^&=bfP_N)F3G84aK}0K=r3S^I2SLY_K{1!Fy1Q+j-=(zfR`Q<~QkC zb9IjiqYS-JtF`vlIjAH)WZKiD)+ZL*!lzWsP)_2sweua4gLIpW{ByA?BQa!`p zDbq$d`vaUI2u|OP;;8ugtxRPv=d-e?**JCMvgt$a*>=C#4wWMTZ7CYJ$45!5-y;P+ zkGTpL@$IqjTY-QquCMDj{=qdtio2gjrm05v1ab%4xdQ+fw`xKxetWUxYioxhX2JQ| zb_N}`JPq1|t*FnZ$u>y?nX)slqBE{zUY)1&=lsoby)TXlZtrTixl#h)-ky>-cF7Ah zK7=veEcz(Y#Wp-VLGsCYu7bs__ta)u<5J;><#;>S3EFJGm3){6GczAa;df;_o3$I# z{nniV*jvCIeDQW2U)rLT%doF{^-+rGsmaJUi&*gruSvL=CJ#QEp-CetO<BzX6P-JGMU zros}kh>=y-gbPynM%S|_LR!r(BLil<0}uE*Xu>l)d!XiXb7h)07V?d5SnOdGg&&Is^f(m?#>TGXZ<96xVvP+MxPtg{VpLAoGB>FXcq9Vp&u#J%SkQz zv18S24B$>d~^1y2DEz6B$^2lGm`z2|;UBR3=K8j9bAi2)GHx<0B(U%vbYf4V* zAFGq(CbK&U{9B)a2yV`u;tv^Y{?lV2&7sDaFI7(gz3bQLq=*!MrK?S8p$nn>6VoK= z6CbWTWu995TMhw}C&1cp@u#xj&P?ZRqewF&$?=UZ89ow4X0Zj()a))(oM^6_Z_mt+ zmLdAv284t1gYbe08)t}?^OIXoc1m&< zn#QT@tIh(NT4aZoya~(#*0W$RunE3mN98y7l_3|wAcR|p3xB8os19>m$w+ff#DW|) zQCD|7WXl&Puv+!jT=Ay}_#|y6owwG1wGJD)UXg!thu|ac|5FxzY7^YKU4?5Bt6i)r zT&wDxQF+MZ{@-@KMcX&X$5xg+BT?(o32KxpbCKU1Q$v&DJkZ&dV)Rcx4;;w~Gv9-* z3oFOClmaZ`S(152FF#u-V35i+t3%pS0)SUSEP@pk)Y>WSZew+_O3{AOI+7nMeorNf zs2Z9pcsM+oG3DAJ?;}T`2n(CO3VQ7gO<%~1q`85(@cj!`AyFNpj5n8yPYg&MEZOB+ zf&1qmz91-HX z7m>je0~mrn(Pfvw_eW$PPjeO!NUGZ14!ZmC=n-=)iSiH6AkbOX5Be${xJ(s&n)o>q z(mcAC=;OqS?W&h&N>)q{X(`vyjv zt(h`5F7LeR%KvqtCcsu!WQF^{;VpUIKVwe)dFvmQ-Mrm|`C_Ty(oPc!;V&ZzS2mOb zAx6@aGKFvXq~}_IXkC;h;rD1#5m39)p>>|oxpj8|8ygo0i2R6pO#QM#_3mnDw!Ko< zocMjRI7#zJ^q=&smwtdPus%rZ&`{P`II2bpeK0T`OCnE-xn%jQsszCqFP2Z|>x*y9 zP=@3CZ7}-B_;#9>Tt|=k=r_@saF(b}m^(+2_`nm}*ljE-uf2u`r0KjLzG^M$W#U!Z4V->Re1qgm>Paon+n$Iu z^AmuoYyO%!?c=Ei#P}--`?J9oA-F%M>(eeLIs?X>ee?I$)>H@c$a7?<@ylH4gD8OO z@J^8`#?adxl0m?x-gAQzX5WjSzUdb%E-)pxXrFYSrMf~d?l&3auJdbt$uE6aYJ!<4 zB!Q0(`ncz|UwZ5BTH`<7L&mVt4l6`mmw`Z7Auz>9I^cCWOat}7 ztTr;A%O1K$>aun2QNHJ9e2IL5_<76^4Y}XZc&3qeK#xZc2r%`%|7)4kKaB z$hO0QB=Goi2;taAV9SQ$KG{8lJ$CC|t#N#QK1pK;QQ}>@jY4nW-@-t`Le&K-$VZj% zjdk=&uv81gi~2P7pr^7DOK9Jq%l^Zsa4TFEI{ZYzbJ!h<=&NHoKHbu<#_vk7um&4U z?)>YSj*(R!W7Ba%zJl(aH1Fy6Hai{PHlFjM4sDd`h!0gCdLPmPr2IMm z=7=rRd3?A2!06wQ_ID6?RF_pWfXr2HTTx$aX+8+MW6ps0%2=*>*qF=)7#W@Z@WA_ zGn}8|8F?=Y!kcK)*tpg4mYWtYsn(#U*Jswp#Y8p+L_JS^kr_bChDq*b4XYfvbm9Y9 z{f*5tp@K?FcQb85hB9y)FHTDOZvqCTR+uHjD_6)CiYCAJk6%q08Z5EIQO|YLAmf%$i3!4LjcHd`B-l21{B3_5dk6wuy#^sgc{rKLGzWJ8k ziWm=&B${v57(#mQ8(~Y}JJ1mOK09oKfNEPX3TjTh0SDV1NNoha#P%=vbqQK-!H=*r zW+gNA+^kEI!ut>a_VH2(XFj()=*jFX)>wTnCZoC0BaFX6pI!_6JqIlC@uMkn`Q}C+ z1O1`Y?4EkN{pWb$vQs+YJtFY2-N90XUkmwF0)ltoY25h2@9pX_U-G{z#SqB?bYK6RZ4>txA6RB9Y>;0tsjQtg! zUL_@dad~SWOr#@f@sAWGCE?xDf`W+;T9~^_#(OQWA*k)Nb(u*Yr>z83>L(nHZ2q0_ z{rl>M-cW9{h;YWg6D;xTE1t|fap2kuBK&Hl5mfiy&tDtHWoK^Vx>E^lNjLVXMmVQ& zZ?E2qEi7Z&DllS5(Ilt_=>uxLj}t`F9)z1Jae6)Wf!vq>+2JRqmFwdKHiOn$SaMT* zju-$9&r(O&zuau7IVlg;r&J22EboKef@Pq-SCgX*7>VX{1Eh(Zh~yh`z^ZE5)}Yv- zoKzVJnc^eTx?z2qS@ zwXe2DeqfZ$|F@MEzZLK-y>C!qbWI4-n%oDva2w+IU*EM$KLN^dClN;s5t zrlZz)C)sJEkeJsmFpCcl3R=eNGdZ^iChPS8)Edoi-+)^^dsZan|kScIF9ckAWdY+w=P=oxJ(H zdabb|7%kFb6M~31EVe>?L;kTf(8W}WacSV{RYFaJ5B44~$!kZ2jR`dxiWlR!(PZ)C3 z%1V8lNS(oQ53{fc7q(oJfkx{XmGsBoANyjsT*c^abfAhNJ1u%!f2&CKC-*c6Im08p z>xUFOCfJ&>Q#;aDFP*zKTgu^%N|zS3fc~`-WJU|%^0|%*uWFkZW2zDR`POBwh>=+i zfj2HOCMWY2*qJ(`bEjE6oUfQs@-!(#${lkwIFqr5jC6c89yKdA23GO-8*59AMNo*> z85&429m-z>4GgV;Js#kmacn^$DI56|@$hTkkWrZeysgMOA!S->+Js1V1TW4zqUM{ue)s-i# z81Zyu=V4Ns*3BrS!(PlPO`Y)jc@4j_R$I;)^@gO+UWp3C)b$**3MI;E?t2hlhQP7X z?hd#w%Icw5puWs9MdNuC-8~Xi76hl=}4A*H=ir4rhR!2 zXH&-})?an6wwxgi7w227XzJP1>DweMem$d}FEgLGrRmm9FY$L+(Hvef2VmB8nDl(q z*}ZP$@psG&E$E({3K|CO7YyYvt=o6b0Sp5dd=*mYkh@MWzC>KEx$8ma?dV49hC7VICplrN^7caz_UYqqd zreeYHE_&A)-3PwW2+OdGV}#GyhK6eRm z<+X=JsrD6wbNB&7;ks-^m3_5ciLCD(k9DC+Z{)(zlf!L3eH7w_B6{ zJw-gWn>Hn5bsi&Wel32q$)2mcw8(= zIh6g!Vt=g*o)yc5ck=J%&?@;8->u~5V;#fdc-Yi%P$U#{aXnzSYO;PybV%Z1z1jA zn0wQ*=BjUOtXFZjmq4!9jlxIS{eq7VBiNO9kruVGf-D}A!^X~2G4U3b2mFJdCcsjx ze+Igez^XG$dp?C z(YflyS3==p-C-W6pJbfh+5e%}g;QJOGkNMgshlTmsAJDA>4VY~|8fXMrLqho zhL~9^JAu|gu4#s^u8J_+31lMrXl?-?BH8*+{?V?Z{=bw7U*8}T^d|auqpa2kF$nhP z51;C5fSraCL&-5(2s6~W(M=)|HDfOW%OP(#Z{J* z+YY)13S)WTcq~}Oy|0yM3uH6<#(EJKBbO`vlPUuoF=H?sb{jb4_{LwkhB3(L)Nt3m zmiBeJL{}w!KeJEnmgcis^MPNhX?D%U+;)6|L?%EiOfj<7KtE(b-<4(R*riY=a)DWP zzcKDB1wZRd2KD@{Z&Qb{O#%|9lPF}iZ(lL*K7aeR3gmA6h^Xc18I*>Aon-R8Wus@O zgdM%(@d7;|)tEOiK3YN!P4y@>?$71lgBa@H#u&QjEGxt+DYmuByc1SGi5Oskr$hlQ zB%Nfw>OPsR8+Vy}0HKsU)npH7?{bYJywdCVr>%#dJYp7gK#Ilx3duXZ{{ z;iF)kx{oN5^6*hZ7&}#Lqw{6JUHfMT(bIxlo%S0uokvt6g3ibV9+sX^jZ3Fl+|?!w z;OOvD^GfcbhNn=YNW*NbjiafzLpPj^dqrrd*!-`Z&i3l*?1Dpi?KmCp%L7Ofvg*&6)TP@vh6dXM-=V@-sP)U(5m?jaeaNAK)hYd^n(bUO?>p>#UWs zuw+PSrFiu5_o8R>M$4shIFB4a#_at+scs${(uEXb_C~<5u#uX@ z*N0_7hzL2^hkw6fRCaVFoVUpz`rrarbJr6kj?~S4Z?U#&P<;gM1K@C7TPA1 ztNBvI_M{@Lprt&&0O_e4qsHlM>!ZtmpLuj+LJ6?&FaM ze)YO;Z#?bP5UVQ}nGA7o+tG5p{4yw;m{u9*U0LHiZ=6*I2E&+57#1I(1)CqF02x>X z(F@+~0617*J+n`&hQtaj`s7NQ^|9O)&#o$#Ca$OhwC!G=dW|zBgcfv3A9X#Kpmw@h zM7#N-A>U#_ME#KwIGSn2=KQZf`U2L7nRnPedf%eEwiRenNM0-%xat@9QRV0!{lxS; zE~TfP^`sS9y#@s1?E3@g2}}C1@9D8uL(LZ^eGHXr>()#J{uMS~@m~$JKApMa=VyFe zT+lf}_xUOFO2kWoeqdp*!A|iX>eH*AM-D05Q>*UZCW&mkSdDn`|NpERk_!=h)0V(x zJD$XWuu_w_;x1BDRjknOdPb*#UkI>Ue+K8agw1uBeQ+4+(?s($L!7vo_TEt?jP2gQ z0)+kOH$Drx(EeA~Q8I!R|NBr7%|u{qiH07h>ZLfgbAaIO`mlZyt=d?0%scrnQ^A*`NBmOkYty*eomdt9pj9#tzh+qoMnc@UPf*fDsp=S*+#X|qDhA-0@UoYFq&)tCk05Y6+2kit#EvAMI2qEk=rh z6F>i0^OVdYIuVup)n9b;&^JTjX;d#aQ2GQv!+Cr!dI_ANmQ&syVudRf-Jm-lna~;d zjt!;qo*z=O`q#KZlLkgLvd9!A{Vb{vaHo zpfubGYf;>GH6=48De^Nl_^I${?MYmVd?-mGt6l!UcY7DHLi~CF6ot8{y9j%pg#EVa zy(j1Yjrh;Ct9+H_>rTG-Q{@WA2qKFG{To-?=BU&Mvxa{KjWOHFn-i>#JqLR$>?$i# zg;SGf`?@Jv>pKwr4l{x~)3RpuoM~&$XZv9l9iC%yj(ds1|JM?ryvJ4~@*?mr_6o(?_jJ7gle`wwJ83;#)^XObVw3@DF^{8fYhW?C*To|viRI}+a;OqMLi4J}q*#Z=?{Mwc0G+Xj;y<2mElR;AU`%fvgk{&M01)p+m z*1Sz(JK}Ep0jrS>*7n~Z9w#}qLh9~~N!!otQ-*^h&7kZvedmHn0ZNhs=*+(&Rzz2Q#n@X*jga3(`HanVZ9P1`x- zpVJ5ngOF9A328lqb$btl{+<{12>SL?{UFsz#TGNr!7s7C$x%xaGfP>(VMR3RU934e zGW=rMFAS@J>6mi-CoTj7r3B${`dz{8)ybfZZUME?3^4?FbzkG3cN&^v+uK?8;Z^>c zG{)bcYS}e6pAuJ4$pU-$^fy3iR9spY)Qk)!xg z#rM$Qf?bz7-|$P8j*2cf%?BRgvc{3AgmSWKq_xGGYqiv@W5Mdu;M&g9gT^;kac8@} zExwU+v|2l7N*4wUl1VNLgNa(vs_0CK4a(X6$)tN_7m_f}n^Hh#&tpTEz45 z(ZG_BvRHv9kYUWMwgSxPl^ivFpk(pMj#(>MKi0CITSV}6L|1Y1z}ny<<1GbzVpEQp zMq@%UmA=bbi7q z&O{qg7o#OQY-p!i%-!}SabigNkBOn(LJE(C`D!idz*lu+PrZ*VYl!nA`$-Ypn%pN#iNZgJ_OZO)4tTfFx|A0<*OYF2q z!;B{+B^OuN;Yr;}XS0J8h8UB$%t4g-6t>H*?jmW>3&p>bBrXY3s2ZrL9TJX~PSRpo zM(hE=dbdSj4@!y+JhNdr&qWI2;FM39YnR6Z=WmM+3#2_&p`)`-vt1l{KM22{lcu`8 zUYE3CGUflNUmrm?C9pR?M7NV#|yWzoSY`ROW1@3U1!I+3UR?3#oT zdM&q2K;w$EvsXUX`C{h}%3Q3GmRt(E2(VWc{x&%aJ5gC8QG-~U%CuG6&We#Xv>D12 zrWtZO8#HuMuwhmctj{_gcb;Se_*t;Y@~8ezlaldAF>K>5aHXGQ&yLQ@MO5tgoZ`(Fr@oxZ|YkC1xh-MiyX64v$n~S6JVe~vMLd(e*%ZCEiT<)Qw zGl!bH5>6-SWDF{k*pmRCc`WBq6FZOVb~`zq+<6k0`xoUwN`?A??qBw$+EbcZ3vpb9TKM=IXAoMX6Y#~kos`{;3taPz1M0@23cD~+lUU?ynAR+?SdPWA& zE+refal)#jda{O=CyA!)06Ql!IAH3qx$EV@h(DE<$K5~NT6BA!T_ASgYg4tG_qq9w z!t8jEO8XuxyzJQNWQ_~B1g>1->-P${YWn_)Ox=2-7Cn&KhE3zMj_nEMH`@A%u#&Ah z$%Xo?AEjxmRJCce|5-xcGLlTA0XI(XW`Qi*y%`<}Qt66gKZBV(Yir8!xW|!ixcZJ` z{tVU)>wD(Zv4oCgsHVqDVp08zBx6a`TG4Rl#KHXA-r zCGi93cVULz`CpmuVWf?FBzH%a<`M8^H))V4Wa-Ie6HEPki#G=&n6GgHoRx>-Hwt6s zy4mtGfFjq?@4$x3zjYSix~|O|NeeOhq;*=_L0Ph6Y3L31y@bpwnJK(lPDcY+Umb?| z#4h~;_wRs_2VNbYhq>Jom@sjeYTUT6F0Rf{s{%rVhCrYm_#X98?O|M1fp$pI+=M^?&=g)|j1!4N2Mx8h-?78mzG>*-INO?^1O{>S ziG7-rM;}mbOgUPRX%T}5$oFV(3eFDU=&QLgCg{0$@id*42uZ1f`*ag<#JMo6uVA># zQWjhY5!VK9t-f4h_Pe?k5x(5KpH+HqR2BnLMLQfth?MUMW`j zkK!lrPs11O60@+YS#y0N)#Vzwb4)pGVKG&ru(7cHa!V0bJpJT5H)}d8q+~b!*l*R4K_f^~#Y2vAL(Q(SiV=yj$?W3;%1vko5X>JPUzHcc{(eJyR-$n*U zWydYrWSq5ig#af>OrdxsLu51>Rh9EbYkgj27?Y}Y6%L}EqZw7UUDWGb-LT0g#vPz_ eKOwqZ(+ohC5T_vyCGR}&+h9+gDHc374fsEDgWmlB delta 15909 zcmYj&c|27A_x~VNLZy^lh)O8?KJ_j%givG|D*KEj`|gs8vX3o$S(7cx*akBq`x05Q zkG(82md02H-#hyJ9*>`YJRWoJ>%7kEobx)%^PF4UPM6kB_q8I6*2*Ogoh1f@y;pRC zo>M!K!>^QkVQj)r6$^Fx@u*Jd$Gq^`%C7f>Mqk6Of1gi2s~zv|1o43TncBD1^Nre9 ziQ^l=B|~bD56_sLTxHzdFM3(i1Bao6U=96)zac1wOyg|f!_yxae$-jPehM}dk*Y^u z%cAAv6NQ+4Dl~LIOqN^CRDZV8W11i5XE{+NQWK5JRBy>rLHL>XEBZb}_ZwdYsWCIl zdS7*XwDRHh6P$X8kfXq)oc6vMnNBh!%)#y&b-R0sf}BDy6lcd`3HUF^wkd9-ksWYl zC>@O6q{L-Z2#=9`P?-Y_4()CtG~2`^O0kC0(hIb$9GFm8yl4*HT~D2j+T)r|Ikaua6j& zGh$1-@m)hDZGq`ax;}tj$eiZ!KK5Z1O`?thK2!4nNNX2M^~Uo%O!FnF_@3 zJ+{4mu!VkC5y@!X8U_3tbUCF=+x#DkDqK-^F|xsC?*6&;QdpW*^?8qkcCQwWEk1%V zTk%#Vq%mVjr#_EeJBiK3L8j}dLn8A~vQ6dz%2yCDH4QIWBg)tCZ;OmFAjpriTrD4F z?mx?}ppr(M@dD3&XRUWl=YhA(OIvG_A<+y|J8qB`Flw1llo9jNO^7ibX_zhFbtfE#gCk)EJS+IYL>7j_roydudK zt`^YNcp>JyK7n1l=yG2;ZtFY{sN1xks(OnE2)1KK(niX)(7*S*ttft|rNkxO(;vK? z1l_biNpQ*&@Cg~kW7&R?i+BQaq|H;)`lDAvGyuczFJ)f9_c$SDIJ#Vs&ztvUfWg-C zz0|%BUXFc>;&;-9Jb|shTB>(iyn`O9Vr>?4?s1+q0x9a#{Q@Zh#U@wf%qz`F(fx_v zD-=S7?4<@h2=Ri!*})n&tVfjQ4%S3vA5TjM5WYpo^MwiQcHgn03UJU{);rf0x$qtn zeB-NaZ(6;9bCUH6%=GFiASB$F-v1Jw{e{~+k*EZ~a~ z&g%;}`};(e;lkI$PU_{bU;heP?CE4j5_IRjv**Kwq&8<(y`vq6mb5?}5g6wy+HHs( zuVF)Rw5W4oX|#%LzzwQVg+wx&+p~REt|Puc@d0#xgLO5MeaKPk0QBy{#`s9x+W?+l z(DvzzqK2S=go?Z7Aj+~1D~)1Z#WW~y|2Pql1WNih_)Ip~&QVNMjpY3b`yaPS_;M*? zNgL7OrZc(GkwT&5oEzeZ(<$;`K7xkHp_Cup-`KW;*XPBKUWJ7W7emmRyaP#U$pANP zjP=wQ-zSi$5VN>;Bn!Wz_=~+adv-VHm55eO4UA0KYN|7cjeu;vz>_EPlR=x+xUr(io0CC}Xn!&UoL z5@c zn9#|Mzbz0|oFTWn##Pv7EH-|@+8h#-Z1K+C5q`j{4+`-h_u|tEAht~tUyW14VQEce z1U_?0aPr(4OQTv+*}XCm4*GG!#J0++Cy~85O_rS=Ns%|+&#vIyXxeK;1&(4!a&+cr zlzo~TO)J9YY@)fz7zVY3L4GtxT%Jfb#PFO#iT&Qyql%I`<)uL$WOK$2XA4&_)F{OW zdt++4@x`;BnkXPgtfzOMhr1%>&^b$>UT1v-(z&vE6~=0Yl>3F7_Gho@fggAj!{gflQ@iM7AkO^EL*cn`&{i6m6{__MC=rX# zql=Bvd%N27ZNpDhcwSt>H)<}H$$EiNMphI`<7B#mKK+&LCI43=GIHE&g!csHIc}g} z26Slpy2-bTD-P7|M?Cx`h(9Ii42Q4Oc^-a<sfCGT1D59 zM=B3EJ$Gnc;l28cbNwJO)yAV7F|KyjnYq)sQrvj+i*Ip`*xeJ!3eE@xx6K|{;AwBA zmT@HdJVN);^^a{I3DyY_r(A~X$GO;_QWZMmj<@C7**l5<@7aIkEoX?t8u1aQGL^Av z`*f!1G#;kDjxZzD(c1+_=gt(KDb!hW0FDr1?{&Mme7~9`b8tYY`_;$7bbx|Iw4 zBzNgfOy_rxUwdCH>EjWTEs#7Bzc6l+DCTcF-tN+s(f?giQ0Y>}$wz{!!>N-sm!dc@ zt_Y3&d^+)WXSnJI*l+aOVYqf4ljr{Qa{rJAH|8|cT*i1~2M;J`9oC(0zgK6B$x%0* z^1qu;d)`@F%MVjhShYAlD0d;+q1N7TORBbt>Ne~vhTU|CUzrCTnd|93FjHus zo>FF+psl29qvP6dsDPNW`d_R;`yEW;s)K(9rTZoONG!`?FpWxW_iz9i(^qy+qOa^b z82#YQW?haPA38u%L8r74W-&m&XH2$bYZJqS3t5|(BP77(}|{#h>aNVDOT z|Mm45Qs4+}8YoC6&rVX3YIV_VhNo=0(wXG>m3%SdN1 z!2Lm+82{@6ZTf(1#mJ4Gg*EG9+Lw5kmiQ9I445yx;DNTr!d)8{n4YG zY7$R|Q;s+~`D+^2A}#ssdxl^5EYa|l43KU=OGS5PvPMJ{1>Ec?RXcEUC|z5Tkx-?y z_?aq>0W{nbW@r2^k#^O&hAyH{O^#5WBP$cR3X_iQ;>R#fCl#+Og9l=@UuH1ZmhCI5 zJn`NmjQIs+f0jdxRMC+Xs-x*HZTwv%#G!nDl6DA7`x}D{#4bN>uc9UHYCWvNPFFD0 zeaU~5{A-c0LPtr-m-EW3WZ02g2C6UO&6el*Dp|m^wDSA=_9faF3Ta0z{6?1&YYpwr z&9BTIUXpXupTCDA0Q6?igQ?SIv{q+D+%sR0ZM_%5mq(T=hz;9?Ts+E9>p!_i7g|Cg zSrJT`qcYS)AEsOMba#G+W6-u-~m*=l9GVu)QS3N4>GQ*-oVOW79)%+%G!lPhuXcsA{8N zM7wlh-X7@MKbU+o;E&5CzQEarl`oF9hwm>vDumOoLR=P#1ltbQll=?91E7R{1(M-D z_~>epWMii%%O*^;TSoQ~AmRTqL!whZjt*7A-~gye)p>r$WkexEnAx(-n`Ol_9ek!sPGH+#=I4a(v-C-_F)$uo+rY7A&jx(Mk(+ znU46Cy8+^akpemYXu7eWxDkUReLNf&JLol9(xByak2hBpO776s!_e^&1MeI#IBeBn z8%u7VRnbs3`x&}IyBf(n1$emL56KZ5{;r`z;aN`-^2|FVJ|8a-Osr>#{)ox z`+S8*8rQ?v2(LF~28o(=qUV_XEZ<_E@H;A;p7S^(v_t zXs)X4%wVJ$aet6#AQhe8$DoSZW1c3^m#jA0=wck^C%7aj#zm7wyG->tVn+8-K2y_~ zmxj>9!(C}HtxNTc@``a9!7?mIe|G--05YhH*aakY&Rdy zwpZ!RO?xzb0@w_dWM_+xll~GM%*2SCE3+ap#N*?z6My844 z-o}6#wU$6tcBq{8&u!bftrC?Q#PwP3*(cS_8HZ;=>&nZ5yyi^)DZXspmQMMqwqByk zm>_7=PcUy`n&>vLT`F02splb0wlxHp4TYPT3TXh+55}^dynp&s>yRs`{0}zY(|jXp zG*r}H%dzq|23s9t?NV2CXjn>^k-jvfnZ1BZu@x&sg!!pk_M;Q$v`wENshI;h zHlfc%tL;!8DD!`Es|Zml)AIEeHD7`K|R2a`j*yWtQ#h9J*9gPU~Zz za}KsCP1MD16ntX@9)_+QBmR1{ozJ(zw6`z zqfM@|SeU_;-YFMyNka$s$Ou;_)hD4C2ATZ0rzhuj)>NXP-FvB+M|`C995nO*U?;(` zJvh^mvhC;3&aM05MdJlV zs$^aa3^hqKV!$}VJL-P8QonjJxqtZJuO*nsq;JKyI^M4u zf~s#F7Vt1(&&_)Uc~!etP7g9jamE@Sn~0t%4UxD(dCS{|A;|~&(=FLCsE*C;j=4Eo zs2vD9J(@1wU-#|Z0!Db-REQ#5*}QF;42!h74*Y!!xVtzpTqU!abNJ#JbC_x6@NLU4 zG0^O(rUSzm33}D^77rZXgG1IGbs>WkM32M=6$Hf^VvuOQA+YQv5+GmY`}dC^4?|h^ zEEDb)s;a7g4qE*QUR$9NZJJ`N1L2=#>vNwv_9_JyYk+oxPn{)sE7fQD;Y5a#tw`|_ zcMq;QD8R42YRyDO#cQIf>~L!Kk4hAFXwLg8sa1T^_>vx$wWltPp`Hu;A+>IF0?rBo z7o4s-*uCYM!s>walUd$sHU#ciR^g4pVnc%WBz+rqMIF&LqLikTdDGHwFoT=|9!j;W z>>{8xs7e#lBxl1XSzJgQafs*`sU~VgW(T*WV7~B8{-%AleU7cv;g8*s1)enYJYg<4 zd|xJq>Piaow}PO>b0pzsC)N>l(C1^tIjX9kmTWS@3!-fx@{GUU?frVqSQo89$Cs^o ziJUa(wfxOsX@iz>c}I0!81KEzm8p6+01&zt>Fee#`BFc6uNU3B!LckTXs&*s?f|Uz zZX0|I-;0{GAG9U^7Z6HR>h~SRCrDcja$#6A%M^L{_*IZ(=um%jG#iV+9W@9i#3A^_}Czi{Uayd=EUA4c zqPn0jH$Jc(4pca8GKYJ9d5lp#RnN*VpaaL)eC_&u_*uKdc@HQT|4d=g44bf>8={^x zhvpG2*}|#mgv6o4I_rMZz@=w%w-`C@o#Yc?^0nAn8E2#d#s` zX2ai1;QeQRcZIHLjt-rxG&H8paO0oll?QcUuG2y+CkPRe!hMRa6ReqmQExOZ#<~Rq z!r_G?fky+eNezEm+I-y(s$%C7wc%Cxnrn0KgXTIlcO?vz*ggN-P38X*Bat)aap9{B ziBCMgk5h(#(%wtDbyku|;Nw#w>!^oB;ZWzbSAe@GhHA~suaABQIv~7g`Thhtw1@7t zJqY!HEo(1is&**@IjXbIv$M~m0}r#r3uf{>Zp!C|b@t#cELQ-8*OXIDJ$Iy<`eEFc zzoLeE1V@G@=s&o%)bM%qQ#kRuCrT#}E1mg!D9i2kQzIA9vlnBSg3fHV^XoA726>AD zq(uVjM}O_{-y4@y3Z3hozgMDpU_O{{ogn|&Z_+|e|2P3hF~l&N!gGLq@llf2_ot0I{x|8)^N$Y@;ya?6n=nqgEmY~ zLLw31wu4XmEJbi0Z6)TejhwB|z1&)cOKY@Ag)YvA20L$iOg@tXR>C%bwBg#XQc@bl zgd3_fY3MQ;gG6!V)0@S(FL{WqtV7*@BJl0vsRt1zsk&6m-FcwLT*K`WKVF99%Wfc9 zwf~(pqspqEz@-c{ku%E80i*EEkUOx&WH6yiEB`c>7}dohE`VjYv;KyuEuz7eU-CEr z=S-CWO`-)?OiD16J9rP=J?)|AnQ#j@$9Fdx$=Q-B!8VED`qRJa3=4R%pSEmU;gGAl z6WW*kDsI`%zvepC3wbb`1wsvtvbmNsT^$i3NFCF1J2H6K;zu{>Jg?L)e!`?ee}3+! zUMwN|N$!6Bf-B|kvITS;Em;qzOi-na;!lb6Srfr$9`KIN z&&bh%!4B{-S^B0SwUyO<*)+z|RB@d6DLX*nYd}KDL1t0UGlHS0mp^f~tZk6<@^R!7 zDh^TdzAAJ75rO%R>z4XyXTsr@2WfMb6+*v?juquLJQ9@iKNR~_q&FvS-wDh@@B(=A zu*u+%;DcZh+D5H&**4Lf(1ll)QO1)$zW!r9eF7BIZB4|9vs^ye1+8A6*Xi4VbkL?) ztzlPb&v%l<6lyK|OJd=cGy=PXJmyB9T57&}LI>G1Og=zcVgtgnc55GR#X5${O$Hu5 zx8!qnR|RDPLjje~!Bk%6K0`I*oy~IQA#@~%mm8QyiC&pDJd<5~ZF9N&wUCpAQ2+>` zbR~JfA4&?$ERSkD+|dT+rza}ak*6kx4`QhDh247%c06S6+xR$=XHuvA){MNSp1I_H zU{OA^TU9>)6QVZHIwGE0=|Bj>D3UGiZ0g|8Ww`>adA(xCoJfBFkxBh~-3qfU<6sgB zK)B&N!~QHk${WY3nx_L+uBRt8WOsKC#bExkvf-6RR~#_YF9cYv>Z@~eT>TjY4^H5q ztgPx08?8S!@*PvmQGdx;n)CMEHR#DAm@7g{V;_j&SSc*llcpa%xJf53h~l#W*pHH0 z(6Rp9zhqEc6=C;mqd9@Kz21K}t+Mu*K(Y*CwlvS9O1Ede5SO3lX&(64W%66!f@ie( zh-Z7HxTK}#(t?C&mU5&O;=kCAT$sO1mcQTGQix|%7-Jm8!zvIt{Cfi`ARy=I_>Zxk z;A3}!9NYo4^2HlgXTn|t#%S0y#TJb@X@h(=xQkEFT-KZZss&rL&6L~I&HUYXGOXkNmQP4y+=NTKm+Z&yl>$E6c+9TG>46F1J{5xE?LQU#(*1}Hl5uFJC+C8VJ z35t+7r_AA%j~DG6smSg3>~W}Eidd(HIHv;PxrX?IW3t7mAZH;u<5zwf(f|ceuIct` z$G^iuQb6s-}1*=yDfW4D+8dH!qOHNq_2mQy%CS30$Yfs+19 z1=Q^!R!F3QO8vK>|_~hlkSaXB%@rqOsR^=5_H2#yRs^=$F|4RaMbVnWxVJeg9~NySpUruAW}>G zc=sE}yX%4tqK4%8YbeGWYA$B=!~w=(BQDEJBRBk@d&Cn^TF))2?3>+`rQU4F*;3cDGs zAV)TpJwC2Y6GJHo7Ux8Ceuu;?Lt3Z@G(ek}9rOD3OCAWe3fa3Ejv`j< z7ua;UR3l47dxY+A=WNw-1T6Zo?ZdiiLv~i$B*;GfE=Kds2n&#@ zdL+jjb?mq}1wiKvHV(A!jb#IrxVS5HQ~EO8cwWMVn~ZcO-jx);-DuAsj}9K=o+<{QSBHi4 z##=M7SU!R95i9OHST5V5fV%5F8V#L#5w*0SNQ@hYC$MX2G z1lC;x9|v6F`(XQXC8#0D;=g*!@w`QzG4<%_YRA984jg$ggKs`RsO@~~(wDWsmwQ7- ztj-Py>T(okGngsl+?}hu8tz%j4i68W!Esj^`D5 zjlk+*7iS;Yev`UdU$7RuAJTS%?`4i?R?nF2|4`}4FPfZKv)^ua!HSl9bCFWx0qxY` zGW>VC1Ow`RIZfX{8?%2TZ{Km%)VjqFQXa;7lUJ##s!Zk*pUXFicWF!)IKJluvK}Wg z1N@fM4X#NWy~VQsV&5UH#?A$fjC<&{{s)naCgj^uNeVHW91HNjbF~tXCg=U~l7hlL zD=F_x?Q|-W0JvxG@t)Tz_HFfTM)N(IQ!|Rlwkg!L_Th69&7c52@e@z*&wXqx5=H6` zFImX>91jMd7!<(bBj@gwYM<3M9NUS|N;BX)lW#-GvzvFmp%2(~j*oP=^O(GylGWIk zAW_KYpIU+hMS+M?7>2)4q)J8zwBmXl}mo))@c1(Pk!%pxk3-KKAbVbjQYUtw+USH3X;8PWf%mW3>829jMhv-rZTB znFwt9#AY~H*eWBPeav2@4OO=_YV&ViijYE&e_EzGAkw!MqD9@B?D*rUgbvg5+f2W1 z;0do;ZX}eVc@7DtTwW1XM~_u$*3D00Qg*t%~rL zrhAO00y_RhF0kVyVIZ+JwFoxAQ0ZO?B!+p0P0|Ijq-7X$vn&*bDD%3~+`(N3tExW^ z#^o=Q7&H=(Su#BfhT{R>higx7UEI0$h<*x+9IOd{*Uozt3u&AJQMgNCJHqQXQe6AN z&P#*Ku^+Me-%@t!Qb4itrg4qdSt&?++JLMtMGYzAbyNaIeC&0k0>dUR>bBCFo{Gzz z=6`9nSR$x!lhA9M7oOe6k;kJxtPe#F^>IkelqS2d-?0h&JWcm6O?VDUZ@A!06g~f} zXajt!-nFlkhLwg<2Lv+jK-H-6MhLd2#8nTVDp_b4X{3t@b)Tw{R9F`^aq`YNMv{Rv z^%YbOmKwT{VE=&jGR;?{b*9E%rTkNxJLS#7tp5gGDicA^{bP~%x3HA=uw|Q-_es3V z<8S6P=-12)1l)B0Q%JLfTo@Km?$2VgfhOL#3k9o6>$BVc}8jRYOlTpn7>%J=$)ZUru zhndZ}nxrfu#Y(T)IeY1VUHh0&L8_AXkc3GE`YG7H1L*Q;&rUo{o^BU7JZsH<;d@s* zH&eYl-p>F~V)u97{(WjmTDr2zEZIe~?PBS}&XDWB=)FI`wou<3e%Pyeuw01sZMxl7 zH1*5=?ZqBjnjRe5(Xw@NnppeKaM=48O836QyI6Lt22(MGamoiif=ANTGA3OaGWiw( zq_$y){U4(o{x`zh0rU-434)|qWO{uK)*et|E^wMT5@ zs)NHR#UiB#(=T-=mHMG)VvH%a*wEuP3@mG^IYzdiV5Ax=iJ+YS9P9IN{2W{0*H3%) zTH_+Nw-}!eJw^sLy|HYalDY*$UsZDK$Xff7P|_7t?S*ys!bNNDn9?X+ji5DO2gvjt ztO)JOV_&Y)=SKDZz>D!vooGDwvU5s6iR0g$Xy!rk6{X@ zY5<9?|2sb6)n(zdqt({O;_S|DZ{WgMD%)V6qg2IrBfmB3YhI)b5u8gMb zi6}CUj&JoSW(>uHwFC5W3kOK(Aj_c84hrrbz*U96E=TE#NbD7jf^}-qdR~>U)1Qk5 zQQyN$vzKseH2cL-p;PBOoFJ#9GUb+|kNQ74BY%MAIZKG5n@Vd^3NnHy#VLQF$G*SW zh+g^(HLLgp??1K(`#FboM4Tcuw9xyUxnt1UJyp^Ll&76jbK!1LDr+hX+)kUUn;HSz zJ258QQ?fRc9$nG*?Xoq9PBfDRd-J9UuF*=CZNmoN14gnd!C}*=jhWGG-5LZ08+q5! zWXZa;22=4NwW%<3^UX8t1D0Ud&COoAz}uv~?T!joz9WG7{lB;sV;f?WI%xQKTjDvu zg^#|(>+&tV0ZwjjXmON}?NCZ3;J3L9ln zDyIw+tX+^>oehB;#rOP-R;c&L8ralcK4PEX>3DOlHiuoC{G_}NX%o?be~ia}c4-E? z*;6up^RJPd+{amV&Xo>^QrQBNT>B+{SWUIW3VSqCGVsSb;il@7>^+It z$s-n#3wruoE^R94En)bh2)n%(50R!r`E0DT`Qn&WoJq%v<(|o|Up5QZD_D|;xAtr3 zYZ@2wjHN7xJS|}I*E^p|TmQLOn(Wqs0j56;9xI(0u9i(_w{_lF_2k*FNQ+_6c75mTWv30b#EOJJ}gk`La~64MK-tV_WXj4(C_+IkW_emCmsb zmAxeEjfOdnE3fL}=5S29wKIi%D{FO2tA>7Jz%A~YwQsjAjkb+c--S&=+H0~Ux;kHt z)1ZDGB%9Y!S&`hL{rI1&ORgbd$bGTCIkh)U?h`m4L;Ug(JHHF7zcO<~&;7XYf|lFj zyN1J~&;5DgraR}u14BH*n( z&EATnk=&V+s&&e}24#NCFOE=jBh)hwwT3RLm~`ZM(Xi55ev!(npGh`z`=~Y_4B=Ra z3@}cLg)+3y4J>wprdz9!-Fn15%XEj0-UxjYzMcULI|PgYNH9@HIQ@CL-tl22cfq)*=R1+r{JN1FTPW(Ut+)3lOkWZ zb{Hf3(z8pifA%M}r3u;y}D%hso)82ub#B~MfTDM%hUn#PC4!mtp z^_KB5^~fWudvwTfeVa80{FPUh#N`Q~={OCmTQ*6$X^;5xbjRlvnGS9pOPsWm^5%Kv z8chfp-z#@|YOHFEwY4Z6J$Y{8SHOB=V^J4g403lPE->t0=mczfc5~bDbZI zqQCUW)zR%S;Sb`5R}`wh%Wc;$_!8|9zi66~3I)0;QGyQ*n>A>Q5FuqUjf>(vR zrhNa3qrMNJWoh_E^Au|SZfx1T7(lBt^9k>QM!(|GJ5n)H$(4dKNHp84D|);rQm+`+ zr?*~v>*YeGk5wjkB(w4>-s@anvKxwa#K>Jitq1sj2Fde7Y12*5zF{9q* zP-f#Nzeox9m0axU>PX}32)&}KZTDvO%UIZK$yfyJX9e1$!PyF~yx1~LxV;=*+5xm% z(k;?q^HlZcz0TE!b#FLSY<};{t7ZC8Kk`14j!d)vqz_t4-g0LWrm08{Rv)3La zakOVb_Tz{0GIiF>)+MZ34c<#yB9>kO_BXmRY4(LF?%L?C+hWH?rb1V?aUPtk8cqW? zo76a_KdGixF;H&d8Bn2JcpreiUSZ}UL}-Ue~Hsgf7q^9$p$= zA>rq6k2JI;-0%jEz`xT(%k!&BFO||=AQ>aURQ%G7UFJgZHb(bKgT+BqR=G0rKQ#64&9tMnyAM zy4u)d5Vx{_(6J>>a*d(tR2l30eb^R{pG-7bA}?5^22bxI*I z7&`8ohebmqguI^vLVvw2HdOIxp`K2MowG?1@SmTH{zWbiux@3(j&3)`mBc`clzgkC0&|BKRlb4tuOJ7=vIAPRIyrF{QPIm-O#a! z4yi&tGX;n7n#dB7s*)0WUyt~Q!fp-$PsDHXPLk6Ab?ZRcF)*6a`lBNfmNTDG%*I0tQH366jTfLc{UkSgvcPJm)g68?GMIf}^*LH&Uq~i1Y>=#{`<1 zK#1XOMEj=2sRti^rh=2t3lTokCA}a1hMr_8D!InWSh6x5&&7T;<*6Z@jg->$WqPa= z#7)0Sqs;pfne5|X@Pqy5(&T7++OgE^?La8YzCBF9LYv_}#m{Fj64XM-4zwEGDx-8EVNkn(&9CUqLC^`kw(f92i(9uLlH2Awf+ zUEDAw+jOLG7_iWr(-nPj7;$$5TB%hS00N(OR7GrkW$h1%bL zGsYbxguU={%#Z|V9y6R13}PMwG3Sblt&0=IaGdQ1g;F|=@_p$wYjub%3T!_?+bpR? z>wMt!VErPNL7w`_0tm%mkqCDPY&rb7t;J>>2!+iBd4}1evvzBMlH|BWjYU%O_xIO+ z#dTK?YU)5zf}wIlh_=?`HBnA(_&>46g;QrCZC~_s!$L1~sNt@xT!)2icdnPPw(N@s zJmWte`yXHzAS?V$0LO9ZIMcI75|5^d_ER=1|KIhZ3bb7E-Lj8J^rtXOIu?O@qrqW* zf?N4&Y|~+^-TU{lrKq=cz~&|w4?g+V!kc|~;E@=>JMx=*AP>w~j+ue=wa5iQZ~f(L z&E1stya8Oyn{D#c63)imY|S5 z|1bPd3~DKzGHcRg)GqHDaMjA(52cLeeHI9;0*s>^Q%8`+8_eC(u5(osVuj)=aM;KEDnH-kG!SOjG9)nmB6M6>qzRVIG# zfSgOqu;9fW{4d!9$4pENvgsahJz4iWkNR+l=xouSdbPPXWov6Wq9Z*f8-aYw!|dOX zX~6Q?K_&31BW5l7Q+svHuI|}pSfWOYhg$8TDfMdrS;c?g3~Db^$y?^PTA~Df7%Hl< zNDEjdacm46whvtc9W}N=_C*U{7=<0i1kP>upCIaN&YJZ5n~p@liWLfTYyaQpE`wOG zAUhexL(?h1`@8GQEB~+iFWauELqLohMbFj;{1e zwEp^z=Dm8v)V-YIvw1FdLk3SmYi>~;=HBlPvvyajRz$fQ)!L>%`%K;>9b zm7^Y*y}z!q`~5nGWTQP2(NU@^f7v@n-*_YYP)qJsXV!`|IPTGq_h)O-sYtaq1prUV z$Um2Tz^(hw$eBTN51INZCB94F^aSULM%40~M)OsD+Ed0_NApY2gv~SE4%nEZJ6{R4 z<_3(Q*Cc+gp|ZT)S=Qy(sh=^Z?2CN(cPvh@XnXrwGxv`)-u#u^AUF}?7&xOM@ze-D z;uEJa(pkb4+yD!t9F1e9pJG-pEO;VOp}Kkv?^M+F_Q5x4Vxjo;O6W^@2 zgjYrtBZpcf`a{*aN1ILSYeA(H0g?jVpH56-U^~js9JZ2LP(Wf0kgh)$wyIPywdt zhz$_Wq5+BjfM?)yZU0WYPXFvN+i!w$c-2>Av`D->X=EH=vV$_ZtgUF znC-NfE@o{tz5+AX1_qK!rz(H{O?1198dPWLzAH`TwXU13{%?Hw^YL)l@L*4KCK4?I zeXLcRGq|^%vYCxi9!ewcWiKplgiQ7-?05cz!N(M3iDN<*nH}l}&FF9ww0UgKke7SY zbdO`>Q7U@hQ*1d^S@x+`ZPj2sW>`8-Ia8l+1xW%92*AY<2~Q5ZmD_-OD4DI+Aul*-|soCqPG@zjSr z*9*8L?BF}!V=sydD}7)A>3y`V$)fSSGdJO58n;^7A)&*f>}6Xla!Geja0fJYj{A(VCaJb0C3jE#J zXLnbUJ7%|?t^S8#p4PZVoOGP8bA_~%1a=FZG%atSp}sdpcO>~Zzw_rV+GehPoG|$# zy+x!d@WoQP45CI;-uSBcyMC-y4ciHR5)ODMfRIFTo zrf{Lk#X4RIg`)Oe!seXySNc6W{4`zRs7&yasEMETzkfInelq{}L}YxK&_Db#l{*p^Nf~cuYn}*5Ff46@@#Yv4?2{h$mE9j zdHnBzCri2Uia#f3-fa*?YIoeK^0xx~N7fBY7kj+RhV>D(w_s7#z%uKS02g(`Qhjhk7xMe2X4pZf z&{o$>@PgDN*VsNT_d4mD(2?gljsj#<1c9$YR30=jx$B5wP&t$BOZqF_1c-Ar6pBuD zR+g6cUTjc4Hox!-^>^B&xpp;CMw-i;Gm}c#mtS^2z2mueb)i+L%_N}Kjlf0=0U(gS ziODK=8ED?4p9jEa2!L`w0EZ=r)5x4%gUc{C4-SlhXeeko4Z zWdhlFX=4DgELZ7AY0kAlq7H>h^XB^pmE%x`#iUu(X0XuGReOT`hvTe>Y%@7e(idBxF5wcDxNqdEq*^_s zF?K&#?B@bu<*Ida7xDM_=8ryBUcb3tb(3@Z%dmO~gwBrIqBfF7Rt?U-&uRSi8wvO6 zLq*sB$Q`7T`C)LOzWd$GyYvwek}1r*6ur?{hIE=B+f-Dqj-%Jt=jR2ldibD-5#pu| z<(7A8sJiQ#$}sCfTHs|6>NgSn))m1IB&j78YzXgwp{$cz6fb%Vdk z^b!?L2ZRkR{S|ANxvzD9y`N3F+jMyo9eOc3PH4@y*=&&xd@-ov&8sBi5piSX0Ls)+ zqZ`?ZvqKQ<4qNO~$>3nuypscDmUIEW3}`yq(8OSC0ZOJufuK0Ob;%XY&QC%G*Xi;r zMjYa+b@*6&e5n@-BF}W)JJ}-_es~+!X>X2xG~V;wz|Y_x#SZGDgVJ=l*!f4A;uh7m zZ4sJNv5Er^3RdEBChY(}9Xjeg#~J_E)K!F83E@*tnJ*Cn>?^wxS)sm13i)HB(2WdJ z6y-nE!IJDg--o#{>Xt7JAFWG@ERsi{4>omSQ<#^}xB8$PJ0+Ql{Syy(?9V`J=Z53U zZ^JZu@?|ABlm|MBsH=VyYF5*|+}_*CSi4kh(t~|aa7kFfEUw?AD^tcGvou#FM!H0^ z=cT6jlgzPeT0Qf^6m5^nofvCH4dS>7+ ziGfk$zEm{f??U5oJKy^?-xXY52_KYVOKie9{F-8KR<0R=R%s)w?Ci1ah@*= z+2j3PDe7=3K$hq8U4#M5BIK>ylK{unC5{OzcmSp0xL<~nJ9DCV>>Fq zG|y+leu-C;t@_KL%yC{`C_;A)`#4@&*Vbn62)&ItB0A@*4?mf4_ai`q* z@x2KVKo6h}RJN<81{}|hRwlQE`?`$$@yjClqipE5a7)Wu%Hjn*8xWsb$e5#om>=P7 z5_ow8|2PNQfE1*E-Wx^k6pi9Sq*q2dpFxs*eMTf}^NG!kaNe8L=bcfv=kSh$jZyJO z{|Fbfp-5iJianNd)A4AM(vJ+ckm_{>w#CQOkWF!$e@@BXo6?AMol`w*Yp;pkZh;f) znG_}2svFceyUAbnu*`)@@I7=FpZEgSijnb*$t^6_L|A@uEczzYtULeSbGN@u8W#geWdZcp$W`bx8%pO)EqkvCE2o!@D<;ycpgq9flqys8|l zU#(UCWy{B|p0q<#4PY}j7E+viT;BX8aU%&~`sb!_w?v+JOH2ovKb~PJ@>>&5JF{gm zr8XtUJL#Es69czAydyk0)Rm)}9h;XkLv(ejpRm$!HCw4W7BLjGON-s!eCF2Of{x() z+n{=*Rii6US^mE6{F>nQa?u8kzfY)sbwDNH=P=R|MXT~02gg%)x4x&J5;VWleXE=G zmuWp`IIL3mmlJCL#WnY;y2Y0~v4iB+?9C?{Bqa4{Bw=5I98c+K4#bX*F2-I)8yl** zS-b3WOVysHBUG$XD>9wtCYns}p;xwFMk@z2We-jBM62;lQ*}*i85>`uL#n)eD!RRj zKCGoq27;_x4g3vs688IxVB7F>!*axnPCcbX8|}LN<_~n;3(zmHyeur`QKsKnSkAHl z>Z(StiQe-22EGhj#eR#mliw*0!{bkkYg;9^r8p-b{He)YMB~o1p(VDWUTl@7!4vXe z43)duZ-)0j%ZsehQmJ_447YJCxbwMr z*PMFv*lcMcQ8DjBF~ij>z`)@1SjfLh3iFFkJ>K)QMh~nHJ_;Gt+mh)LOq^i<$FmhP z!2LR?Oa@xbYO@*=#A4GHSF29#+jRFUm3_t9fRO1xvYT|uRb{8k2DWG^`Up?*nyFpDAY=(dd0lcTHxebdGZ5ORjE5qMgWdZQ%}HZk@Y zxt5ObKL^ftmJjnV#hR(r9b^1?-PB)t=M5*6eTQlW1mZhhK%CKbkQLPX&lgkw(U%bt zd6-e!+8c!4W`&#W>aAsuzLM~R#<_a<6P)^#9mV_D-ARb!Yjmu2qMTyS@ODp|z9zqI z0j+~w!@4Nj|NGPOEEAL~m=(kGeXSaA8z24dJiB`7gu10#*mDJxrXNOfey_tQb zgvTYx(nRs&;bLeKG2`k`cCJ{X^v^KM3&5kSNd;vjEDU5}`A83a%xh^@mzL)JeWmiY z>VldaZ@Y@syuB3QFw|;n6cH5I_!z=Cyh>Ww>?$#-U0pbHD#8N6`%1>E9+8V1Kv60k zyYqh|z10L>IEa+(Ov*ZRisQVe9@;GCA_oWiw8gor+kq#DK-qXJYyxxKwOs5?x(xtv>wy_6}HHI#V z5^4wC(?T&r!&kP2aFp0f*xbS)T*v4+TEv>;csD{!@RzEO^v7^XQKHz8sDMZ27o43v zjfX<86f*%SI4MnC6%$#Syr&!|BV61-gv%`t|CMjoq1w3wj+eztFa4B)zv2xnHwDli zjv@Wh<&NLSVvt+8&lsc*JqjpmS}B?P79UeEgwG9i8r%nJP&9LG-Sy+v^<}whZuLVz z65nhTtzRjYeP5LvDeUnOK{j-+ap*Dw?#8z5tF4d?T^kb zaPEUK$`X;4(nvR~!DUS?z#7%B>vMKxNIqj^f! zez#aCh107fHe8)|0R{F4iX|@@n099Li95=-90uvpg-SuLn5`2BVjX|{Zso1Is{oCq zCwPvJr>YBU4^4wXGQ`BG=ueB85=apHGvhw$_iJ?m(9xSRBnSJ(jW2Tk{Vi8)U57-w zb5{egId2C3RXMY%hSFd*&s7L+o+c4Kr4bJ(M$`SyUaAh)U-%clQanj!kSTm|F+A+GtZq+6Firze>hZWH6{8gknY&dI^_I zgx5rZyURw9qw4kEItBAHW$$Buo+tGzl}uvP&&O8!4%HapL&O2f?4qUS0R37LXtj)z z&AJl!GfdrKKU)(CN+N)6>ax6~08?re2Rtc(dJWLxXS32d5yNwVWgl`FLHJ6yZXTl+ zzFM#*U~CkMKWq37fuCI!6LSOu;kq>I#LNl(Y`mIj^IpTOf4_2pWTiX6=qmn8mPG|(g(*&5d|nY6sAS@*jG z-2xyY+}p1|9q4sfyZ8l5r*V|h3QciNNFB>7x}=@SM$)#j91boROXah-jqeoLfS zkYfBAzL(lJ`wz)W<1D%Zoli5h_6fq%BM-*S7kR&k}$zA+&gD*}Srh{=bJ59dpgifBU8NAw6P$RW#ws{C3yNmeN{0_l!^qy>|6> zeTb|G*5%~Hiw;yr^DdPr=}J`xUcG$D;CAxhg^oI50r75wqfO=F!PK=U$trK87jYC) z?$a6}(79OJFD`wHOQ85;gUs3xJ@GY1xmZJVY^YSIY~uJ~zk&qLXfHfv7K0yBarI@bl`Kdu5pO{lsNQh&z(;ES<(t`tf|u;!nPFdRg%_4&Was|Btc6i$b8nya!q5_^;@; zt=w8TY}skgBQ0%sO~gY}UY~kT_RYh?QWBqDenZ4xz<_fK@-Nbczwno7~ zUuo-zsXkKVI#o$0q@z_39#tRaszlJy$5#y8%C+U77_#562!(9kL3_mXqUt1v)mck?Yuti5D22V*vNd}Y z>lpV~h^OKZrLwH}M`2f#6luM5;5fOlOq%U`#@aWA8mc<`Lf|KlzY@jrM0ZMntVVIt zgXX8jubcl@i_dTZESfR7Ia*s=wK+%yeJaP~Kp|CaL}PC;DjOfaY1VrysW4tg{wscK z7~c5}9`kN7F`N?ZdSyVtXCwPw5WLohEQG_pLrH z>OCrll8)_FZD&dgID+my^w91?P{u3*1cqZvdzXpJVI>3+Kf*);PXwi!EGHJ**(6(C zRD$*On_!e7DnItW(|JOYU!g(%=qvy#xnwm8XHFYeTj#UYBy$ zy+mYWW`ycar`Rcl@vfWi2BA)gKd_ruci_lzOh(i6f!yxnoF=|^uKcp$;hBezd8>1k z5aek!L4y4^KoEem1AVV%o`LO2UqkKy204cdYsyf`h40_`Jhbb8=Qg2PPMna<0O(Ab*sdkM9!rF+-(B!^C>2AoHaS)-isW4cq{#TaHIk9)uFHl3H2Ez6nR zN`13dm97f46q=r_By`jt2$CMLV`qWvveSixLPjGYE9d%wlaO6fOgWgIb{V~%?M`k>MU-r}o`XBnKl($|gQEE2 zNhCQ|_FVgm$2q27-}`&?gx~CE+|WSIyvTI4T#Doq`UH6u6Le zTdFz}-sW^T(ekbVsvsXwBXB59>+C(&Xe^gPHTB?I;{UHy-2I zA?HjG=bB+R45Qd}%4(OT@kMEgzrqx!#u~KBrKn?qA@e<2-M+p0R^qt5I+*k1Iq4BT>?kByv6Vm=A-dfWlza<)mvSkNxtr%1jOi}#9WqI9a|PVrQiLGEviED>bJ-I{ns*|! z*|p40uGQEIo>mI+H#mHNwi=kiU}Cz5VRK+ZbFnr(nr1qxXK!uA^gQXwW8Nvaoo+g6Rejcu0JQ~ipfhF$ z<|9wMzOb5_{)kdp5>~u4;TLq1nG5fu@U&n-(5J(e{s4Gy7XMc>!-dD=6RXXrdzw(Q zu(yT$!G|*Ytjvq*9#6=?K47c%;wVYen?g>CLg0!O#1CMLyudya`L^RX0P29sn=`;p z&Yt3sr_DWa%&DCcn(~9K>SU{_ZPVAz^5)AoTsq8@WlBBHGj$-ie*Jv5BPL?ly$M%g zWj0Dc0+e9k$vmNAW<91X!&`Ll+kbh;`9|mHbPpb*m_%sG;%;ga0yw4EeXfov=?(Wj z7x)+G(|$EG5D6sF8V@NjGvF<4qk;`h*Fy-j=bB8B zVMygbcbbbbaj?gCa6yW4TZKPyXy=Zm|CMkVvL+Puu)y}__`A>tltSo|rfx2Gk03Xv zid>rW)MV3EP*mD;W$^2_ZacYZZ3tDFg)x4Pj>E;zpyUoB+6S-9HXTdTi-Cg6k9#M) ze;SAC>}~Irp)2>!jGWlJeF=pcBA+~H!#bGWp*J`47_}-}7b^m`h~tr+h%7z(01BRt z=ELoILWayjWnnSn%76b`(<`vz5KH7IC2*?OqL`J1tbgm|aoHeRLx%bG13lH@x5p&h z{!?$H)Q)v))h+@p1D$O4!#n8*N!R*aU=z=24D1|HYJ!*F3w842>K30|ZcWPT{yA z-wB;W8Ha7_TALtdihd;PFWe(6T9|q>Ze7M$ou=x?3IqHG2HW4Wi6&o^F57+Hek3$4 zyRzJDhuv&SNo{S3kHYGn*Bh`hRho(VSd)cZi7YjvUTS4S$5$5GyX*fL5YaWh;QTZ_ zz;RQx{q45DKtRba3WSBFM`B;szlDkcQ;WH^yBG&UwFho4X09;hFKeQ+;67OOG0{9= z=iABfB8`X~)8JPK3BG?B&$v*-z6}%#d`QA~q;q8YE;R9(_+0GF>EJJ!@P#2Rdeg+R zK?xGp>T^v}u-Tld`7#$6%k-{ia9`uXtwm7Jm`-rsX&a~gQ#QXc=e54J$P3eWm^ zztVya#W2})4DlVh2=QKa~+<>^C0%oPD=tj&T3tDtNCItU8TabPLIiVAzmxE^OCzL zu_s?@VQZW;M@69{`tn)l_svJ#D09%v{}=$3YiLKrS9GV{8ia|Tnm~qu%v3J86CnlPL(8jiir0(O>9_Y6LY-^!CcxCK1N3JGhA& zsTE%WmL!a-iSvmaq5#yJ^^x~)R!S#M$nDWyw5nhkdD6meLqj66Hw#TP z(|kkbMerQklOSF*qR3zVay}Jj8p$sj2#NeXJs+|Vm(^>)-Xv8>{DbUxLc#zZa@S&< zQYtCYhH%8*>3d9b?xG&RN8yeAiyeX~vlEI6;0)H!e4mjY)}OS#KvM$P88=VtIcZ=_ zvNB2M090q*W_xy1>>&85FFN)#SiL$^gvv9$7&04X-w_eual1bE#9j{UMRTcyG`hLg z^XHrARizF3-(1cQG3F8pBLB7EN=*$`_h&B>8)0Hh*)0bqHC?274PP`fZGtIcNPwj$ zEv1+t3G;Y{o{Mj{KdC!p8ppo&$>c>!2u7|fTJ_g@yU}e)pwc=F@`m`V2y$wW%rl|7 zVuo_^=W8QzooAKr-?1E2-myJy18nB`4VMY7&~_3tGrv8zo#_sitEnwttKJE%@thqe zBv-tff!`4aoUpQ*o1cz-)rwZS;MLdeH83 zB@q+>gy%=pH8LY8TP5jeWcZz;yL&?AyY3_>K(qMKQ8o z6Sr5nBHk`p3(XUKHK!lf1r8O-o&J4wu*UO;4L@ej_d&<=h|uot)uBIu@WSJ3XGkS8 zS)H8g`RUJ~RgRw{1UL=}LM7lvC@%YZ252i3MnuwB@I(295!T65N(XB~;S<~?e9ad7 zFKX%B8QrUr%HRY6h9WDMa!YHkhZBwHYt-&wnM(54;GOY#gWzGn!19V~At%V^yJ)&0+v2>k z$z%V7yZ9^8o^X1zIz85Y(=6#I;Qp$a(_@1!A##QEi|3g?=z^Y;R>jXHZ3YtLlAep4 z2ZUq;3tr5gH(joz6u`i$3! z_m(QN5BpX?QY0hZO^^3V*7f?;zx}$tko*-Rn|LS3^5G`FWbE@#x8|lEj56glbs^^_ z(8Z3vrlUHV2-ml}Q^yW-@3APrw~V9>{9t7b4=V%e!tF@(n#r=^hZh$G&H|F@*lZ5FfNL!5NHf{W$|3IY3z+X zVOr;0;`~bJ?&y~~%*W1f;9Sc zYi#K?s#8Y85d5l+rBo~}wRJUR8mk2S=$!5yhuotPjxzoYZ-HbtqJ!a;Vk2mCL+4%J zU#Zr4BUj*yA+(<{hW;fIWO?(){#oQ^dE2ro8NC(-*P9%S8>|yM?-uVM{WO~v1El?W z85jM>`;%;U^Y~E_JDbbwvZ0?=1BQttpN8>nu)WVG*?+97-m6P87=3wRrE!7S$`{X@ zIQ*Kx#I-D?3Q0e%$9jRryIDGm4Wo!1b*dwDRErNo1?42h>B9Ix{UmT<6@Huw2!5=z zeLWyKoVZiLf6{f`t20eur`ifeXY<1!d_!D*%ycN@b1(QY)6pid&m7B0`+d(vvNw#c zdOeC2oit8&pI)O6IwlYH^i6qX$iCuVUI|-@`q;g-b5z1AseJN%3Ce=t+3({ud4nCC zt9I$&XZLvDTX>GUy!-i_&&01+?I6Sa_^!!5I?}f~qw|lE;D8jOd}C{eKmK{v z(Z#5v=m8^K-0JvrX=$%}L|aSj$-P4a(8{0D#(2IS?OaPDX{R1VGn{R!0)M<3h#%JV zJ&>7#O8IfUI&h>tUT+v<+tSP`{*!bP&RkZi#}i->CjHO@{qe>C}lx*nW=?`n406D;D!zA=5c zN`S9S-(_l^^&Yl)y3pN6c!#LBmyx_i^K0)N^;mD}!c4?isbC8?Gf|wwA13|<0({!e zti7saOki+0=KCtk)X;?o?UHb5#1M4{DrT35LI&V@wlK3Sye2O{nagWcP&zYqE&)!8PET!}AX4RQ$vXy9BHtAZ%=S&601@D?nZ?W8#p z5K&d^?CSlnaS~W+$#`m%p`*n#KmnP**s+(C}xFRLwvV%<-Jb$qCEj12ClKfx(A4eD8|mNzycq$o7Hze{ruRo(d8hXf!p{vgJ9{%SL;TG%R io4e!A1zguvFSvI1@&5tMLdkvr delta 9716 zcmYLuc|6qX`@VBJa*mQuhbWR{ki8IwNFj|qYxc^%m%%WWcPS}C#xf0K$-eJQW38NM zEQ7ISCu7FgV{F6l9n0_an?L9Myzcvc?)|!+mdL-qM*jVx`j62uAfr}a@t5JkThPTQ z`&6q;(2L9u`KAVBXiSa2vgv3Vv|lNX@z-CxRK<+9>d_Fx%jGqu^UY$B`DbNb3pk7f zl}sLJ-eb>E^OwWvf7^oEymVM1V+I>PuXc5;UflSfLbSZqh%y`xQ9(jab31>rz=9~eQFudzz{i>QkttS)r`(7iM2 z&4FJDp|2(;FGDt3xUQ>QfxSelt|V6Mblq(sn>wGp6x^!OZo_o=s}oO~Vy>(IFfLVq zjMt88CE7LDBMZ8I;ET{^Hi(tZF65YWo=IZ2Tbbt{fKu2>0}mwfue(lGB;64!1W#j+ zd8oy3Ok|s`?ZZc=J`uQa7oT-jaUJRFJSlcHRW-~yk%Ssmc`KhRp%Pu!$b-5@pXveF zI^K+Rm21B9+?yU8VC)SU4 z{s5Ab30!9u!**M3>Y7xb z!KUOiUKHFSs+x7{$eEBS(`ADFkw*boEC`1?!UP;{o9GA*YT;qc8aS=Dytx) zuK4bnS^Kc>Eo8mUsWYiJW)j{td_H@m*7qW-Z3ZtiZPXm$0LSP-NlCQ;dMd?^OdD#l zC19TQj@h5F6IEVnZ^us3dfjImoA5jS2`RiKAN3lg+Go= zTRh7w-4h+CpN@i%7N=^vhQG?-(7O$i&>3V>9@UP!z75T4d5#&eFP66|1L^G{s%>y=OJR#w^?o2%pIZ`?5PUMg%CVDod$E4JR>BcSeBG|7)GU?2Sq znp|%LUWUxD&76DGNcyj-qV>ZHdg7v-2krBoOWu;?ZE1xeqz3j36VuJm*gPhtt4t7$ zyCw`1mG}+~{H_uNChEwfhFW|t?u>xudg!|J$k`%pQ)1uQin~4Zp3VGe4YmOld?k7r zxJHg+=x6>b4PJ_C3=1IUA#6nQ>`IDN^MUm2*PHn9)IKTf^ah!~ZsW^zqkNO^9EpvE zuc5$c@|7ucAZB4Od!y8D1alCppY99o9cmOl^wZ<5L4fL-ey2NBTU{$!*FWKPNiaD? zlQ8NByL**lU3rRW8_rs&W0xeVje09g$4j5sYF~cpUJuU~!@yN*abBXogNdZj5Z6%3;FE34&=n6U2C&7zgq+j zkK*f9{_7nyv@*N?JF$EWa&ZvAfOes#r;2lnA6f$wiAww2AG1bu-f{%9!?e0A+kL4S9YSc z#z8Yy^cTA zW5B#L*l+X07j_j9%0-A1p%0-Vj=hjpfC0n89O6N2NKU8^lG~A-xHng`W@|N5F$$uq z8MRC4A1E-_+MpaPldTbb=>^uY?PLNQP-6@O%uP+D>c(?L;!GzD*k zgfGG&Z4eoV0jg?;E1)BlJ3ArA#HX@od!6~niaABjhB*W)P^eQDPw_(S-oxKv zlpmpRytGVgH`?J2(z?;15ft*TVsttx@nAE?z09WkYR%0o(tXH~jtta);(hVEZr`2~ zs)SQ%M%^L{B2+}QWY)!+a369C6e!syuQXhpx%e(tNI>XF-^y~b$xPb#`W zYzk-a={NlWLSIRjhPc=_y8!V!Fn#r|YEjO2{Hh_;9J@uYT!vt7nR-)F(;VMFu?>PcvsnWgK{jI`0G{)u@+So>An zK%Yg|C^?XFO_3$gE`vBJDLkHkeB?ntkU7ylAEyHf=>T8ga-8J`=u|#uH$Mud@rzW# zSR6_23$6sYD9uGUz$=0eQXOXNil3TU*1?@i`7+to&vkoho1HsR`cQHBj~9G_FBP<9 zPz7S2e9VoeGZBJ%6HE|9Ri}nirW6mS8FJj-iQOXO49E``wpBP!pkEKE+I3JeF5Q`Q zNCs{}l)86lj&~g?!Qp%EhZ|V$@Xi%Hig4A{5BZGz2PdG~`||4Qefp$JPokHO2ESrA#2kP>5Q^s@+tN26EVCSy%<6PslT|56gN_hn2faMSd7{Qo(@% zj9|n-EuDo?9*@4sR(1l5icc+(tKW@`6|P^2x7403CALRmcTY=Ok|qsc_|%{&p?) zMBkU$N;s)>WXi&dSIF;*@SETR8Hk>~*SG%m;a$J``bXhn0&z2P<|8MPNY+MQN*{+%^xg!zn-BP|XDu4-$(|I43y4cJ>xZicQ$R*95oJLCp* z5-;F~;}JworLq~qu?I4WG8pE{1$RaW;m0@-G8Zb%&lG8QBT=KzZSD@Br^So3RHd-* zWNv9AaLb=7eU>r)u>E|^#?}em6=Zc;cC+WB__aq`V{PV+PFWzFwc$W6R?QSa?7wBl z!@>j{+WunmyUt*bkfx2?=eo>b9|_LgSMhjx3NEa$5@uqtRtyfA2baZiq92p+iTyf+ z+^fXapqF|GInif#9iRAFOt0SL-xHY6{JKf@k_vAOA}$6Yc>c`8m3Y4Fp>%Gz2Rd8p zS+%0co;PH1evQc1lY7x0u4Z-sb$3KC{=tDef%J%5HsV-bqHi@Z#vjqC>*lJKiWQMq zqC%G`G)~G&wc5ErNz(ZN;TW0G=%azsh($dEHz|AKHx@ z2g4|P5unnO-U2q}aq$0LJx}0H9n+KHdrA=Sk#sEg7$t~=+}R#}1&&vp->cXDkq**( zPSTI3s%5Hk{rpUt7^N3vg@y3VbaberT2k;nFO|*pBXC$<=gl14M6KGo6I$kXiG%ZB zN9N4w1N)8!#u<4Ro2zdNLDeNjAtE~RW1XIf(2jf0F^}Q+*Rwc0M%mmPKQ6KyW&px| zxtHY>(@3NbI!PB6`--;*KIHXH7)R&jFrzu8-c~vQXjB ziFdunx380Az=bHWd?}O^G#s&?oct89*g`8lUoRcBHMJR;MB2tv{zvwOJv7^ASH9_1 z!~khh@?_G3$OklC!dYfZhw}pg&!a!&^>z7%XP?EHv8>@gqEfeph`Gn8Y>sw4;HA`j zWuyg4^izTYh!5miz^N;RPoqj(Nn2Z(!h^4N4cAI7-$GM+K8n}+`cD8hqWNh-VG{X> zglm)u;bw|6J6YHD=kxJ?WcwR78UAjZFQx^jeSBm_>?I+mwgVNvqM{CVyXW9CU-k&%IL*)uY}=S2qRc!_E%k) zR@jdc#@9iA|E6)2nJN5DJXiY|ccb8R94rQ30(g7omKPFl#0QxhO+^T*^IuM_|HP5` z=aE8R9nOZISvEWKivnD)`A3&Uf5IUvHG56z*&&uOL&;S**-By6xc6wIb=CTpW2oGz z2h3hCpk9p<+flc2BqUTNVaAm{OZs>HD2+1oFE}r$_O$IH4Kizy_JIqbK&C_biZW19 zEGT=T&3W2^g$Xgs7$W;kWp220i0XFmRut86yBE0a=tjzIH1kg&FL1@+oDDBaNCi=X5Vi0onCk2vmO)U%8L$)Y;qK+;5&q`3z==NmMP z+$`a9+2^zevjSc=FLlF=zGezw@f{Aj0iv3j)6a}2UO&Z=pc$! zsZXrlps6oGxM~=S!~FAHvTmpWfghA3w%TqLw6+r&31-ojS4R+i7aCfiDM|uIkc~+V zqxm&TB~cm@>K#5J;~*(5OeOx}J6|ZWc5mMgVfJA8wQb|QvI|nlL5s~2GSI%l_9kxD zz%m^k(D1ip(>P#PNk!t=9SR)!{!CXPNjge0zZ9;BQWE7m`2-*&*T7w^c~oxt?VS$S zf!H)sCvcw-$Mu)@1(QUnB#$_ve7o!G!Vdj-U&Hm+lDc}mM_Zx;>7*f?W2^;1*Mn>k z!GRncsn_$9q3@Ho-i#MlOM3g7RHnHA_Xmae^Kbf~9h&1!q$waAU6GJUWaVF_()Jo&^e;=c&eUq1h8Z zij5OZ0cWPOIsR)A0*nmT9rgmvdvOuyvA=L;TFHA4x1#HPL!8OusbNBz6t_9(`yC#E z9X8hRq%Ot4Z<9o{kTUO)nM_LOn58!#9nuSDAMpp_vyFvrwPS-`eF=KzwE6wO0B>=K zNUh!W0PFbitCYtOzn9LFM~DOxv(IjB(h0tCc`Z|zf%S*Z@dLuxAb3Q})&y7yqk3uQ zSV2z(BXP9q{lA9ww@%z@MjC(hk65s3I_&{l6eNeOa69VJbjZSEHQ(k5I47~B1TlzA zqo4tQif9)uCT^@eDF-mV?rZxSV9Zt>%SXpDeg9^)RU`Dz6TE{+rHP9kkXKgc+JqX# zpiuYI;m%#kw=tsc&L2STI^uGCmZwSS#s96VH>1;JpX}6jXK`&b1#EngMPm=*DF1^L z{Yrx^s@n?}>uNv#|H2=$Af@5u29Z%z%LC038iVcvLMzu7T`V`USitL(iHsT0_I-E< zw(Pc4Q--8^Mh13&v`E4=$_ToDD_HC};sTg@poXh|jx#tuiZulJ(RK5E#SXHzHdNbm zXX@?K6&;>Av~tmPaqlN>dB;Om&3ToPGHSmL!QuzsPoStD^#XAyi(#z05Iq(E;XIzU zmTxC}OW#9=`nTZd4b*8`Ty8;M{G67@C60KZ?fP1G5o`p6&4_x1c|W%{3tg^!jybDz@Ii$H9MJ|5;x zSHHa1?M|63KWA!pYJ^`B%XR@Stsz>#XZFn53#png?-`3_{ zg!)xzottQwE@sepJ)7ywKD26s$r}Egt=-=i99cr1VDBTMNx>K(Kghj?*(B=^+m_Rkz$;ktE zBPJNl`)G&X{F|XmP~v**75}|t=>x=Y|Nm^$lew%$yn7@~IT}Z6rJs?J6E}P`>=%2p z+y<`*LUc}_4VnH=6q8<2zs}hH>YBYRuN5?B2R<*Gj*Muvu5fJgJK|7~&&#q!5w*!= z{f{?=y%V8cCNW?QKW|taU;%Ig%ef-ekoo=8$9LuO%G`gw`YIhus zpH+bjYRtEqn>6<5^FdOyddj`DMkM%p5RAckMK@9h`S)`UrT_)BE{o>`b=0OryjX%y zl=3IU4*@t9je-@O1t>faUOgqh`OHfDrgr+VSf)|K)l934cD7gQ4*O@BjB<9xJ`aRu zHTlvTtuo#E+V)wk?WGy}v^;N*@&1Eh!d$Pi4G{|!!a)o;oeeA#e*_+~195WZhz2#X zFd%c>KA0A@4*|Oksy2V|SvPyBJQVUvS+)K~XE26dqaGrxj=HKJuy*!|eNh z0w2QeHk~OM|My)3TFIK7Ow^cB##jx0R->+|8sf*V@{z<%_V5c~cvua>uUP_Ul1u^njqKzl3pc`$SqoD>9Tg_cqvmm7f0_$TW9d+Nc;69lDts!NHj>nWfhV&{9I9dx*?g;To zP#%LJxt`7aKgPUM!dmMOS-_s$-T&87UNY#rZw+JC%^8KhHQCed*V6ejNO_Mr?3D}= z)(^xneDisA=@DI2NP4Jy_s4*BK?J8??^UtXtuaBMSCHiq-KGUI$e(_x%)sDxmnWOn zucDwF;AY0BC)-oGv;;%@;P=_DS#2R=sEyanH&h_H}idKx0#tjb+urCw}LPL>7PQc$N#6oZRz0 z+#1bTI?=%gn@Ni43k8|90lQ^URJ0qo+Kga_?tff)3IucM z_zjnZ4Zp7loK;SQ6`Z4*A}9lZX&!+X29W1Qhxov*NV2;UsrfTIh1`WBcX13p^_q%llM1MpOL7dj%aVCHP$=PKtRM3Mo;0M0l z1_BSsR9Ultr*}2dKl7gVpxO6l*3;{4AD(C9? zStk?8U-5j2uFkVy46AYSvs}@n!DM&s;D;?hN%rLMs-NNN(^x~>D|(kq_{Wq$wHrZn z-jp|ar++7$mL4;SPu|=asjkL)mGwv-zH?SW|BQdhk`Jh9`QXmINOQj%NG+$n*-mtA z0$%8TIxS6oZeJI)`hLu6Lf`*nJI@edlt+Egbgz~Eq%*Xu_!P#2XWHRlZD;L$=z?nJ z9CX8CN1!#AooX>TYve z@9>SG@2-shtN#z}zm$f$M4s`uOUL>AB8@>3+F3RD_dP+F@Is==r2Fn1sZn(<<+spA z(hz~XS4v_h@Sw-|;p#8YQYrh>`+h>hsH#7pQ)R=|?w7F8_Fcd|u5!<7-rzq=*R5fn4LH4}|BDc~DR$ z^cBVfJBq5l*4Ryp64q*7EPruwoSnfP`Tq{IOt*VL$d6u#0Rk(CxvnK8KrJR8xasvvvUz;C?x;M>tLi>` z8ynB9gzN(F?dpRGOnlbK&Y05tXt5k$;k&nLIM)iv}o^R{+;axiR$KR0NB%1jnRj&=B zAqQYN>Xd3>E0N zu$4o0LMeUiejI#D4yn&O4qZC~a%nhi7yl8Ew)-krw)-w`?3lZ|np3*Y6u!w6v0cqq zfDq=Ric{PA8${N8nvBd&H;%MYn!8_;P2Xp3E!3-Fj_ZDtPTTxnxHE~bssF|1!VoAr@L#xx%Ok`CR zis9rXH}^f8RwPCuMeqOWA9WTnjl4RObKhKgbs7C#HLI!R1nJNnA4V}mL*^ygq?(0s3Of_VzS}A@5I{9 zji|y{V6KB^F(tAL)DbRJ_$wa=7q<8Lo7cBAdC;UbM}3 zxrizh&Y4o11S5r$X;m#w`FoARD?2eB_dtAR8FmTDhLAGP|9 zHD3Qw=+|KJ`lIdg9jV`*dIj`xzYzXul4z5vD1RJQBG*w<^!}pH#gRd;k|N+OZmfA* zs5W1V zm?6Lv7{pqCz?Ei2tPW6#`FL6|^f=oOH3i@)8|(M_!>x;KdD9jK zmbEK9TlLZ?j(Zh|Da8J(7jb$O`|!+0%58bQqHGltDHS{O%x(!LZ(Sm$h-mU9n&M`L z<1A?G-K!Jb?DrQRz@(X_ah;A zQD@7l2yte#G(HNRO_Z0qMB-0~k2`)mDU?x!LD`T5@E@)J1?_J}alkr`aV~5EU|#UO z#ErKXNR;Dy512?gvogM_+L&}TS)Q<&K7aeXFV#l$ceuO75M+q09-qkHn3y{Y!|niR zKP%+w33ZyrR;LAB5M{t|A|$(`s#JK&@oDVy3g1WG(?_!y5eidiU%)JANghOaLyN>rlN;iC^m_$2{3pF7I zku7*Csu(t|7|t!*+W*>jbMY}kT!V72fY46orxst~uMwRp&T*y9LwG(HGSnOX1P2!tUoSJ2D);;;&KkoX`=B`f^u%kmlI&qkJR|u)Hg{_72o~w zUyH%d|7>0v8b8BVm973ypbSVl`f*Rj`!yytsJ0&_hT@4AEWsFTu)%|;ED0Z7z(|r@ zR1{2;6VXER&Pyu>S8hq~pXCo`7ppt3+&#(Eu3Y?kWm}55O@hejWF+lq&3f8N!vbSD z1Uw?4m6=nWeDWoB4BN1x1Q?t?o{!$}qE}1Q{>$Q8UA9#^3S}Mi(m}vU*8C=mrQpv0 zI>MLQho?>b#@02to4t{1HynpxWJaC@I+|(dBRy%)T^Z6AB?sm;(Wr1MH6gC1y1K3x4rSo2$`;L4bGn$P=v4_leSgq&GEdbPuZ$mLYdBiH>Cm)hQGrf|^S zC`${<8W5!rtE-z6D#vLrlx1EdK}|AF^I0%hh!d_NnvxZXG`U2TQW4zgnPo~2gsX)r zd1t<7wUDX-KX>!>nvj<@oYT9@5(;?*1k#-z3w*D9$H(?7HJgSinHHwpUiaa*(%A(B zAY|&C@JH(t`HymZ^{pZMt-H`*zqMeikUv6f7;!fX7e0?!kj7Uh?qpAa*t?!+2v0ehZ$Y=E!c#gS4An@SU-^ zardDl(8;7^q)`60rdY9`|7dYwIlx08m%ZA|r}prSzRAaQP4*$iMfbacHkx70-{(^N z`N(~foOpka+jV%5Uol1R={=+x7$bLjwa<`lW@KY#EcLd;Q6^94T>C>Y5-Ds9UB({9 zj*;mlZBFqebK|<&s%~;;mYd`SZ}El0>X1DkQe}C^61!@^lazdAtY5i59NSm)spWdz zxqF4^7xhbR6Q|3CO(*9}zd$q8M%mNUncrF+hML_M-ND9J_|mrZyKBl@ENF zmY=92OlQJbXkMtZS_$mZh$SN`H- zUti?Na;(V4slGaorWP1GFw_J5>t_Zjr9?j`(xUUn;JAss&@vHcEz6he@R1H6B#pls zM~h|fe5qTvKYbuf5zxJdLIo+GD8Ab0#ayZF9u32@_mPqPH#U#@No%-T zjjFlXLR2TC;Vbls7E7(`GW5?Lk8k*Nx!vWpZ&9+k;cop5B2%dyXz3XRePqa%5xnem z^p5<}rmPHTv%`SH#e6h`i#f_1qIvw+y1fP1&RMdE{v{(w#5!sBvA)6}X@cv@a=za{ zk3hOJ(_1V11c*%U8U6)PPSSzbhyLi`An@QYTujnR-ZO9>dAa_ZiMl(-c6@LDw1-ej zm811lE{*0-@lBKU;uHRem9WT|80WZ5UIQ2jKEI(A53H&S>hLZDL4K#O%@qDgK195E zZ%a6?adiGY{-jc<@`gql`9JX;h(i)nIG6K%Pv4gYK(plfPwg?uNW1Sr@M9qtr>(Ol zqw^t~YEgjLd_L6}+%+jLOJ$?MXCjNnp=yz~_&PR_S-G|HiraKm*=*YTk} zT)#$C-oC4)*Kl@{qI}ZT6)^qcYHgtL0i(xx*9&g>4O=s2kF8g}gem#CTEs$-3;MfHmto0|_cSU-IYaC?Ti^soahMve!lbBi8 zl8M)1cXS^N*G*R@M7$h-e=G}jR9aXMb()lSKX@6kTW|FjGs?EEJdIt&`RD%U5WePm zAjMnLoli{?^<>XC)L&YVW&4jExT_J9I8n1#_D%@zAq(;>;_I+lcNXiyR&<=90TNxJ zf?DkBpfp0r+q5J~pWWh?9~P(GnFSh_pPK2t;H-ETsea1-(9^Ws|HtDqT;*p{+<8G0O zabaBHu|_Zx28idSKzsV+nH?0pGK2+1JYYJur&wmywWMpx#|Y`M;VAOPL2uX4MJ%S> z=R?5yIu19kd-|q|6Up=mJcHLB%yTKksKTtQs1&~ ze4x(Amd8|zC@idOpit(KFGHr(2+`2AiWxL`Tb;kQmsQ){Km|kP$K(B^JOpXA_a+OL zAXx4>_`Y!Z0UUp#=XTYn0oogv$2MDy#^L8rp!?d3tH-PbEe?>BB@Bpzqv+XK5nXK8 zG398C{Ht<|I?`P|zh>NbKPjM_s--+btN-?~x?+o@l;E0#u{hXcwif&8qW!2u7xqvl zyyX2fs^i6$6fLyt#ddlWk+J(3z+Xi46s`(SjE}jqXY9sSj@x)sj)Rk`@$gNk8ANNQ zP>DnQzj=Wgy8!FUNb?H#f9q|r&~KHVqf|}{q>z4R_rcd3w`a*)V68X!rl!rm8bTxR zI7P;iH!}`OwboulxrJ`iX2;(|xFz>~4wE1J(Oi33Aqqr2JU#959!3jm`lnVrR(MDP z*966Z#k-yzsj^rLCy8CN?AzxjlDyEER`%tk>WvfzKylOd%Za8rzcNE%IL0e!I=Ho{ zl9xG-2Xf9VBVq0qAGTzZJ;kB?NZVMRShsaldx&1x-St8sS;*$GZKH<13XW-ckrcKo zheM2|<^PRz2(9{#ygVIxN?yDqq@Z*g(#JmHY4&$KsSmj)NySxd(t6NsG;1xq4K^4FqpJ*v{mTTAX`>Q|X2n(w1On zQaW6`MIb>${|Sg5BJit2Bm67~&M)|*Bi-S9b;23{bzKG^xM2ry zIu1kjB%#a@lcdI*5ZzSy1}S{0!rfWSWix^FPl?=W4plp$8D=xe&*O;`z#jLSuxQ`> zW}P^#gr4o1^y!z$ml-3d2BI3gOTucgK52d1&)`+6DK?Vk1^B?gM<~6@ql>b)|L>%Q z+MEnph5(_%suKv6N%3rXSoL+M^D_>v7=_izge3&kB{L=rz36 z>0i6i&4c089vn{oc7_EyGa-Z$PBr^-^U z@x4qdZ(yD{ScvFtzIqXMCMhD}Pnti%#ZVER=x$sZOI9cnjml~Of(?c4O(n&7ZcueP z|4ZH&K=pFrTE#eT?p931H@)_tc>|exV!3+qHXd-0R8YpF1cZgilBF~ zF#;jN(!Olt`@{AdQJo{_^&GP55|q-i#W0aEt#~>mHr~bH7&hb~6+|W(P%`CoH!V(Z zrxZyQUOiKg{kRSc{u*|%?_DNkBOnkIx)I-UW3SdHDw66RyehBi=cT!+OY6HLxtxFl z;DcW}@7t#Y)^i*4s2ATOL^6P4tH*4cVGU*knhP>H?;rOd@;*9=e*fCq2!sFxxufYr ztunig+M)*X%(hPYz;7H()U|1)IgMIcUN2U@TWP-sM|42Hf#4V1Sk4eI6R&by-`4u8 zf*aTMy`L?*Pup(rzh&W`A>(B|gk!YhGPG0;Xe!mzZY9eC^ssq5qh4vt5<7N%o!4)) zTmTU@^O7Pu#v8{iEtq+(_G;>S)RGupI`Zjb#{`#b|0~m{+CZZG_cC}NF zz9nZ>|{7E$qQQ?_h&o=R6;_$PTGa*Nov10SUUnO(e4n6 z{6V+Di@f7M_%UQGCqjrxGN*CVTRyz(#xjLKZ%<#}0)@<-#9Ex>Evgpc{^!8Zznr|L zpB&fcDKO(B5I#$ zdQa#R;47;q^i7^K*AgxBsHQEU99`cTj7^Do0 z7pB1G1&9P&Am;rT8(6lLhQF!!!f}?u)w%FG=I%_N}=k!%rFkcciILK zTGd;vo+2%s@<#xX8sD^%N^7ic-t{q4YX8p18fpkKMb1aIQlct?xn{@;r=F{J9OkfGXlzw|=Z9+AU0Zlr(RCSq+ot|KL5Y6UBIXl9 z(9lsZdbf;Xaz3QRoz5%Z0czk#Q*bn55px$8>YpTl!xA~8Xe$ppgOBsuzjl$jj~sMF zAf4JUc)-?p>6iafbSLw-g|=5Vo`T2k?7+PRiCpkUfI^RcB@)=?0~3>zpHR1PeRRo| zCZDGQIdJg4%Na^uhjPCNgpl~!(04&Q8D4o@x2Y`>k}dnFA208t6KxOu1omjL`6N)pa@u@Jnjt zgZRm2ef4Plf0UrwSv|dH&?oS8&dy{p>~1%{Wczg8{~>eXYJt;p;MP6Y`)`|ct9|Tr z3BE+Xt#^6(^$R^BAM4)WO@L>qQ2)bf0i@fZFyNceW4ej=Wi45TR_eX%AqGo`kw;<= zNPXEgL==~~amuJ5!JF>Moxri|?8MB|UW2_&GbnUXTVGsMvRt`pR(~(IP4b8pa#}nn zaG$k}W>&gPmT%f_KoMBH#*dNAnt9wp>_xH=uPZb%TjUHQ6JYw?qNR0X8|h+D=vngc z;x@w9j*APJL+5zi`~&IHos$b0)45-WC$6p7o5mj zR;n>XKEa0y*R#qyzn3j9WW9i8Y#LLDZZ&u0i^GF!)UqCROHWH(WtbQ7d^h5z?;_Tz zskKXISR%GF`Q9!rrZplmMg*8*n_f7VXy=E1sXUg-sW1!ZlRvM*A7i3~@fzM2B+ z|M!N9vjp@?kQe-blr4qF#NpkRX~f*b8<}BMH8fJXZI&IUA&zDCW!iX-t9BD_$-5VY z85TAojm6O(-=)h~zZZ`PU7p6B?-Ld3r-CEZm zjAlxjASNIG`te)NfG!IU^Gx&E#c^5&?-v@kuLfiPLf_c~onBu1VuENKMAy^e{(p>+ z;=ITCXg{4j`j$dkm04%EDEm&0R4(pMHiT`CTG9#;Z|OR`vgtKU2)MaIKPl-mbIcz( z&qFX!^4ll(z-g-q65jNHnkK7fM_+Hp=H(i_32qDz3(=M!(!V?IBB3jsDL59h;tzga zN^oB;yd2;g%kWilLp692lQ$2qbKLWYK%yTlr0UwoTLfeBk1moH#Hz6SDFmSoG-{q3 z32ShSh;Pr5PdJo0Z3vhx98l;_aL0TKJ5%vtMyltpzVKO8DeeB@>+(biID(dKSpmoX zgv?$I_KoM@6=Y%+Hh5{0KzaUkVLyfW7A81}5Locb-5^N=H5>q#qOHgAceszEUmq^O>%8&@~4bP1q zkLBs6SwjZYm79NM;1hvz?QEqoFs?Mcy6 zzNwn|{md@q*WXZL#?*aZF;g2`6jVl0(YL7%IKX`)LzAR{%tSxny6G`Opv;N4G-T~042r(L$1H% zeEt>7J-uvk^whgDJP%h$mR1oKFdBox###QDhVS;v4Ut~{q`O$PMUFOz#Qhvmg2;-{ z{LP7tt(Ww|ow4hE)H6qNl6^1^{EA@pXZ3JzZ7(=uW2J55rCjO=@Ly}1>cVrygjm(0 z*vS`{THR3Mh0S}7L|D8&kd@lZgW<;_1kmn3q;?9VyZ<{WK2SmEhGV-|FLvR1D6EUs5?wNLp+GUnPrDw4({!b#&GLYH>Jtz zv3)M=$`Z%eq$tHB+$Q*ILc1>sYzP0qOo5E8#Z+u5&D(BNlpj3O4(~?@^o-iVTS$Uq zFh4R8~A1r!(g=+Y~@@@l**uHZA!NMG%d6x>} zTSi!{kw6X&$1BiaQgDYG&W1TtG?e(2;EYBU-gkx%KMCpmgqrvpgj_CQ<^Jn1o54vF zDa|%?55P`vPZ_O$whIpwJ*<&FzL>`PiiL8@iiILkBs6W=kLkDwTsdvqRR=y|P1CbO zjPcrx{)G4rwW9f*$+Fc_lfuHh*ti8Ep=iH-^V`o1%Y>62AInbfE~|R7o(Tmh+Siq# z>GlpNQf|HQ9V_t13i2{&232=xU_Z%8$COh8P8l4NcqkoEC@HVNoibUdP4AQVL8;lO zF}_v#|1sHkZ;rnYic{LJoF5o}XUeyM!cj*K^J@9{^+u$3btan+sh_-Yd(4#yGSB;q z``A~Y(~YW0-5QU{_JCsajyI$|{-)$`*n?{}7DPEf@Jp+5?$dtZ=+h;C#Atail=?wA z53V`8=b<1e(-CFbatb1Z?;wrvPh3~vgEF`iIiE#~-u&mR!hvPz`j*i>!m=i`@MSuW zPu|dcb^Al-f1`lhraTu1(%kke1gOv-y1Igd3SfVq7coBi~zqxiw&k2&!b&bh6pfP3cq(c*3yFrXp8 zPO^cf7ad~6oj*8k^Kta_rdJ#bE|BpaJ(5T40;P3Q^z|`?-LQ4ILG|c8Xy(>I`AN33 zdN{ggy?5qAPc$2cjEMp={*!os|BuFV>Dlx@jmMHpRvFE*?@YW7_nN@YmKP^!--$W% z;)QrW8$uW)SrnFj>Qc6z{yY?3s_bKmQ>P*bvFNV;RsY%TIs3;RJWs;>W8P!rWQ$=m zY{uXt+o_D{Hecwe(Wl5OGME#R*Lwl;SIwU>3L-Qk@-66&v$Lm=D#{&nFZc;*G$jg8iqu0L zklIXT+XnxF>f-~QE~Oi;F|OV8Vz{W=fc*l=9krHa=r zKk%%S8zH!d18Yu_^FL`}O=dYI_wgmJ*5Y zOE<*A&rY|?Ta2topTHG;s(^vbiga^*} z1N6BFLEh7>0M5pi1`i?#?zI-F^Xs}PVV?q^c*XP-^r)<#YDsyE^yRp#g}hk#dxS@Xs9c`oK9Nqp8X6Gryh_aVD-%Z$OLp-c24zS|?u$(e z{YuZEG*yPzjF{_jO4e(VX5r#B4}uMvWiMt^HD1GW$veSOFwFB!?DQzMI_I_PEU<^;KdJ??_UYUV zv#hUg0(U3uR35oX&WMUM6`a=5@DFME(4Bs6NGDZSkbTnUI<0LLhdMZ!tLSV9m*BHB ze2JuOeY;b&AZPU@b;;{_7~ZR9bwT}#C~Bl})G^9aRju+OGeu*h&hYIXPu^D~PZ~nw zJI-W_r&q#Em0n|~KslUnYGKnI%1xqB_$({l)E{m7VrC=@P%|`<4#$Tw9{Cof!eKc* zrmzSZPJd2rQ=5qp+t6<%*gztTAMF;p{nsU|>s(#<&*An!Ay7U>p1B-(J@28e?lm~{ z5Ja{xXehky5xFL2fPTXZ!DDhbv++=YdxGQm%u4Da&C8?)c#fzrKO+ez1Nb&i>?}BQ2$tDb795>w(6L z;5vMAGrTZU{Nag|U+}Pig0kAFcGY|5DcB{;^%2V!_do7)R^EuESLt2cw-l}E5LP1< zTAfD21YA>wC;b2!@=BLi_EXKP#wiHpq48b4EO_S`r-uC8ZLGsrS)W5}ja)cMG}|#%iG7HLQ(MKbwm_EhKBVdyF}eAQI~pbWc%&sgEPnA8lL-dEoul|8komYZAryE6 zBZkB&Xv#6EMk^t3Z_^6TVQ-pM#*z7JeKd&uBT z5mhT_ST|K5 ztGd_UQF#)wdq@O8VRfLZj*(gS7rvxSPW!%D(s%I1&yUI*Z{3o+%^uoj+;r(W`cU3e zX%Pi0hoZ8LZ8Y7gsFi2~D z-jFL`Mjh6u{rZIt^S0d|7|sDgQs8ksCAMpFNs}3Uy$u4t(?L_VBAUM^qNrXfk3i^@ z?MG&Z*tCeKq`}u%rkjTqg8?DUD3raDD_4|e+&+O=))wJlT3`;KK`)ggoMJv)nmD^O zc9wWV2Xl%ZU*O%+7iEtYV{2#N4#H7eP69hW=ZTr zr7rVGEEV3s?Dmi|e7`^e(w89h_{>-^n;9`MH1w23+r|FP)N`^8mkj1ko=td6nry+Q zXH`%H{3m4bPnx8iGT2$^e;U4;*^#ZQ>;M^7mlZev&!OG+(H#R32?!v zhdDxx$0U%M-OZ^X(H1@|dc!n=un`m{c`M0tu_SX)Yy7TMVfhX>GxF%DSwxWQO8eKa zyt`klvS)5@Iv3v=%!znx-7)mj*t6z1SA8Kkq8VxY9oobtm}iy==Pj8eV!WYr>nV1wljJjRt6eHvg0so;K_hSkyO>*j|oG_cB6ZjyrN>G z>sDH23+XaV#d#Mx?Kjr;+?LehAGy(QH4IeYx*3_T1e&F1-R)i8c0=!++6Ommptr8{ z8jqh93O$op$`M3=uQd*sR+2VxPJB|fg)fa^5;>T6V)O}~SFJ3(pI?Z$l1Y9@qi=!3 zS#chR{$mF~Evp~wie^!U{!Ld%%Mi(MFhuze6ny92nSMSNNvnYbexYTogZ$VpW4s5W z<_#gth+@Czp7SX=RBMHW^QuT>nDpCh^(7H4TD5`>&q9QTA19oZ?)|NjaB+cCb1Fg! z{98KDAX5;eguZcCj|zU_{5kAjaoQD!`~wKVGTN-!nC65->Wv4f;M(CGlJ-<-!Q(wqlyMik&5#B{j#(^3`gLCh`vQ-Tf`r$Fx1p4Oo8GuV1@sA~JlCwYpqDNojg zTbu?_MpiURn^w}OCNY5{=J;cNMJhvYPjWgt`e#*X3e-vF>9wx7m?<~pQk4~8;<^&m zG>0FIR{8&rg(YO^!^K>|jXjVJ1Xpxxd`Q`g|KvQ2rs)X z$5hVR)MRlOf|c$qJ%8qd?K|F~FRov>f2w4{E?7a{2b2yxUOeaS={%KNQR$iX=5OE6 zIbJ2=NtclfVJt?K78)WYBMM>`N;nnO3pSUWg;h)491WJP&%U9W?cVVs>wS9iSOvr9 zPs}l?i`oIl^gh;gTiF~X|LyTD$TSna#t_0y*bklX10kc;;Q!7EI4Zx~CTkVZh6x=l zhAJE#x)01IJc>xxB2KSE9hIe73NK|$jKejmy&4=}vtw`5Gh%}jCO*aLVCg-iJKYhA zl0w*XL#02{?(4pMf5OBV@!1JE^P=A6^P@-Fo{z0eAgge`)Rxh@HI>_VhV+NQq+*uW zBW8*KouK9-dRYp}ZD!-<^#k>P@aF~V9$Y%n#Dt30kZ_O zM-@^%sIL<$46X?C7@o4(^&UmXh`rGiMtgam{8bDe3h8i2oXUAKV`7Bq!?rkz$AkfS zzUqbFQ^fgDT@h4=QbBj{CzzYgjHe~6tDIQ8=(N+D(7?aJ_n`t@v}?Yb-@=Bzoxm-B zp`vB@uel?E&3)7;_&uI0-`pC#gut5PLXZ!IYZ@2l)4P&0$_!M?I||=HXo5Ns%kU|G z)aVZ-{MJ{tXpN9yZ?xr)E+rg9I*}2OjxkX~50*${NCto94s3!APRrh%+=@T*fTShk z^aZmQ@}%MiV5!>5)b*Jwl{gYhR48g=>g9XP9yYu$x`=_;QqG!6!ov7;1u!4TeUP4{ z#J~P0exrgTBiGEkpv4jdg+FmkLk5);m=*MN@U_Kvsu64Vu; z{^Es*)xN|x^RCH)&(&Jn>a~rl>s~tS>WIR~tpP{TCgGNqZ(vRG&T0tlcoCt$GMCY!OqGc|pCe-TvRi|xy4>=Czj=@dSSoc9IH>j_aY`8Lxt zc?fttZW?Ft&15bTPJV)yd9u1@(SK|HUp1Q%Fw3}Ct z4`B>7vuY{e5OJf#l>n)J7+FR1cv&@po$rtbGmR1HD+!^hG{?4Z5ju9n>uKe!M!T-< zh-V=xf4RZ_5FY=5>9>C^Hq9Y(Uf?i2FQCdKISUEs+*3_Gos65mA13UgzbBU$`)IDX z*|ciy@Vt6n-kjl7eWDaJaq1ACg8ylBpgB2P1I}n08K;z`FS95~dpxH1zBVv|m~!B_ zaOE2wc<~d=426J}u!hcdd|$g%ge^oXb?vD6ZeR{np{6=+ThNnUOaT#XzVqEJC+?#? z7HO$#wGUg*2KPo3NzveQ_yBz376ISx!yUe65}yjUCZ8Ex%ZX+qzo9}|w6cNNr}{#& z^vqVzSSU91Y=M1Cp``r3d++#;(-n*c#zyU17975hh$aeveDJ4j*Pu@^O%tCubLzMjiO3f!|8H zg96^)x444kN)XJkV2M-Zfli`1$OCm(*l0AZZ*am9ud@_Yp&n#+;mOBdb9gS#?E128 z%LxL;=IuYaK;{f8U<#q1d`?wPL!9bi3YS2R@XHpKL0P6(-_7(3?|+OX7yKYONbnQP z-M-S+Co27Z_23kA+mbV5ZeBclb#!Ksag-Ldp+P$JNNyckvS*q2_KZ6;F+m`6;%famWm8_C$l71IyeX|FK+x z|6Kbx+=yjR38417)6``Xeg#?hs&zuw^J6!uUvm)V>mV?Tp=2M8p3gnNv9xf%Z!Z7_ z7br|jwa+e_i;ZT6D3sPUb}Bc5Hf7B#h0|kbA3^seO6Dl zVcRU3J3OjI6-_UI#bW^A1O9W>=j@|CdHFCV>B@6<-@kN!vAr&>2{+-3MG86&s;hz3A+zo9D-2&&5y_6a4<17p4NZMT4&fz_0TMY?A(9q2VuLqa>xYKQ@i- z33jD_h`fL>suZv!4S@ko6lRpM2iaS3@a}6YK0ovHB@#{O(mWVM$-E!}pM;d06xCr9 zp;{62^8+d>hXp!Y9HCPK4wb@nwEvYq_`)Oy1>9)LiBmze$%&_Bm&d%iis(zsx2{2wOb%yuiK9 zRwyenk$EUF;untVO{Ot-+NL}AvayJf{-#A*zmc33Odh`Oa7O*921xU$v<>d;QgfA5 zAC?%DksRP2M~bSZFP9snPW8QGyzTK`U|jmt~t$p z|C?OpX3}CDh|eML@A(XQVw9}&%nJdvvF>q}PqIwv3gHxo3(xHE}+ikLr8ETtNKAwUI)5=kZGS@H9UP(@do4!RFMra{z zdFEQ)v43>lN|``YG{4=fjmU`7b7S^jDi-#Scd$ir$wz73mZ*7O+{U3D>8dM4BFZ8{ zC|@8qLVi?ymUEj^Aq+s0{Xk(FDbXO!dY3xFLS`r@9o0{K4F52)?y(!87_~^p5Vfc2 zC|wZy3$THAj?>lTWFFia`eNKJ^LjNWPR1E13@fm{?E_;%3Hb%K-g3qC&0i07e{+3~ z`dUx@&Uh7iV62?Bu#;XGgWx^tyFIpoG|4#n4da-SC@zgSeoel1aJ7#m1&b`fVq zZWI;a%-7%f7rPD6U`BbGYnxBjWI;#NMRRX}&|Per(}F0^=8qf)YHTpAD6Js>#@KtwU>(mm$HLFsQ7O-z?zjz!~+Cc06Uc5}(~iutB{vSj^Z;t)usVJkXit&%%ql#xN8 zUvcDx)x>-ri7|)EV1kQ#CrNrDKUMkqP6u_}ch_wK$b#wWEYhb8uKG`>KWVrLtQTE? zs6uNDqlwn+Tc%rhM@+GP(xcu^c6S8i(YK&F(rbPU6#f;u^N6%XNXJC+z5$ zVJ|5Y52+}rg82;FAtvH8(Vi=Kh^Sl#c$MtP2?dKhWuvg78&2L3cxX7Tt>pH8Z=9dP z&x*GVINZrYa6oy==d)R4HJ`rr7xw_zSW}PPx9K3-Omic@&1Dm8qi-Z>g(8j69&c_( zGc`ZDz$I@~(2>Pt?T|(J_nb#hH%&D+Zr`-jbzdCya^ns~Sw&_kJe6*Q=3aYH2OY3vd5X~xl`ATr{3Eb1?40X+ zUS4MHv|`@NpQdgO>8!7defndGDM9kw<+yES3G002*~OW6O@^I=;lo#krcYzuHuZaD zA5h3>ciejYH;_fnf(~tvA!$4yLZs!oibs7l2txjj33HbUc9>=Q-dD^X;XUcRPJylo zpH?uzwdj!chc(s+;JB-CGmc^U$OGr`qgRAgD&O*A2nHpw;qzR&sPm9XU}a#tQC$)_ z?d2@tH~d;L53ov=b>6ShK_FzUbe51dN1h^W@2q+JUXQ`syltmy=_o=xya22j{4!hD z^U|=>2y54!b{-wh6P>z6!&4Z|UGjQOccQReu5pF=wk!llj=r#}w6XqPQFj@AKK@fe z*j{{_PEXGM#yg53I*Y9ZO!FjU$8aR>jp<1ZXGKQDi#Y5*0B+hwYzfjFCxfgI2)_>; zo6oYvQQZaZp?6`Hs_tCLGK-umq``6?O8b)rGn&Rtn6Nr$?H+m}Nz-z>;VCucy}Mpb zK_~TAN(D&9ayx_-adyeEHd>vqwJE_*lMRLi$Z?MEMCrtgov5!-SdF;+wfZUD?htvv zv?I5s!a~fYC+gXhg?dm^XeFazNf0ON`e3WG45XxFEnF8A0uNO=a z`DU04KmSh^R~`@5{{ByO%ZBs%mb@L*=#V=cYRo=zrL$rSCie;n(X+s%U=vLX)`E8V z*U99I-StBwW9#kEZuitFlbRm)U81G^M|nntfY?cdiYRxO5BMtuOt-$(6{qbE>lBJ< zGD{*pBTo(^B@^rWMN_GUK@{?eX}EQrN8jn074hoxtY~G_*43_2HLdxI*)Mb7IYwe& z!(Xh3<1s$Otv3ICKuGDQw-ngnj?H810Cad=_R~B}Q6$ zoiKpL`{HfmNE+pf-lX;)Gtzav?Gq+2qon*3&9S2J008{K<0gh31_46p8IhfdUiZcn zE2WD@ejU2kAgfL~4*Dxh?)HCRtt3+(s zfZP^O`KFkL7_t6YUwL7CPga0wj;y|5wsww=EtV^}t#Td?ydEp5<(4)+jskgTEU!@E41Gmc_^=T1c-2agzo`} zwb8xudT6>@jn(3Q_<)8(-4d73n0*pzaQ-li%{m5}i!1EQ?E1q)H#pe^UPUcaXp=#i zBs+^ABsD_H7V@_a&rhvBCJO}FS0GT7SeqA8P-A8}O^PR){SySBx(09l+*0Y9M0=mt zsnH|~m&#n!81%m>eQo5sq3GNU)+?TfyqPnn)zp5DvEc?JH#c$!o+KsI4LDo<63Rz@Wsz9@(DNrE`~x_72@| zC^(AMHn%7vuT3Pz-I7Lv2)SH14ZXx}px0cP=($XPPr0Um-`Ab7s}6Q4UPI$m`lDzH zhZ?ajY$`Zs(>7j^-%uW|Lat)kC?38en?55R_w!C#@r_;pRDj)#{TAy_=i7gC2WcR! z@<;k~{+}xn7?f{b+qlJmU>#&*b6l}E^ZJ?Z*51>z9s0w20H9t3VIxD+&6Q1^@cMDE zQ?^@Xy7i~+30f=|1;QEOQZ&lbb~Qukn)R5hlA2j}IL;J0_9B@$Fk-I)J)OH-zR-;? z0D?Xw=Gk4q4^32Vaqr)vSk+&3xbb)zhV|%U)m=PB0rVp_tIbm+g4a-epcOz%FS5zU%uV%m`LFnAY zI_XtmjI0HBie5kMURD2IYL;sXWN{M7MiP!Es32eF+8X(41OFnG;LB_?pi94?MWlaxl;WN(!kv<0UL=m&ybm&!(BoU_f{xd9RRpm*`IeZ6|jyK>%TExpectd7NQWw6FmG-w2b@} z!=M_|1v9&x)dQE^0>aE7xSf>|cJ7D3@NJ#?H6G5yd z>%-YukgaQpZHl@$oF=ZOv*!>U3D)W6PY!H}MOLG}7nOCDxkIF&B}#2TARnFT16o)v^|;Va-z` z&sQMdp>-6fOf|lW(<3+)j{HtT0nA!g9f=~l(4TCR57vWS@N!oX@@nbDZ!t!$q9ylc zcL0EIGlB~#1O@q2&qaOdqUTza>3F6NTk1;>n)J2|y^sXW%+6?dfAd3hoh{v?}eA)nU+A;q+py?ZUWQnO@Xi}CXIk& zCl7V&vc0{w%wSc-uN>mn_k)&ss`4bY{M+p+xm*O3I-3c}Qg8*wB0;*AV6rx4j1Ni@ z9wZJ7ekBCx?|`-eXQGf;#&q@U{RjJBJ1WlJOAwH^vBvq#-3y9rya4TtXi|`-i zAU;U1y|gE=ZHT!!)9aoRb4&O7Z(LM@Lmw2B=!mK!&x~E$AY`(MHLU`B{t4Gaf|5;i zn+%7B9|r&j!tJIfU+x?ah)i=pucpoATY^;6sqO$=%f|CLk&&0%|Kq#_k;#T*y?;;8 zwklJEd<3)ZhQIqL-|LudTjFqcWk~)MWxAh%rzWS$yue79|1MUXh14}Bp~wx8FUIqqvr#-Xf7-)K4vDfU=+zh5( z+SGnf?A>fCQ^BFgXKZID-oEzpz3rkM!BoMNqC$^C66Nm zC2ez2VEXzM{ncu{NF)sc9PT1aS*K+vy|-uNC^ZfY@fm=sICh9ZK{cxh6VhOl0hJha z|JVx+#>P4$rfpuWYY*7id6$dhgHg0EnbzU$Yp&p>0S-K>();^j-7p z>4B_$Dq-7pwfSUoF|XZ-^}IM50}X}WJj>%qcis}kR7lpB0+BzKIzbJDV@#IPq6iWx z;mQzE97*GW9Ky-ZJ4=nvJ6b|%gALNMN)<~J$yRESK4-VoYrWc+V96BKH`INH_tWyV zI&>-*8!}yWr9CRiE411CN<#7`j*TP&0MMA-5+T;;lffz-yR70M%NPnAMam;mQ9j$z z3

    W^Cbys~ioWvS%;9B<)oc&6I_f7QlytUYlcic5BW4qP#(vB;H&Gv}4^(9=fFK zloUSKMF@?7GZv~O_hPax)dt<7+eP0%PToSJd|CqbNl@+6c2Jrd7Ttkl%e)bmk08a6 zAe?tsxk|nF!8naXsux@GbBB-i-0L68q+_7}0%?Yse#<>T>5T2MB0Y z{8`k7^1#`Ok!KO+IQNlJ4dn&2n&dylUxb+u)0zGbMA6 zG7903fA%vHE-7jqB?|MTbC!6EJrZq;#=uS}-XxX#;FdDWj2euz(b;B z_sDtvp%5hza+YObZF?GO3KiV-UIDdM!Bl`6Yn3VlFbwj+vs8{q9{U1Ve*F37>#X2I z_x}^y#}lhsOnunH+X7Mj$<%gX9;0wqy-<50SWXa0$9S^}LLmZY zNGbaU7fZ>8tTJB0C_>AZL8kN_ZqdZE2+Cn@q#w5;>v+8(rVz3N0OwX5x-$WK4b{%gpP2}?0f2~Dr0fK+rP`ffbTfn5h|y`y zELRdXmJG9C$-(d6HP?{vHSUbf|Be;a6d?vM6%C7fHmJVc>_FsOaZSRyU${fJBb1vF z^6<3lHA(eeSvXs1>YnNYsS=MuIvS}4?H=02Q+Ct+kS3zCc+C2O<|)QcjjERKZ@!?N zIC;1S==2#<_TWk%Uc+x(mWS0pRljf5sJy zDl(6f3NNq#Fr>cJq-+h6T4}9(Sv_k2e_6KMQo&*+eJ$O6_Z=FrthU2+doZ*V)A z*TcNcFnA-1T#p`-5Zl9*S^M%sLBA>VACHyd-%Hg-xN1;J7~Ue6Y^)-grN#rA+yUO` z0MsmA2Sn)R2lo8@>JpTIPE%FLu3`_iM9pv9X+!sJgI%2H9tPTBqwS}9b}QE(^)S?> zjz7;C)p=LAUvyw1Id;Qs`nw;3TAa~3%8Hpy#rn1Xjm$fXNkb3feexq04XD}4@n@Jy z&G{Hu#D-I#F+xbe-qyxHt-w&E9cHZ^e!lvxL#KPad}-^ki{LpE+hbEXA6a<}LJI2O zzaGzw+@=WRn0>cV6EM}ZWG(l7-Rkpec-CkQw$`l4^2)ZMO9Vm1j4d1^8Ehq|J$oJ+ z9on$-*a=6uPj#KgA%;(~>R+Z&_kED~fRr5V(99f(o1m?%uC>B_;9;Z9??CqPPSivsydUMHtLA>FCWdH%}2;F9^ zO}S%v60H27Uu~Y-mOyj*$uJYdh?=(chCOi`h+V2VoNys!JpisU@_VH)RFbGYG4-DTL{zzOv!yiGzm0Br5ZJo#F_9*@+oU*~n#|DMN>dJzsS z5Z@a5tbH~UJ|)|moKMfLJ2{rU-oBfpdwt{WiYd&Xav$wBo^-oV*W(h5`((_T`;g~6 zvOATpyAfLvOy3Da49f=pxCfQLO9nM_HZE?)ynbDM94tHq1`SSN9Wwe=XZ_pUmYhxb z_{8P~rwH8+-@2POXx`8oM%k*GQ-+#ca?4Qm;5NPaN_dDRZDl-;;qMIb5YNx(qy68T zN3^Ei_-@tQXiTAsy0~@99@bJL9^`kby{m?t`9`Fxm@gFajX6Md5lo~d{Rf~|g82X^ zS5%W6g#dM|IMtJp^RKM{v-=?4WWrsMr#EwOxT381$Ab(9}0eXQgzICuN~i_&rI@n5SKkht&*A#@N0VbO8**v6gHZ_O4*oz z5>wBl*|619D~1T`*gaWvd4Cj-@gc5b&0jK3$oP`4=`qCwju0q7TYDY0@14%Y(3Ns1 z!GOx&8m2ja{XOgP*B11ijWH6&9Ff9uTI^CEB=RrPM8uXO^cP7u)r31x&x-D9m_F2~ z%g?z!t|aQ!z>gH{@4Ss-7UvagVruq1UUS8^$+4owmtVc>8o_x!>UynK(I)38IJBEL zvBrHoh0t~Dfy-Nuaip73b_W>A(%|CU&hf9CecsNzKEOJP*XgAoYLT2{2g8_0%wMie8Ni@ z;o<)_b`H1~CtU2a6RD~&QPk0q?Oxk{{qyN45xM<3<;v*xl9X>F+l7B;8mvpPfp7Y1 RU?*P`G`e6|eD=zn{{s)Xv)ljx delta 22732 zcmZ^K^+QzO7wyn3s30BEjY>BvjdXXHbT=1NKmqBHE@>FLQ;?RS8M?c><6S=A_kMi; zz|1}S>{xrPb!z`&<^RPB_=Zr87#RYnzfQt?U#L?`I%3xGsu#JuHoLl}?V_T>k3yF) zb0XBNgWl`~I#k_>*Nk3?kRq|j?LC_tf}Ym5a$3$!y*5$$v-jvPsFGs8-QE|KrT)`C zIBX{ASrfQyu!r>2MEoY-9{(c}wsx5H`0Fj7WfR;BJ7+>UKHF-#6j2dj@ww+~z*u{K zzc2FuqVW;eKzZ@27$HHroA1M6yxGQ};M5mWzBixk`0$#kh2?QMaF97NxXsQ8<%PI0 zm#De3tkz1ESWgrR1S+|zSz~^FPI;VV!q@jan-p)>F-9)$JJeZ~cY?pc&avY}S#YNk zvFk|6Oln6JTu!0>f>_VI4Z(bz1J0xApN~To+YqLZ&3f_)Q#WKBb7U;cH=(HZD0sAF zMeG@zwVw@m9aL-NS1OUj#C58dbXdFWTXaQ9uJHIwZKy>&%*=D=V@yecM|kkZ|7|n( z*Fbi9Q`5?L=gmck$DLA`#gs{P0{Z+SGi`*FuF=N4^>>?xtTlmdH>K}g6WS0UT*x+KbXpdmTE#X6% z+g~O|hSz%Ey0Egeu6H`D)^fA0%of&)`g4*wEtx-sN;J|;Vzp1Vf3Bf5wa_?VFxY&D z-TCHO1k+J1Qti54%v?;DGvIQyn^wm1Llc4w!zyJxKJ<>byJ`K|{sKaJ@6_Kxf<{Y* zzChnWWQ3NDV(mUd2nKx{yuQCmuFE3^n>H+eNB55aUQwOVyFI5Ay*1g)SM{~J9I9*F z*hs$iJvIR_>K9m+oA>$ZpGs5svW!p1Oqkp~TG@B#!^oJWesfs?Sj>|qSm=n~bLE60 zOo>YSe{21|jbKknN9;qZ4Ry8#@4j@T%UGT6%yxY_hYg&?aA9qtVrgqZx&=QBSNxj82x(YzDFoB>rTg7P zhq<|>Pg-5!2NpTt4tgS1X~gExb^KV)MRRCZ=0Y57OoTRs?>UR0UTpk_(a#GGC%y4+ z#c_p`r-kr3uM9v!Q>Rv5|NN>EL#&s{vx(6RnQ9LTokN>UR^qDcVBM;5C{jT)(q@~@ zHqM_8YzB<_B-%BeOHz&$KOCrq+kh9pp&;!)F}>)ieGYtre1p6DO;?njEww%l z%Bb~FfRt*wd)ca@zKyNg4joK@feV;9<|d8rf!57xu*7$q&Nt!i?O-ra_EYbebxEfi zh{W{z=1n8bC+HP(g(G#|wc(W1`>@-%o*c!b&1&cq6S% zhm~w~mBy!|!ZTcq_c5EhjR_G}TxE{#3z~FEUZ)+}e+GOb+CrGyAhifIe$ZP5W!96; zj-AjyIFWx22wMa_weG9G1Rh(jqVAFdrme+Yx4_TIeu=a-&Es6>xtJ0od~*>+m&{{v!L>8QuleX(?E|;y|QZcfvDT-INWY_NI$zsnSI|*K7J#U0G zl{oWl^b>J7GM!yc2pV!03LlO6OwW3Ll8aU}u3(E(Alp9A3qfii?+jd$Sr&5yJo)fg zf2FzY3o?ZRN)fQTCH*D4I0KQAKpc)s(Wphkmh!c@RBr+c1fvSi59eQ2g(Jobq8&8z z+zd0cva>ZIDdQ8%xgSprkN+2@=9#~M&`-Z;0!WcwXJVCa zZH241S+VV7KNGLOZ^HCIsP9*N4@V%MWD{IAi_GEH&JaJ;MM+2X)-e%%2hNfH^cOav z!~HLSOPpiO;emjkz|u3$E`6}bF8ZE2j$rx)UpYZn&#oOUAHjr^xIZUbSFE=B?TGfp&o<#=s2z+Vl4-P{2vk=js)1GII!mR=RDA z&N4qkW0WY1>-oT2p+8{x)6FOPqYRUK)>QOBB?=s_8hcjzLPe7298Y!mECy8bXxl#j z=#jzh3Hq$W}oltuUP^r5xR1=BPP_504L7;aGRcFlZGZOAKz zl!&uLB)~>Vn4koXpf|vN#-|ZWU}?!v4FhnF5FB-q)7(?wN$$C`0*W6SUQ8h$961_| z7aLeU4KbbIry+K-d&_gse9Oj6AYi)Zw8+;U-4r<39t5@%EH}wN7$!2vV&Vr;OsBlL z0#zf<7ARjhLO4(Jf;mrbe$?lG#n1j0s0kpT@hKRgzbX96aSVgI`VmCS1#<>#mtb{2Jqypn>wse7Qn zGbof*_F`?)?X&jgVj}UKmBS`}_bVJcxF13;;gQ~4VcSl67zb3&c<)u!Qz;I&(YCq7 zW&j;iEy8Y-Btaa#*CZ7uG7ss(bof92;gqs&uem`nCc;`ddfft6b-bgQ4oJWz>%g@C z(Yl&!F@dd)U%$x$38AOPKxU2`IIwiLYwJ?c+Y7EbZDkHmxbIVGu-i(^SXkyG`|3!W zJx~H`oo#{HSK~cr3*?o4;3SO+^R(Tqf6%JfYc<&()C4MbzOWzP9HiVolu}aoUwyCY znL9q=Lo!mnQOHA>n|ORO<0lpGkGIZFZ`>Gznc;>F717FfpY7z`XSNMA;UE zB{-|auhPHA;MnHF3>T)}hMp>x>fMXR~oL-!( z3PDb)as0d0{VJF{+}-9Zv|nUf!Nl8+I-PC!(C~#q6cufU_%y_b^m1Bv+#jS>!+-&N0!{q+1nbR+UUyj5i8(Zcr5e z4Rd1LnDhICjo;oHvf8GUg ztgwO=Nfb%vw%3wvZk+2-% zEERdH81Z0tlGd_m^4N;twNh>FO5zsDJw~1JiM4_77)ueNk{OC|e_`ougdHI)GIgrn}xTRjjF;f1OK-C8t~X9$aq2MkLAr*u0N8IXt6P9FV_XT zUoSc@|1PL5E&wrvYqNi011v#NE zL_!%X8vzMa^iY-qrdy$U<7n>Z_CUHY*P(krw$&O_&~xYxCmUIf1lOEV3dE?8yK`4a z^7Bt`@AsP#5$8XQRFZZE-ib2g5rn(x4$ zm+`efQq+j!4@=~<7thunU(W2kK$oY6+P9--k{0EDzeCk5%lS#*iO`YcwTfj*aET;J zaQ0ydIqoI0()_umlKjII%}1F?!jSA}4+&R-{-)2jufB!o-7W`)i)MNMIi_AifZ~kd zUfhE>KxFq79A2t8k>hQscYtN?!AcQxMx_O!W3uVQ;xoNEI2KXJ7gGe^mFBST!OIIB z>(T2g<>(Wt1lq)*682EV@sLf+!9379vodo&$nQG zEmW{xX6#^6JF9~+Pype&VA@`FFn=iG&G-m0?MYz&)emO69Wwr#jnrqHYk!RoM9YgCS#g{SV;*=1u9z%y>3HfRa2%`c;B2mQ&)QI-$$IKuMMmEDjCY#`Y+1vOn7)2!|$DFUqup+3zl&MlcA13A^!u_0ueyjfOe2oZDd z;cS$_Xaw91rRhQUgfYM-$6amLEeIdNFLFnuzJ^~EI|5#7u1=mPM}d0JpREb6xY2i# z{;)>LK=iX65H`sBXV`Lj-lra~|H6HxOwgwl!6vXRd!?v8|L5&ihUm@mjoUos;psds z#qPvqHve>v$PxA917lIdndUNE`=;t{eUf%V#&734B{yvfYAl4~!U>N55NQjztcwKx z2rbA34qiM@;$gx2#BN*2EHOaHrUD;CD7Vdrm%PqtoAR<}BxyjqV(KqlE-|WLa9Dx_ zX(U`tPp%_nmW3MVBqu%A!;`|t(I;59!fZs*&KRa2A2}jcMb@j#ulRRG+Z@iM99BcO zieOTA$7{oBZFVI%Ulk~UZ#g;`*hmlNx(7+XJM)J;{I>W!)%cE`UaAVS7jM|FNsI;H z53X>;`GR~x*Msps&EG|;0SE1bnTCv&3d5I9C4wE(UWQ($^g`LpAoU>EK3(vDAHCeZ z&e#QhXVc+p(jw-=<(v7J61i;!*hqsR!Tf_Vy3Y+Hy%hBQ+{Xy5%h>z+t`(bFhWmjR zZ4SG}QgnaQ-aDs-4=$zSKl^ooEjb`~^4C9w)1GX$240BN95HHE#^(8r16)T;+|J@( z8(6*#-!Q>!4#`xi-bll{YH@UstrVkDjaW1jriXXovAF!pI%&j6~t$2BV%0f zn;abXcu0Ktnb*niF|c{Mv`43BqnRH7H#`O9y?dUlqCKL4gmp1PBPWn^;E7))?CJ-8 z7b!;V316o;QhDk!_wZupxIL}NyS3~obo?o}V(+2YmK!2EYN{e1<1>(`N-!)@Z}+_I zjk(@^SYk3VZBYd}Kw6}TAZFAh^=sdbkz9@+>_7E;?&s@>L8`-$_D@|7+#68<8A{kwJXIY^sL#mrgP#JGW! z>#+G$*27ecr1~)^d{sK% zpcr&ov9XpR5fu``uop0#MTh%T{Djo1GRvOw@1^vGvl<3ZtteTq4{d6a52}`^hB?BU z)wMyxhmCJD@Tr9A)GP-1Ov#^^VtGq^aC)R4>3Nj_UmM2jt;`h%7={r2B)mp8 zuNb&g`{`9DsM}xE58!*?tPT@UsNoY<_)i?|zY-HagG*GLw1L~=x3xVH^GH&Q+$67| zDBrm{pXBw7$JPn=7F>S%G#j;fP!^p`1xKnk4EZxuj za+0|obtdJtSIXV7tOrodUlBC<-;n+g=he@;rc7Q_AZQ@;U>vK)mdSPud@{hmZMf)k zq|(BBhV1i=^YqT?Zt=M*tt`N#5y#{aR^ zUB~iqev;t^1G}q+l4)|~{RVE?$1wATOF`)QBOdg}qPk-lurnu2SRs9};fLt?AuNn7 zf42u0=|r-QhIhZ*PdMP`x&7V9MnBin@X;voed}0Dtz|9CNRl)n=rS>mbbWpHJR{Qi z1vTJ6=i4eLi@NDqQNFa@$00EE^*`1@z`ixI6oh1bLn!M0Q|0;3u4t6P%S|Is#m7sT znx>uC55IrHkRV)`eMQk^=c!iDd9;)@E_bHH^HzuFZPV<5@RSHz@4q3!j9r`dtiZ8f8oVPrB5wQYIkAs)rH_| zXkw#YzIJCvLL&{(3{+IR`loV_U7?Y0x2@qe)I|u-6)^NEr)B723Qw44k|wHo6l_3G zf`UZErnoDGFNVp(2EU=FHi9u{I?`5&c;udzi@sH{jkot6b{r(AO(A+ z^+~fOy#s16#}J+`XWcY)r?=FZ*3?fCiterY1Ps*9^5C8c7NQ+h%%m>rMPe#yD^HKS zSnO<{rUicZQG7>Io&0-~7+z8`cRy0?!0qq#JEOg;J>pyMcmA&~JX}(+`;n+?zJO{j z5&840C&Fv_y@XSbn-r$dGXUpaQk}PONMO+|4W;jppI|~*$7&GP3q1Ek-a?+tLE(03 z%zJa=&r-tF^xcfIw^XDi&oiyZ$}4E37oE^6!OZFM&)LjDA{*IT?_CNs=6eL&0dJJd zCnnReN^B89p<>ic`@Ouxp|E1CCWKYR?Y;_&D`MOXIO2 zD9K^9z)XLqJGd-9QcuGx^64~KMeOF%1WJ!Y2V<)}ZA1Q6e;G)HQa;YB&^J;4yFS33 zike*Z@7V-Ib6lm5&Nq6MOS&d&#ha_M77x+R748EZsrbkyD3N9ZG3FzSGTKBX3}%hF z06zt0iS4CA|_HKxF&V!uBN1t7mIJ?P`fD ziYn=OjFLa#P3=%??xzxv!TJHo=&*oNs_XfPB10`b^_s)UcYV_irX&mN_YVQa`Va^e zL`M9*+F;Bn5PjxOpem%N+Akd#5P7A2%t1FY&y>V7iAF0+A!mAc=kl?yb56+Spft#4Vhf@{BOp zg3Y2@pc@2ZWYyizZ!&7c@M`zvH0>-!>MuNAfv29-lnTccbAs0Z?Yh&vS<9DZZ^P8; z%D<6P;`$<{R?@q#3^l_{{{zc`Oh*(e7M7a;<_+zVW{<~DxL5di>UPOY(*Cyric9Ls_Y;O~fW-xxeq&bAeX`Bo6Z41PP5peBG@!oTxob~sLDXG1k1I;k zE{i6B?aP`!U;)%-R`eu#xZTGp<{>PiL@Cr%Z1nq3xrP95K_>3Ar`hxyY$Ua=P4{NB zEyQt;i(H57tacV=%f0>TqbM6uwJ=Hq!$55JC&umMD2^b0v9aIRNj<)-AkRdJQO8LJ zL<2ndY>yI*I_^@&)q4jR6}{Sn=e40lH1`Az!~n!t1+1#(2B=*%d+g^|{$SVDV06Z! z%D&U&<2=msJO8KY>gC+|aC~rkKrUk8*P<%=Y1w><&{~8d<<}}37hxy>4I`fKA4T25`$Q%;+j33-? zT1L)}zn14v(!wO8-zwd9gS}gNvt*w1?lQ;1U+NaUB>VFs;uU^rYJ6IgK<+AK_7gTL zbQUx+RVEHqPhAB!hbLNS@KYe%Xtwt6Vt`${SCa^)C0Vk#QWD97EVxUs@v=|1o}M3N zX7kC?dVMk({S*EcaO%4E+Y=YU1X4e((2&yXFSM+f&Lp3ihgu!JVyRK*b#q=)ufA_9tE6PP|pt;0hXkoXGlyT*JE z2_y$F!)mSq{6(=R;tX;0&}~b49tV&bf=3z&#?{W)L*qq%^cn_66tQN)fSHni$^*&X zIFItD8Ud^*jRLjjnF|KxJzoMZQ&ZX+xbT|)suR2Kal4zj$CNe8SHemjUW~7<=X>i|#+qT~|K)5nn6n`Fdc90=4iHBs+!vhUDDN=3Yh*xg#1pMA$AtFE>l zXZEc2aMy8oC%8pD0vdWZS zFk3l0KYo4ORu<$ny?YgB33;Ae`^Hp1`@op$nVBNA=&swg_s0Z*CF9APsNjA*0S98G z7w8X+WWAK?BM-m=azU1bRz2rN^dXOVp;)e;?A@$)wwKfgkn zD!@-Y1|iL@zrDF?%(n8Xcl7!@#sF0RH=1hRq8K1SNDolR;#k;pMX)7kF3HYvk|mo| zWB7M)g4WxOF?=2^kHHS$*lg1@(eBjF^5D(DIgRGMh-tbGM;E}K(n>7gn1&yd`urBo z?0vUnrRTFfRpd2)!Rz4C=yCPyoOJS<^N z=f6;gR`sZIGT#sdPDdp$g)~6^d>N79WBBvGyNS4o0(<@fJUCbmbzfx$ONf>dBY?H5Wqr z-^BR!H?in2KI0(l?q^6z0gnr^o@SWMs8M@PpZQ_i)H*WG1i)HGH&}D8Bxy_sITX5~ ztY<@gY%MhSERTZ^cfMLC_Y_-LjiCD>WKq!f-%VaBA=qnT_lPl=PiCLuv%i~4m%lcC zD_(~DfRP%rA?LGolPfotl3YW_+Slg<_5-$&a~5xBlr^G@8SP0FC**|`(R39} z%ElSApFSx#2R6$r;?=Y)K*j3mBV;PGC@E_y+pn(E`VF`NAaCK?ZvR?X?#xTKthT3F zgnqjHXP_I1hggdg+Zos_*Ab{}gL^UKyqXH&`jQKzvSqg+@nB+$5eK~?UVo9vS^i=9 zZVc<-pXB-nH4)Wiz1dm=mJ%qDZ>Fgt=xQJY+xgg(s?Ezpj;n}_o1TD|$_9#BvtYGC zxkbk)QqtltKk(s^S%JboG84*OwzmVLhW}&ht0b-`>gQu1(;TtSFRhv-HMr#>@G}O7 ziu$eK@<38jS`}>9R+1%?8Dv!@#Sf5?*B;Jh>?LrpQv8aQ+|~%by)T-K8ZDWlFa076 z_8Ykls3D3ozAPVEZ^~4hgq}M|o6zWx`kP&=$b41H zxxiOeR7)p5&c~X2uSm(+7oie>ffz>p&RIqp_l+UQDC=k_yZvs%9x8Y1X~IO^?sy zZ1TR3EL1WNGWOidW>sf#Th7@z)j`Cc2ww z@BNW|OF!$+jX$~{aqcvLzII6>XW>JbSyoj-w2PWm(3fD7Nmn^j2h|1MOA?cp{y2!`M`|KoThSJiUM^MnlJngR|XmqAE>`V4yB=|n13-#HJX z4`aBJGXpQ>C=_N#OFuhwEr1{lWq9m_E+UEB^PiUSby6QhZmk?|bkxu|urb*DVm9!dyOldk87h7? zCsR-CQYqy(yoN>VkZp_jY0sm;WvS ztBi9tg3s0%BDL+OHGJMUh(rb{Zvm>o&8sHZKUkq%KT*&`wCIl`7Ik}$LCgi;Ozn@{ zST`#(a)GJ=9C*8xjur=UXx=RwYT&w;Ke0#-n1tySQ)|XH7a|^!n8<%-s z3#y}@-K-TuAmng)8fFq5#Z1>8<4E;uEbgt;=UhK=dEX{x|HQxT(}8bqg^Q0#iL=+Q zflzkj9rd%B(SLU#q=M}DY)uGesO6nsO0)x)2GBU6%PmUkUbw7&FO2b+GnU^8rKVj% z;SKH+jxSd*jEKr-)Nfa&wc)K}zhh%j76jT4Rg23^x0%}epv6dmH6me0eo22Kb=X@* zQt7*>8Tk57Y2hB8W1CkTT#Do*lKnM(0LlAE1O_$V^9Ly}gUvVpv6|g=peM>kzT|OJ z3|DhMHsx-h%4tg}zJp*LiSExjx+Wx_d#|v&w&!rBjvfDJGa9zod9|a)L&|NVYv<5n zN_$_no=OaXp7$H&k3$+1Q1TTy@dikNYF0THXZ?{8bb2ndxX3qS+6JKBas@Iu`jW(R zosJ(TOJoc_J|Ks-*%J7jN67e?$S8?;d;cRyRybtrieRN;`&#i&9%)ZE6bna8 z6a>Fg7z#{9vei7>%uV_;Eq{Fp%H6)GXBUMN9#7^rwv0(DnU|V#i#=|>Ls_ZFz5(ml zSeD@ro*4|FGf$5Kc_C+?z`HomviX@Y(O?(8=TAT8P|1D(|4V@aj^(=IDY(lv5~xc- z)s{tKs+4%OTK`%L&b|fhW{T)~CCunWN2q z*SW4;93q}~u0ZDJVq+8ZW@j5EP0+p4KdfJ^UCLRxR&=EBVraSQ!z=?E2kFvj-^`Pd zZ_jDm9mp!r+oN_eXHt6k44G5cx#TI`Z12e&3r;U>w~0F?cR;PmpOrZhQp?EE*c&c# zFoMf{aa~zuj*~Fv5c%O-(KnN5ZYrt$p}`5T&fUJ>sgHz?iaq=pk_LU2TEDfTb=_yH zFt2!{-a9YX>vn4YS@}vabTs~L2c<{XL=+83g*4+Fpp>>e+P)u5h1QNOmr;kKDy<=8 zSXmjiT!74HNIS;o+aX5sm{V`r4idJamv3}^5aoMKxgX*k(U&WJFf$+AyZ2LG& z$C;JJ4P?T#vn!Fy-ybmcVFKxz$?=*EbtzKRC+q=5Et{dV)R>jn?Jq2?R5_(jTnOI> z^9)!fe@{R@0XB8KDT+kxv>G1dGDY8zZ9)F+l53scex(>VQY$FBqs21B=0h;gZ4-%} zm)Hb~1}=>{hIDy94b?n0uT)!Lc2BF( z|8jX}&#ru$)<_IgwCGl@V zC|<+6zWWj%N8Ct<3vCYB(p2880yS0Vd_uh~vI@^N}(*oo+!`9Wkv zFx$}H7bA$fTB*9knV~Me)(#MEEVpo~Ds_D)NCP}}fvu~BF0fh2A>YG6Zq7DvKwl~n z2ki?=)1@x&Oo9wIR$GW-BKO@TU2-~f(TZvGRh$J1&C~@kCI^zAvWJW*FMs1@=#bhn zZf15b((>Nj*U$H6)$FHLJ$5IB=caADC8W1ybs_Ex&w&`T3=8pfH}OQKW-M3KmhRd! z9AFdrB}IKuwG@n`vETU{r*59Hf)j7($oaH_tfHbA>!uU=W>a8b$|H=vuL9peGl7< zs_^~Sim+$vCl~W+qck_%pcmPUB-a4OFh;?tn{@S+X$tejOPrKWo!LF7oNandb$5&| zYSF5=d}&yvVe_%e<67Psq$X+|QiM!8TNY7+Ee67`$8g#n{e))!G0TU8$d$dlzfbG9 zEaD$2OOP;|d0|Ra$l3aN`A39JOTZ|WXSzZSVa>#(=<;j0KV#ZwPNi#XWxm=sja#Hx zM6W=$T@oF^joMk+n#$p~wov_j!{uqn-L%hj$-O(g#SK8dk4h|C;^`^{Xlk3LI2?LMRtpKLCs!O*~JINyVe zbjfbzaqFa>ElYw)9T%Rjx4XsyR^na_A}KJ)Y=kom?mmJ!xjmdZk{uC4V%J#1Nb7w+ zrEa8n&llzQ>&@SmD=&q-%!#HvXcZOWx)lC4r0gA(pzd4Nm&L_@3U?zOU2_TlIQrDz zW^2z8hjpXPU5i>+g$k@v;0@0tL9R`&%MV@buU|F@rE}75#pePcp(1KANtbcjn#4a7 z*8RPw$^;o+e0`~+(6c}&BbQHe^el%fz8lZim zcI7!y405bjn$zZnO`CB{s+p*FX70$Q@|gL9Dk>?zCN9<@(i2**&Bj}^@#l>+PStXg zZarn|zh=?AM6x4PDs0+)YpH2uM3z|%<%g^dF_wTjGFrEh%OyRJ^oU9VoLH9R2)PIVg00r zBx1!9yJg0qpJp5rZICo#A=I^dZ-eC%nkj_J#t7x}~k_*jV z_nB)Z^rURJ<6C^fAT!jeOWet@n6=dt>ZgF#fe#Qs|BzuY(x1SpkciOz#kHRvM0uMP{EBm zAosw!>2RicQWLTHhgAl-KJSL_D%Tkrh%$+uU#bJH2f|8-1MSuAqWcCYKmqLOt!AWx0G38hh#W z$L#qP5rnc;F@+yG60G;M#aq`tG6huy;IbL6+<{(ZuyYYh%2jY5^BScA9Z9h8FJI;_ zJx*>10&&`>v$VSSArWl{JWFpfW$l^$L~{fGi#c%;Vwo{fx(e6ynD+1HEDy6{<SBkT~*T&QvV zTy*+hLc6>Jog{CXCyB+n^bg&ly5~Sv)0?b8Tn(V;js~B*gnw1lQ(wpGVx~YyLinBa z%?~On*w9~FCtGRC1Y{ZTmAU!KBS~KPe_07S6XUBO-%rn z>w@X)*Q-(gEn(nuAE&_A?F>+X%@9sWV9$-cQyK+ybrTkB83u6u^?T!_`Ch^o#4TPr z{G+IRtOjj2ab;~Q2|zQS$3(hU^clEinFE>mAHvHMOU?|9^Sk^>2wA zyHi)TvaGamR!G5w3=x?);jZYix^{)V{i%=9T2f>c0q?M&06EE% z9}4@?8YY`yd}{UGnU|C*KVCdVovDK04YL;J*hnw~aC8f`C%=?(eY#h7`fv zk(+OzS+A)qk^{8?Su1jviS@m8IzaQ}$yy z>`;`@1RV9MD>wh>*-S3I&4>r>#MrpZ?@AqJ8bFsRuLvcnKE}S9$&<&F$R(JwIKH_pM6Xt>9nE9O zwa#*jBPLFj<>q24W@Kb%?O%X=U~*MF5Z>ejXw_NKt!LI!*3W%~JlEDzT>#2R_&v*< z;?TXnInO9T+UxDwVg4;|r#OR{-xq})Y_}qKjVQvplT{;)-E$urnCa{kXehaXwO=70 zJP?E@;(QYJGU$)#*yZg+yXf;E0U|*N905iaKMSTbs`4H*-;rkwtSQ7)3%I_#5#g=r zr(f##|&LbV&uUwyg8G*o6VQXnp&1Uya&T zYyDdXiN?l*xPBkA4Pz_>$W#^45hD7)7nFKXyq7_h|!rlo93rmJ$ROea)!@+Id}73aZGtb zgeP9XK4Yi$m+cRR#ylv{d{R-X8ox}90NJ9(_C!FA|B;>dcm2TMWbmU4TIH@_<7mCQ z9IDKWp~~*9g8xm|u<#+R&2)8M#Y1F_h@KIOl=O|n7CmHnoQv%-{gYwb_-6}Cc)Z$4 zDdCw-Oq)!fOVZ8?P<;GySijSi$*rw>QEmHMS&;`AF$eXU3dwmr!mhlDXybWgiG+yf_6t z>}A#;gY6MNBs&kq+zbEU@VHj%L#@tOpt7z>x;NXMybINp)Gwzqqk%x?e}Ktxq=(yg zcHDbs1>P8;EU=z4gX`0m9RCn!rhX^WmJE;-oz zmT7X`dL>bsgi(h5UX!)W`(7^SvaF;)8j%4Jf`^P`0QsZ+JHOekIII&fKQppQI%l3P z@m_H&Ap-Pe^{r!j2Krl_2%q;b$vDK~_nntE3J93 zGawnbCNcdyXZU?ULsz3Cm#0~xZ*8I2)I?2)WRRJWG+usYBzGnngDTTn4XxhMRZ-t! z%^dRuB+t=aT&v577`{$&FG;jvmw}3ZG?24UxKpUMo^neV+@LGGSs=LWZkXKWuj1(A zuHRRfFC4FO%a1VMriMUf!27_{V-_ZmdH4432Y9bH&u9DbpYM{IECvNzR(=l4lRwu! zab1bl6A*I63OL|&+W+!enPmR;_4^o-FrGs}KxUE$70EkiE_`S7@10c4Mf^DR_OsY| z4r^6r@)r#-=hIcaFyYdM>1b? z8l2rN&aK{Dt|enw%G64a764Nx-Kx<-vHfd#P1%22`7g)&Z#$ZiAQ10XMpp=gmG8P4 zCuSjv%k#rn|NV!{%){ee6`7daAs9PQHbusl-&wi7?$zMWA|s)^EcM|MvSo5GNycl) zFqTi-Qp88mVkF*WlT{S}b55j7XOH0$AML+dlFyj-s%Me0IFVBjIbS}ca9PQywRk76 z@$)=MvGr`uG_=IbKxTp%+XDgOX$e;LH~7Wh0|6Q4qsdDY=zGez%P)p?-4!zcs@~*&%_T!9^VumZmEhke5HQ#LCDry>@FX&b4PjXQGl>Jgk}RRzJ0R(Pwz;yOAS)$6 z_|F<;;_vYq?@gNtoI0}B!<)Gldilh-#Jl1{%Imcx&9t|9+6SVEzo$$doL)i#o*Bh* zLzWv-CfP+*4no&jEd12Y1ZL^_urNbEhU|q-@d|lQNnZExG@mV#mL++X=^ehkwu!k{ zIGJ6Qr>q~VoaS<62moMx-aI;WJdM+Ow=y@|?`bmXsa;=|=hyp+_QlDJCNBE6S`3cL zCJnk-m;bgL?d|zT$$#I7pXtWkCpmkhcdAiaFMR4IaZoRAaQbY+v&zfk7x> zp4)yR=6y`COpH(lmhPC7|HKtdjN!d=E3J*FoAWGg?C)6GVn888=yG?Gc$IFR&Vxzk=KWW=lrc8GGs^l1#XG`!??VnuZhTe<#vwWxG1ZXBX!4Sesh> zcJP0yxbk?Y*8hLXmC{AGlH%f)p`=XNBTJ+lV<}{5EOoOa8Dc2w(IQ1rXJi`tGDCKe zZG^gt>>6bsV;PKyvWy19@66o$`o3Pj^XGG(&YoAP9ig3)ch*c{n8L;+T4Ljbhsge2n^xWp^zZI@g-W^Wh;|R@3TG~8)WM)qc!csY1O~-=^kue~sIjg>1?SD`UI%Te|%Ce&<^71E#;ccyp-3Ou^44K?|W0rQKoYt?rVO zCSN?MmBWjcO!Y$`Z6-33(Lv_uprjS2Z_D)m^vC3V8=mv=3!j7@sJ7wBjx(zFh5K&q z;yD!pVlN9ki*uvzi%$ayjB@5PwdSy6JXG2++0n9;aoQOCI-3 z+PxOnrTZ>b1M>V%Bh=jqwW&I2D$Ys{wn4z1;m# z%}hH7Z>M4h+Z{l}Gafg|oXn^eY&UQ4Fx4%Wr`cR{=^kFI-LF9Sd4o* zyr#F@(JAa^-Pgn~?6}hUM;dDZbV*Ub0NtqI1yJc9y%J<$M&i&>&UWx|lJam6SN)3R zeuz)mdr3>z<9quPoZjk=3?eDb z?&`ap=~y>iDRoWxe3XtUZf5VydXQXx&%-%GhRrUC)FZj}v@rjcrqg@0a*V9{qs-tS zJcHqQ!r!aFWs3GXK_Tj!xqvgM(i;Y6lV*+R`*vO-el2ha&S=}XWHn~>aUCk%nJUV| zcjV9mo}LeVZ)R8J6+zwymSt&ihLf$8f0d!=DEdIK`Lgx%wWn~bX7_|&uD9TDeZjGK zqL+nQ`mcPA0QTfxKHGo@=V*kD;FiY*Mm@mrc=A;Iw><%Fp~uCYn#c{PX7hS6I_=`5 zBU`okJOz4w2}AwvQ$(u&%s$h<@-5p2sJU+1eLN={w>SWC|9MNxbAGL? z^<%|GbI9*kjMsRiyE6jqUk^Wqyu&$t5`lG%7G#{RguQoj=ke0?PFsl+u3?CRdz;nsczfAV(NJF{rWN_P*Hk~OsCL15Aj>bPK3 zNP@TYi0Zx5ge07_UNLk1aG;}V<$ZagBl@=2i3rgHjFMMc%Pb*S7}cJqR7h3C@9A=I z=sbtk5J~&CphORgV4|x-yq)^1Hp6pzNzD|_Z49*rYlz_D;XYRpgG$nus#!T@E`i)$ zr(5!ZZWBmx^@KY zHGw-{`r>I7B*)!~t5+j#0`q_0;ym~cTWqIq!P^e%37>aNt}2RGyFg2m&qomVtu9^) z0JzeYKen>=NfbMTKVn{jX;1oBj1b17;R$Zj0y8VNtU- z*|yGCdV{szNk7@r&5&$@jpN4BweH<3LT1_n6h@O^q05eb5rBogk(iKX-)+Asu*f_~ zNIN<$?w?|9cUe6AJOeR6T`I^%Ksu1_S8+=F}b}f#=^`)m=%FBw&+LQ6m((?Fc_joqiVp zMx1zDjzSBa+y;g;FOO48TWTnIT_Ef5*cTxR+*U4+Z=Jg#yQEREc^FJY;;P7G;}KcW zS~8(C(OPekbRi6g7@itaZxw5H2+jowbagU!DNCWIMF>arp8Hu|oqiVrfb<3=m$6jJ zy}s$s)B0fzkGtb7yFF)bFw(gGGU?~sg4r@+s^7sGfG$mA1C$%)3g16h$8j6s~2ybi9glQ zrVOvQA?i9AOIi9>O&JgW8W`pT0TJDySLRaYow6xS?eAF-L((m zF?NY|ej9tD;pZy43e)=+nHd9(l&ObvTY1Vv*3#sA>vT=L+hYFfjpXlr8fNY{A&_3e1qBOwvy=iknB02 z&HA9YGVFNL<3r?(;mQ_(YPnXKb1rfYKoo`h@{+*pNp-K8dZo(C;PFYx+pVv5RvQu_7_E;&s7}Rb)N9MFOlt0DjAAqz)kZFJ}b;Jkz&tP?D3zWDppKksQNDJ=sq0PMJ)-9OTlWB1?F4nHJ*2?jBIb zY|7)2LI41+bRv?}l}d9@d%prwQ9N^w>Wj!DaYmY3U}h0gnlLvNe6YnC_4YQGf3`d% z3U|aqoE4NYP6P7mF691QEzFyQWy!O}Tc$}BWvtSkYG->%79lhlCy4czX)~}zzEjOx zMxk*Pa`U-T4$C57B`A3_wdiHweDs!#8r}pzh$te4)KDrs`$@wUkDH`guo`%=AMTo| zfuq5s&gZD=mCk_c?QdUod7&Wg#f3Or`;@zfZYu)`Mr3)pUlBs-i$m>{{K2?Q$SG(d z|87h~@$sRt3I))`eseL{6bM zAf;4}@j^4q%#Q4hlcDdX3f?c378{*uhBvsB_3ywH7A+g@$My%i_q)Jz87SFzY~B_F&4iMeU@ueF77)PbRQKXOj9*l;dKVI;}CLYk*idg zTtBKSC@_@}%XMJwgGT5t`|rc9v>h4PU}0-~4$5KgC1|umCkBxr_`{-j!>~bS#$K## z>2ht|La646)9(kBEmV}`3vaK$31_5iQ&(!lBN6qH_teC0K?CWX7$IDcz15-VK3>5n zOz+-^5Gp{$qibPHTSba+!_o{4Jenoy&RW*{85fU67lw+g2 zI|!dh7J;F_wB>49m!XoseOU;#0RV$0BryO>Vv}eP9&^1u0?W8r^uLUfi_=q_76(0; zV?&+ULuIa;|6OY=LZbne#38$xjls$rOH_|IuN3tSt@@%H#ZZ^I?#JZPlVV9Td%@0^ zc*DdGalL9iE-<17J-{If4gkDW-6@SMX}6$sSUTBtU21Ur&fm9SbZ|H2tW{Qg$DX$l|4%BoNS6xqg^U5u=X2Xc) z49`8?xs6K*`?;EsKC1iSO^Ds^eThEYM5wh+A@>3;>p)ybA_6p=E^nT-5%qtII0FW0 z-P&I3w^V9C*er3MB^Ez7ZnP5q-VL4sz|vyIn}ex!zV3g{{6=zqrgkW8(C<>$4;j~< zN73H?n5J;mVuU~mInR+98&u(UUYwV7HBmO!PvOrhP zuYyDY`4mOZklCNmtd@(-NIq&}h|8C4YdPwX#P&^!Yb(l)W@huX_Mh7E^rP|$2_F?>0aK_5@fGoGiZq*d@tF#Qn zTu1x!)WHDCi}A(J?2N^8v0RWP!<)fC3W0(My^pk|E1+NRxKFi0jSDZWuTE>6>{5!j%#K2cVC<4OE^@FoD~~Q_v)uOSx<~tFYLshG7m$^zh9pInVbV z#nja@*cI0_7kb=0vq`?0GU`{U>4LG+ulODiT%@DT@7uSBA5igCTAt71O^+^;_J{^8 zmQ$^p3W#5hdYZJOXSU5Q(T;*DD`|n4BYemOLI4D?4buK59&%A+w2JyXNR!MUc^u{Qo6wEE1 z_xo9fPd>1eeG@(&f}|{LSmT2%f7QdzUZpki-{q#+*SkyRe{18feTCRx!`KQK%*WRR z|D*4K+^}?4_|eUCSFbw8qimB=Iyiq~QTt8Fz-qTL&It5tcsv1z2!duEvez3&x;<%RwH;fc>XE2-1Wl0 zz5)aaK|EvXOOdZPfnYsxugHFT-<$t?$$JOAaexn5s$>}P&FPayARpjSMH0w1q)^r_e#bx|{>0aC_3?<;?-a=4x0Yb}wn)d#wp0itUH0#dhBEH@ z^Ix&lczzq6Q{>tvFiCZx?Gl%l`!92JIq(;SlQcnC@zg;)AJBjlzTcurOX;ZU4~PNC z)8)l?Q%u4Kv2s}%3ANvNjS+N2p9H$l#?h4+xb2uPpJMs{QY}ve0sei zYqP)v{fZG`*{msOR$usEq%k<}fY4tc_+Dbvr0AEP_fqm7rG~99yjgfDtl`4HiKRQd zgSu|lZLzQh*w6p7Vl>r+z>N?=FdbaROs*qg2onSiwv*a`#-lI BxZVH& diff --git a/docs/articles/sampling_files/figure-html/unnamed-chunk-38-1.png b/docs/articles/sampling_files/figure-html/unnamed-chunk-38-1.png index f08851e037d079b4f2668784227a2d3cf07e887f..0a21a2078dfb3cd74378bd9f996e3c9fcb98b008 100644 GIT binary patch delta 9986 zcmXw9cRbbq_rKTXBT7OxN!gOUN7*AgTV~m_Yrl<<$jm4!A!KG<+eLQBj_bPDri*Lu z@w@o`?%((EKIe5_&*vG>^GaXDPhZ3jt_BM$@`nYpZiZX7g#;lc!tv1##mI^A>|*bl zX)4Fo+FI|q$Hq$N+1$t8(Oc+NO~_o1_4J<$&Iza-WRx$`NXqmZHX2*dJxnOad>i?> z<5dc9Amn=PVf9=pF?dJIIEhUqkxfM-7L1W*qxpN`M$A+GNIlhoj7NniaJ$m~=buTw`r4apD_A2r zvFUDr`S35|m2hITpL6Fqv@QKQ##>whRH<{md?URl{RW+dK ztf|J0Mn31yK<}i?g?(9RE>8Z*D1#^?4L&`t7a3mIp5%e$^udOlPL-Z2N%U(tl<;$N zL&Au_$N5kk3SAwdWXhy?%H8Aedz>7cRwLwHh7-1&5slcWB(iOcVok~cCvKXn<5T_h z=)AcMZ&(l>5oUO0G#_2Rz0Y?Hyxwj=dMHRya*TguLph<0Enn_^+#58CX)PPcMyO)}aQmy1lH zpQfUUzfF>m6b~~qyhwRY2L+cDVdV3T6Y)*)V+h5;Y|z(=1+T(Z*(C#jN`eFSDnn?U zE3`ty#IW4{WPy+Wvh*^gdEb>)Ztqmv`4A^{N*PSYrW8x3RA^&pH&z~tPIS<{O@nI+ z%D~S9RsWk#$XUr$&mLAvNTpE$KLQrN@3`E;Ye5{JaI(I_1fVABsF<&il1TdycQ#N< z0<}C6{VorI#L=GPt%DYPiPa58f^k*p8kodlSY#wWlZBn$A=+e|s2v(ws!sk-%yKls zgQ>RZxtjU`!Y~l4>GbYKsb(7!cSp zUh8xhu^s$!cX3rDf(RzJ;sF@Vq=BGGSJ%ct%b^*#7CO zVW&iedzhd<&fUTnkXbKt%uJGq_+@Xt5*<1pqlVT^f2PlT6C>0RO_D2M(BdzezdZ1B zh5xqw&z@rDsTa>=Z*j^C8g&$c3{h6gY#{bq`|bEmu=)S>^29S`RQH7CbhZdB6I=017ftT^3~VGa8=300dx z{JU;4ZtSuS#VPB+0WqogIbmLPNx*YwBSL3mCeJ&ku7m7il;8MiW=fkMi)43e*5x@J zPDZU)H9lA-z6s4+0hIH}+rYTf80jDFnxjCr&yy1mZJvn-xVrznFAzGG zNI}t&Lwj$kvW_VDTT_7f`BbJ2-%HxSQ)$!}T8$e<=#k;hes?vbF{p4>(l-!kse+Q} zFsu=s(H~hb<1?qF$xd7Zu3cqrKgfeBLx?eC0~8|rk)4x>{Wh8GSHG3w4ZG1=Nk*|i z`kchXN+yEy{xKX{+0{6x8C>k7bp_Q2;5tH=o{M-B7 z`Xfwrw4!l^Qs30_tDWS~E}5cdKmL0o!%wkTy8%xUvH<#bhFX?CI%1Z;rCumnId}k5 zIYK*fkuEVWTSI@jc?aRO%LXGa?I-KsP=mC(Yxr+0sbVcT6T{vld;3_eFAb;qzjM~1 z_a@k6p$H{luKdx2W>I)8@|F53`pvpjZNJ`05fFre6=ysiUNQm?B!m~Y{*6OCP81+r zHFX(_l;#^F(W8dkC0&IepnSk+u-`Lf_SOvLWau^e6Mw*hp=%EKPQ1;c%MnbNVHQ0d zd2RC`uhEogKDE=r==bX?>5S^?Uy&-^0;@5@Hk*?*edNj-S_?<;^7-WAO`8r#^yh<~ zUDC_#DR-WoW->$%chAb-eXim$;NpabZW^k(%0!ZIcT)c9{;@WHJbsD9FPv!7KlygJ zt@H<2clY=5S#EOt#s{C2)0jTY1IK~1aMloU^j-B@i2mV8Go4a5s2&z`VqPmOj!!SP z1<-Z_agIM<;Yd!Fl9NMwtaL9J;i>C7^d#Z`Da@S`dToyFzdxN7zNy|S`(5{%G<4Na z6(c}&LhH#IBZDxXMaMzS)UXDfLo4@&H5pD8*zXbBLytwipl6p!O0vu^awEy4SJ(`I zbDn;g&uw&*=dsb|e!;)&iiCKD=}Dek4qWccVHj~xsYNOoLe-C~ParuKjRwc1I!U`b zYN``nDy|1!#yUHTFz-0t;_bW}pbDinYJo|B7BuzJTffbA^fx|elMMes_PHj54b})D~Wpc|^pCh{dXeIU3{YbzclVwWi{RZhynP5Siw=aD`giWfd z6p4urw%eyKyBP zYAkP9C;AlSOnZW(m1-UXpod8$q`jB*hf^c<$FzP#e-fnrH*~ zLO>5(nlh@%oH_cqP|4YddZkpi$G>M%XRSw8w*!uQc88$`xXr=nV4fO_lAA(vhRuCJ z_km{{jsDX}m-32*-}dHlEg7-J5Pi=AkVUHbp42vt;*5_k;$5ReeqMq5+2FZP6*c!# zbgN7idKQaVNy&M6>5~QPVTCN5*oQmO37y^sg*PAPQ7*yY=sf_VmPVq<6i$YNUSLQh zfP=|`Tt4!m=E`bvB2XOYt}2}-aMp3lOUmnYGv#QIr7KzUPJr}zzfH@ zk1=}oQm_GTWl334ZT{iY_2+-!6EuB<%Y@{r@oBbTx=18~4yQk@_V0!y8W*c-nBlyj zN4Rb3-hDG(W8F-tTj5M77M%jLI*8I=rN5lKipLFbRo3FSh7*C|*GYg)rKUR=x;@P# z3f-G;r)FYi;V5b!v?WVEvEN9}XXninI33sYS$RUCn}lwP*S8p$+qXEYo$tc{>8tG@po@JRmXQJi4v#TMCyiv(%j>|S9Phvc@>xf;<~%R3myJC@r-pjQL{k z!=d!HlqVf^3z=*0I!rAhg?`-O%sN_ls)~~XfCjk!J3B6UU?h8RmX8-I*TCS;jJ>d@8^b_?6!2zhRs>fIRQzpv0+)K@3>WD-aNAjspy|ei zC~UP2@QYg?T|*S`iO0UP91pEAQDTC{wzINpeir(f;;8$;zzg$kfq9QUL1FCR-!CCG z4s~VJMy%Al05BJ83NXrSk09tSk6!wkJ;F@|h3osQtFm$hSiE;oiz=1BVPnLjt0LiN z%=U=aXD8J9s!MF}U*B?TW8$4^P3hBlKpnJIxg4VGW}NQ^9V_CZ9u_6yi%SNq=w6Bf;uobaj+cHzey0iBeUazN0rg3rcaERNs z${ljpg}^x*ovGl=9}>K>X-NirMZ+@|T0!A)7=OuzH5X=CoAmc@VUJN(D4(|$Q6~EM zwq;74TckHW6ZB#c?Q`#_*GR#CV)4Fp2f4Yy-0Y8ONO(uaUG(2`s7(?DXVe>D9ZUO_ z=*X;(E)Ik<)w|w|w_|I{R09nE8~PvDs0o^GSx8v2^9$1u@t3Hje~~OU8jhV0+2&Bw zcrL0Q3?l3lm*$}SrZ5}p5Z7;1oiTKA;^n1F70=+vF#d;Jxirl8nzV@ynUN(z0f)F@ zU}F(A_9ri^)TL?2fSNcZZ3p>_y<7uX4-LiybG=L+cNPHs_Cn~QYxTQA$i7g~D?Vw0 z*qLK-q8PAwS?BT9*WP6FV+M*!vZSFc{e_j|7J!=0?myQ+4j~(?w{X?3o@<>(d>8lZ z0MlH;h%jOk2jfp)QdVT968ukcc!>2dGcAb4hX&`ZiGZ`C$kvc&5F=twl%MBds@UcZ zlCTK`wS;k9#Zf2`>WhxRm}ibuwxA2kY6A~V43I*~+cq$`+W-saO!H9(-?2F!x}#QaNcNIPRID{|B%Q{&m!pR z7IX*pB}rnU8yLxKK%|LASW2!En1150v6IHwV5hd(UIvl0{+j>#IjDTVOtbYM%-Rn&Lbc|kHhoG)-Y=8c zX40BLgV@tTRi?3*wrKUeIhAm8VHn^8t}JQ{hwYmMvymG)7D{slx=%$SBO5`wl?~eT z3-)W}XNQjh-{bkYf;ogrv_G0qR5)@Rbs$UL9|w9b@4@NUSz z>_Mt@D^$OLvo-ql^??%ejICktt##EY#ThSrTM@+p70tPE-sa--Kh%I7@6vvKqrpWi zSaI^JqL2$BSf072`qiQg`;G@Gra0A(X8~z3_{hI)gyd9G;GY$h)-e|RpaW79wEUDT zR4m?z-1{c?c76oAcHAXs0l!AnSl2VmqW>h5PeY1!aH*?*qgoe$UqKJZ<6JIWZ#n2K zcvDt5K0RjaCIwbT$k`Q`VSu=ot*XH!r_5?@C;DhurhtM>0kaVI7&^2#8l+lSDB8dg zm5IUlRn%wHvUr<^Uqf1l9(yaK9l`cdB@U#xfuQd)$2#?y9e6%v{xa-`G(88uJ{(H( zkm30>T9aSQ9D?kc&X}m0FW;<{CVXOgTl9ubK@X^q*_p`ZKPj_VpT=QR4_;~9Ut*FX ztSC)9)R%K72GRtghXEjI1ONFRwtvBCLtJtZCx7C9vxn#5`PM(Z=3%A2eBhderU_iU zT>dJduyMp%!M$|1DL`3xyd{MSdtk>U6&{W`mf**e2b1jkC* zEQPdBgBab~IOsi&$sy>yKToJXNr?J2M#Qw^@S2DwZA#Rpz@cL)is)xdeugl zB-kxj1FaT~1+sF*yr~OGH!&|ALmsoFC}(X^*;VxzOxuL$DhiV*2@q^{z!x+p~X5D z$8vv9Y|+luZnsa!$s#?IIHP8l{25L=a0eh>69}PXW!Z|zJluU7q=D4lzW8Al+z}ii zad~SR>>SJh<7DNEoZJYIqJBy6uJ|mRn3XV6N^=n@LX@GxR)~CP&IJK`R6$M+m^9dE zHslviPk0h6tORWi@A$?sX@5Uofnm@s^w)Qp_r*OrVj5~v=MTd#@aS1uF%SnVPftEd z22PCoSKIHcw=-NqqzrkF*uTrq{u>K36hEBaRTTZ5qK|$lXIR7G;9-<1TPF?)eX+c}|oNiWv3u%iF(npfBKhA)l@_*njsBPKf5GE0V{JBtXIo zv$+>(kxHgC2tkT8iqy!-X7^{ntbKkKc(Ay@_&U^yR(3FxM)A8w`Ly+-uWvs>LUfY} zmR%8pwc}{t?Mf4f$otgfR}wdMVG3!%1)t_Vh{04g`WggDGHvgwN#jyaM)4 z)3MAja%&BT=(O(Cdz`$l&S%28PloKdeNG=Rt6%CWj_jt*Rily7mR9oPjFeSM`U$ZrOSG3dj(|)LFXPF!`m&0bv*t_Cu7NR2{%&eCT0mWIooc4THfGspR^sVeuswKoflU*f7~d4CW}I!JigK1I1C7y zYU~Yt1n0Z@*Zk+7Jds(=vE~IaO9@3~AWijhzinb5%*cHEiPih}h?AdD$q?NALG#aG zFGJ{?6;;b2v4zwH4t&BXxTkf=4CX9bXs2(WhT}%+#_2|`FC)keuKV0`(GeE4uHBfP zTi*CC6>b4$W1&fK<_d*{$);cFW3ObyWL!-6KXK77=U7AFDX%EpR8pBO!S{ic;3_ay zWEHq5RpMHwAq($C)O}udHoikd&|l9qKX)hLg$U2XsDai}BiJc$9`S@vDpzr+P#qo` zK;VQ>P7jr&Xn!UAD4$9GrAQ)f{1&h@n+M3$`vBN>#*YET;vC?T5i}?whFCqM803&3&>az#XL5RfOpD%S zo)ciso_^|iW#MS4yVe<3AZY}=B1(n6;krD^<~n?> z<%o>P>Sp|1>pivTI@>kE@;}w_-Vz03;opU zypENkeR9;8maAQKH|)zZgrgy@$1)#0`g!YSit%AG!N6T&bC#Vf44587%39e_%kbwG zjiOEX`mE%wJp>@uV)Q(7`T*TqXmJ@+ec;@Kto%sj{Paibv@pHhM#(YvIYzLy#I(P* zX3FMZz5R*ES=z6$zevKRsYiC|EBw)BBhZs{sV`#@|bM zk}>|=*QXvs(QI|O5b?XOWJ7|bpOH1w8ce@BGl@$C#w2UbhGF*PlAXWpk%bd^Ll%+( zm^~ILPSSf^RZr^gx6=Cg)EJIz4#=#>?Rc=Kw8^7Nsal41utBxr|W-Y~4p^|!%6s#M&5_`4QF;1I1kfojRC zDGy3Bv-mEv%{t0>P7NA>SF=MFmRI2t?@Ln5^~v+cQykyZ&r_EYR$vGDgzLol!OSX< z`p^5os$C4zZKEksnG-wY-Pkh08GPVx3$Mh<4m~T=9hvYRrS5(WS*D{SxLpDH+8y0C zCMbsf&d@m_z_u4?OC%V=kg znsRA5)g@Qf!H;%>V2?G|p4#}WlTy_L&zqFt54C~*DW_76PXBaolRe$77wHACBiUPA zzl3@V!>jYD_8&34G|a9oI|=fi6PVjH{wk6X59Ro*t(gvgdfiCpDR$p$`pE@xojkzx zbI0yQuL6i~0!_-82$iik1C~cRM&Ac;H#vWXOTAxTXe9O#J?Z*yA#P>tyivdS@A@aZ znVQR2lqpq1t|dD14}qDBfk%1N)CP{GX`ogHFQVcv1)ZfSeV-`r{X9tbbuw$tDv@jM zU7f0F$Mm*1^toPig+gUG;b$N>A#eW*Gcy&?hyLmfLhho-|F2QYB(r~ca2u3F=+73a z#N1}yfC7Am6n^_JbeJ9b(Mx3v^iRf5RXue+*<;RC0#;UYm{NDo@?lKx*NIJVGL&p; z`0r+Y?i(xa65uZuO30|+sSw~}Nod`_Pdn*GjY``u{=u+`gGb~!^6#PKjK7;Hx=2}G zhaxi)qqWiuL9Dz}cxB$SM^#D9{n3Syh#T+2zx=`mZ5>T`T(HHYJHvIqq#`sg(DgU) z`B)Ip7*)if?qg2@>O2ltr>$w6=TPt-s1MmNBwdzIf#5RuNE~Y z9cGkHds&L-a`cu~s@65?jgvNi&psg|-Qgc2{nV=0Vwbdl_0%#Mtihu}6H{j_o)lx6(iIQLi8>0mdk>&Fl z==bk-h|_mS{Ne%^H!xj$==OU`d-i(BK|wWD5Ho#n=bO^wCJiNNXLv%Q?3w48EKS44 zU)tTHych3dec?tEtWvT1MV#$9w=u{IP;@~66+)6h^pg~n=XD<=-Z!m3p8f>a6K3Mr zYF#MQuEhdOLnK=_H<;^xE;u zW$25FQUv*U?dD_14`+W;knb_{Wf<5(84aBKkPVrSy3NgNj|EXnevb=Uk}uAlp;c`B zDQ}XnVp}lOjsVA#6R1btda12clLv->qvJid^eAOury`9!-mT`qv+B!#z)mLmzVnSO z_0w*p;&1X~1LhrHOQ&p>spDne^QdtARvSV^3p2b#l(>-jI4WO>lXg;v%Ptx)cUie} zy)ou9$|JSU!j~2|YRSh4ImLl}mP#hq{>;f%_DWg^EwE+xJj_9bB%TT3*3|(SuC*94 z{=7a}CH;^~M&vtoZ*aB)%bm(fqn!ML^NOa*j^k08k*ZE%lV>%nCosz%ZSTKVz?^n_ z@|f;NI3}@vF4rob*DlXq5OxaIvdXo`Scpc33F~jf zRE!Ud)Vad=-?IG@v2l4#)pUMGH)t2S`d#l}L%-1$Ke&+ykCz-4<0cwFU~ABEBlHXD z5j1H`I>LJOHv)D7MTU>R%8h?v&IKxh;dX)YI*;`b(?^ckIlo;PkmnFBvzqsJ4fskY z(tOuG&ma$F+cowcy&6qSmISu>a?|}lKl67qkowQaKA*y8#c$+yAxaIwi4jdXlr~C9 z+qo*lFgU%B?hiI^lVSTdY=@Cp^%_4trG(9Xo5Wx!O|6)hVO7wH8E~{8SourGn}7aw zHpaLyje$-r7F+;rb zLG`G+8vnmbBzn{Z@x{=GFrj1Zt=K{W^4S4S>~JPBKt8>_DXkkRxc6B2QGuSLdSTwX zQm#ow15vGPwau=9lB{hW27*J|V|xq3#)vy2W^z{r@1X8=dTQx>eYDGC_zY8;VJ;zX zgN`CO0hE3T0q)aWI;@VmBXbI|_qrV1>v^r>VHK}$@^)*g@|M_V4wY`i*~H%J1w+XA z@Pe*M&0;(Cg*-pUPvda52>F@I@lP*X$v_u>FPW)ooy_uE(o@Q;PVVwmuAXZhPSk*2 zlAUEJzsS;Jla&F9-l@xLl4FPj4pu6%&1IK^%v6+TPr+_E^AuFTmY9X)9yff_F0~m! z|6c0&X3*3Lvx60XX}DLHn|K-rN;UAf3_umFMqt+}Vp!2Z#bvlj6+drr#T{9q^z)1PnLk-YDV5_*&!mH^-#nn1 zKb?Fl4>S;rjw(^ax5Q=uC*#UWCnQ%CUdGzc;LDxoC16bS(^Lb>&E>mO(sK%yH1Wie zYKW3p9-Ir3vyVMFZ^gX%3vQ|(?R~?oA2|{c%73Pqd~nm$Y_j1Sz;I?eG&9q5L?Dp& zoxlFdT=+v4O<)gU(JbXUo&sHah3~7JN6eDk5fz=ARv{m=b-oF*PE-B!urDQBxH2kSy*#4A@v>U-IeBjU x6`VPufIG-h!{1N(l+a$F$o^i=jH(wza(D z0S*q^ov&)5##`lIZQsMz`!O#TOewvVWF-e;yvG2U@jlgB-sI1PI9wb>Zd=e&@tAKV zrOJWmfMEQuG<$6n4M&xi4fj}ujGr-IY&l|{V?e-qUxb?@sXGxG(K+3(aHW~Z7Cv>E zB?3=^gaOgQ&kPDuXB?#pajXh)x$NC=FGg~r6-iC$zHPjbFDWugy8GI_sN66 z;>?*>k8OT8nsx5tf&+uOqFMYs7N@)0iU+21ao8yv?l#aoY{v3J?c)%MZhMn7{uX~5 zu5~?J6!-hB^nBZL(k6yf{YtH{_F{kr~_P3 zCtkWxwTJE+`ySC(pX{~@qzbRyaihR;V0mylxPwU|TJ&8V%r9n?Cn2trdHQ(gnN_)C zZq3V_hAjBkj}+2u-&k3{`3IPVC`LpiUk2ePc$|@S8Qr)%w!vw+$b!Q7ISzmPS)KLy zjW;+8Krw?)HV!s_9nJ1dC;0<4-g8ckZ440~x8%s3?>Q6mi=WH+uJg#vUEZB0-7@;S zXjO>8inYv$M5jt-zI{8eYJe0YN!BPj;^ON~z6xInEY1l#=-0T=u3wvTjj%`NFC@}U z-@6w>Mi3hxgGkr8Oq8Xq2bC1=N`KLh!#2c!iSZP~TK`5ae<^5#UHmn_9@sB_s@Pz* z-e5Adw0Pp+$b3i;HGoQNJ#u1xcIfxY;RGXT>II0FH7uH5wZKBhYP39RJI+>vjG8cw zGz~u&qh@P5)@(iFd8UATToSbchyytNzVAqk)i!r_uE=b*>%W-TaF6L01vWGas$z?I zzupJu&MjcRTH#9I#;-7+&HF-pJP>O^)yxCJ2ttCK)CqF@Y$)FdjO1tg_jtuP)}%HC5I#V@XS?~W zQrHL-xEoa3Ioq<)b}?q8r(TLj?lWY9ONSkkI2H=ZkIb7WkWtu8(?Vutr&fPzc=Mz; zJHiXPQ3s<%iS61MZ_mb0h#f`R2ssV@ro6Q4B#s>+^710tv#(`*c#E-Zzi_S>7qp+AO|sk5I&aaF{Fp5-&h^B4X`9s4@X^nW3= zCZ82_=bca}PE@0QxtLBeS8S+zo#=3Rkd~?OF^O?5O=bn7HZ?0vgOu&Y8<#1f*=d8I zMcY>ZsVe--<}^#s%+}(g8b>mX#B>$OY>ng^Gmg_ByC}tHe(KrM)`yTx`RMir`;&=x zf2x}$*6?pr7Ve zrFa z(f0L|+C;XdBdFH+GR}R{DOkQ`(Z`k&$&ulEdKs|K9L1Q?!LHb9-Xz^Q0I&+#*jPhl zgt)3KUG8AWitYQXT6@K`n%W%h_yrc*Jr2Avt1e39o!Vw(rrS}sqop@@dOZL1g-0&S zp4%c2NC7u}jj0!O@yqOm$@C#o&Z-<)gPaCo2GS^NlD%Z2gG(I^>dXw}If!|m*8B}t zRQxedgXeD$wExdCpb*DpftWemi6|j(J9sn9=N3&8GIQ`5!ZG$tSzVSK{sd9`{O#Pz zMykw^XlxMV!fcj<7#p)h)kZ}-V18aqXR$nKLHo(<6=7_7wv|%QfAwef&*ZtTx7-ll zs;Bp#V5QHHh0;~uT=iZ=EJ6U`Y>M|Y;g{BWAO;{2P1A8rmDagczP^99fa(=iZB;yB zk&h87@S1)9X{?A>@2t<9=3;f9xMZ%5rKwP`;wgj2O_8%|eTUa?ZktREsJ(KT%A@gr zVN?`%jnG0gKHs@x#P!9JP~U6&tC^0m)J0${Q@z7NM#-nYynWErj_rxrZy}KD4_`-D zfGQcgl`E1t>c#-<@TILwyx>5LcGOUr+sGhpMueT&Z9OKSL7gUtYjAJxoi_A+hMeHd zA~{&r(7$ajrMkKwUV#AP^y;*vHJ(<&27xl{|KbV+IgN}FOd9&S93DaEb7Tr~ zgFn-s4J#Yiw)5=d@Ud2LIQa4l1O{+0bY+cn$26Kua6y@bBt9%VHpeBEw*(O{@LElG z4GH}2w*FSz<0aN{|@=tYXT*Eh;KNH-o|dDZ;0+^G0cyRcVm zUrBM?UBT&CQ(t}mBce8%r}%H~EwDmK&8i>*pz(le)zkO*tz8a8Y|K$%8kb(hg3_n2 z-*}GNqfhmQL(+5Lnt!ub}KEV8%JX#^>5zjlcUFf*!3Q(FP+CCLwa4AJ{9bYy&`WM;2vpP z!CU0bvMe7CbD0jR@8+H5O^D0*zF|<#noMTV)xzfgcd>dbK(1rlQ1W_YS^V*SXVnst z3c;Tx<}CJ~CMpC8E;{H(D4Ni@eru#Vk3aZvCF1|7)l0P~sHtXGB(4WS{L7coOQd_= z9~)mmq4v?M@hnL?|FcF6!2e*SuOwZ_3BtlG{f*84WJ{BQ(d)ij1|W7m?)UtdND?dg z{<`aJZ`+2TtJB4C^L_4GA(5DuVPkro)8vkL0VGguC-DpH`Mo{AMF*zR6Vj-~$<%VD zVKDTwv|%K}V8CHde3Az2g>7&8_Eh+C=3OD?(eU~BpC@tlpRO0XOV|TzZKr(i z=Pw>N&Ac{!Tv1~j@$rTdim-87KFmM^a}*&eO(&rQVgV;xqZ@q(@HqWqMP(yQHM%+H z!T9($W3}e36dDx{VxsR8fp%LFy0s%aWL|E?!=@QU=3-Bsaaag&n~d6Sc>P}*qBIR( zmkz>{_?VBHX6ui_6tAj}f2iM0Qu%ac%h7iAFubtW!?>rYd~I(U5@3LAeYC_UMP-WZ z42tEYxuw7qEb#nyJDnFEQ!8SkJZbW&TB5AMGWIHpX3zSFw1u6XB}+|37no^n82%#Nq&I?XoR5mMi;Hs$cJwra|DXkAZFz6r;+ z``Ec3*e?=(u8S-{P!M_F)TR2}*N7Q!V)~e|l;&>wuL`O6y7DB%O6=$3)|-#lI%clP z=PuQZC=0%Gif_taDdAnV1tWTcACTc;n1urF{TAo7`H$Q@NKTx%9xTa2OGcW|?b$64 z_ zk)zr6^pIgJe?&~x$eRbhqX^rsK5{B^Cq(vT%2PXa-ibW9l8ub;Zs`p@=CFdDF?_p3 z_2d|Y0lnW>%j?b^A3)r*ldW0!`tR_5lM09rhoE?GGU2)QsU+iABDq1xZFLZ)BvMnoa?-w%d- zmeM7<=H7ik0B{cY30&}9$zZ8sgTdC(qY0bJ(HnIP#Ep`n)5v#X;^_@Mt+ChM2}H}6 zU{kcxREtl6t2zGtB9*@tMM$>xbxg_j@kt~nw5;$PHr6})yTc^Z#D-XO-AHbi z;-aknqYdhe2R9u!%7nJcP>ul=b<-V65jQtH4OHTuHPE^!b55={rx){9dcv6`o{AZD_Q(OEgJ6~1e`^yxPCqfU7Jk{xb8)^}_$DAdbFBi>qwd)io> zU(&L$5HAd$Y!RW`%@HE)K3Um1y^O|fy}DhJa_%FxMYq1Z&>>iT+mzwInXvxAj(7ov zAcKz>Ms^Td;e$^bjduRf;4K(7iYV+`ZvbE&kfl?;0pQu^B2XUXQ=@haNbh5mf& zM%)oI!40fLDAkH&{_8X$A6hCtJJGA~q#l~t{5GY+sxiSfwnCqy`nHcWkHGVx4s1Ug z4}bSlT@zG8%Z9;S9l^Xpyo$4GRC%gQC;mpic{Ni0{8Aa zM_+5T5lmfWW+BjR>rKFo2(pbBEZD_l_36=Q0X9jrq1BOh`%eSVpdqo=`SE1`dmm@BfUSxvLAm>;(N35o0CnRmADFA%_u}Et z!x1WS*~X#3Ec`;8b1e{_^xE5`RmAQ->e^LuiZD@oa(!u-s?vLFeOURT+Imu->IY8K zKw!Ubfy_;*ayk-u(`NAR5ld~C(f94_Ifj+BEVL;lFg9da;-J#^SdM8ublndCJGC5| za+W}&)ZP;jUjQqq1&WOcx*o~q)~IgMK6}Q zZu0E93^%pUhE{)F>&1=BZ?Pb!E`B=i(4M02{6BFQw>gY?>fMqthCFw>KQe%Ol}o&L zM}AAe>z^Jk4#7^W&y`SS!+x2G^E9$&W=Sb^mCpg}iyX%@d~@XGw=!O-PAu;-1C#4v zH;frB9}`N7q`k1hYU+a%;U3jK_h`TRIDYW&`$E@|z5$&q~xqpBda!?*w7IElK{NdCLh z*X)sU)^A57R{y&?YyU3!X${~YZ)H`(h8F3;YVQVm3+)wD*y$1$7>`E?C;7eZh{kqR z7_(R5I>E~FH0K(LPqj9`eTtr!MX#6=NFKsWVAGyM4$_`Ac3?})dFO}EnW!yB;u6HY zh9P|!$y4&HNW1EYV+PlZGi!I2@7h8D7ub%NPB(p za*<6nXa4{TTPZg0^lkuyW(9Htx$zvlq!U4aoQ<= zM`#xNjg~HAYyl=av}1sQ7BCo5Z2>xKCn)$t;3tIdqUfS}mfu(#tB@MVl;PD9GPs@r z2v=$#d|u8E;6LPYyXY2MZ+{m`g_LGJ9-`ba=nP@>QQ=;yF1AO(!DyO z+piL?_F1KIov^aTv_@WnW8r%yz;o%QmrNlq@LJ5)ujs|v^L7iofiXTrHUg23!r4LZ z06a}8V-vczJ=-z}dBB}o*PU3gL0t?i`@6JQgG}V3yX55w%@{sY&9LHVX7WhS2m7$A z#2$zMO_g7GOE)QGEK;TX3O?MiZM}Le1w~{g@&TygG^OqGi@Y?O4QoSteG-1`$5usSij-`4o z`~frX`|6U1lQJp0vhUp~_CO77{{p&WBal%p?|NO)-b>-tB-?NXC?7E6+& z=y{3O|Anyvi=`5rh%(EHFv9@8u0e^y>0-`_0X>A0&Md+6P{)=7>0cW0ulcs39)wk~ z*UI)U_YqJgRRkcV?_I46-fKC!Lzai?&Drod#G5|amE{-6wk0J9>osnOl--5>XqkYr z0taPRA?p}PV8(By8%+}_J+^Z?aB#5*JCXfMFv9~^)2XNezns8&c(B>}hvk^QfSynv zrO6t1${pO}JdgS)7an@_9`_S^dp@k}1nTbgh&zAf8FC6jM4mr zL;E)TI)??I8yz`AxJ(j4;b{wox;dYb+g=z+u_hpDfeU;SiDU7ZaeH`A`)WF(RI0#A zOIr!k`LQ#Bv#=KQF%PIAyyv=0=G~uH&8azMt;tE#CLq=a4`Us;-y*JXeii!XQZTZ|%tcu1amTy&Ll&o}8YeVA z?yXZ*9OjfKpB>s+44E`_UzLTCnEx@F7!`S0{!-Kr8K69-!zAop4(9l1V+URtmEpam zTLHnv5AEX!^unG|74{kEBy;S}E4^F>$|iFpN@29V3~ppITQkGZt*tebk7yn^N0|lS@r9>O1qTW#WOxw@<@|%ZDy8X-_F(Q;}H8D!&7YpI*TFsTHM%?MyjG4sa#- zueX4{C;Bx51=qGS&dIgaYt@JCBa>CGyffog@l(}=@+K&Aat(8U@uPKLgb-`(8@Yr2 zarC0p`*iZ}aJ|yIOECv7z&+>SzVnMub#No=znFdflgN zZVCiDu#@0_0%?`+LaR9x{RZ^8$b*vOVf9Xy6Mm9tjvLMqXRVv)r}HCU&j+P2_R=Pg-{CGvTDm&# zJ?~o_Z+#!v+O`=Jeg6d36yIo~Qx$s1Rth`n`g6X2v<%_ji3LDETa@kgpEyRfwWjyj zZfYH=={q#0^gIX{_QmMiYNNQFl9O!XUZ4+?!eXdvP;A17gB+)0iR%KzE+YUw>oGN) zWPSJS-D&T0$*0DSn7*j)g(qSTZ=#b4t{Y(M4PnjTx;1{6;XhnZk3T72D6sB&S8GJu z4vf?}kq-JH+qh0h!=y`6o}`ALr$-!VTh>EJyE`qm`pC!|;VddNN&Kub7fY#iRH%;B zuGyKXp52}L!YGNq#4nf$3j)$)`)ttv_UXcd&8@vGwZSqs_zYW6F51!UhfDWOg8yS=mq)44_DiTEX2dcMi(wWU^~Gy>&^lexwei?o15Y= zD3WYuNOjf!FC+UYTPh83+@l>uHoC1{5T_cT(?ulir;~HsX5^8GEmmq$`Gaa}>*>SI zXL8ZN;IIsoZ~aUu5K1<6w+>4rsmIogUGnMyqp@gIpk8VCN`FFFf*3jZnL(zR3$Yg{ z%DBB~8okGX^K+CLcgnPeeXY%iU}a?+_W5f1bhmX|l7o)mpp#8F9(|W^Kaetgpr#3t z9s3aHIvs#@*%Y-MbCblPJ4piHk=&n;ff?nO%4TS31$u~H^6e+%kNJ#`AzHOIl4Ms{ z4lEuknf<_K=`z3YDm(ORV6Vj{J-XjHJ$mZI=6qE@vJuZf|qp!1Rl~W2gIW855RwW48XkbaQ+Fs9pKxPHz=B!7jh5%O*;w9XX`{FR zvZ`tz9}_YrBYISNxXz)k$~=>E`_>R5z-bW@Bumx+daoQ25l@TQh$rvOIrm;@*zWLG znu_#i<}0(2Y4Fht*dPLVRJfayMJ4qqDP3P2)8IG^unV@sv83%46wQo%aZGA95nEOs zZU_UJ{Y{fR{_QDYPdm&gY=W))&p1o@2$LT*XQI*7@Okju6)OTShQyxaq6A<2z(&EyO@MaC+qlH-O!F8*bLqNX%$wS z3fcRE!x8;gKB+tzo5PuJO{ERjoeJ)?UEre{udX-pis8@+4N>9&FyhOriR<>;vnma7 zP-LDBxMF4=SN`&n8H1qCfy4SQpqL0dqy($dE2EFizv`T#lk40>9KJ~hRCwyW#OAY| zO7S~qq#l`!z`_?aTcRVG)vOil)D~7+o(FYJWsohzG-m7Vjmy8h8d&(8sy%GKU3Q4SH-1$R=FnWp!`tG<6>Q-jy%Ss5Fqh;#sAn^CBwp_k1-FZFM-ks%9lrrA72qY zH7DW~t9ieD$T)XF?PlW5(X?s7T-1$u3(u;OH(fu$c`hgD>J0kTe>_lMAME+K3#&r?akd`)kH^9{R0|UTwOOQCdaGgpT%>GEnH?e6wC?e!w@^$)V>~P%5SEk}R z`}Jx|TGvM!aZ#(Afr`!j>iuMzl&Z>z*xB0vc=?E29E(aE-=^!_|4 zoDeP4Pp^i~es@^+7^NB=d%7_luNd4aH{ujfx$V}y#bZSzl*mxM_v!%7kwg3IY0YZC z{4R5&>;V^LOk8`ApEXSVOB-cl`!4@l&Gf;~`pW?Wd{$PqG!w+}k*NPQVg!9$b?}MS z#XH170$6Pi$T#?~6ptTyU^HNOf38vq8lqMjk7-+Rn0O>fU$0)v+krmq zJ6!YTDdC75zfb>t(}y%r`R{C8{*)equ}UctXNVT`XR&BSYYXi^J?HyD(!Rb9EqtoC zibYp=jGqnuUbQ!AkDYCXFtZ6f7(YJ)92UTOQ(G65ElQH7Z&gu`LeM8WZrUezyi-m~ zVu&%jK@d=(K%@y#36>)`Pr6nmHU4Ilsk2xjibHdGD+pfj`LX0!Q>9qeyuO+Zp;)K- zBe2(+nT8N(eTrTkI+_XS)r%{1WE7kB#e@Ax(l9A@zc?wg-qAbrXZh)44b0Fm8yNUY zS%mEMrvpQvy0O>)>15liqWY;q&E~2=imdz2^s!?F82{QAJp>YW{IFx;f>)n5mD=73 zEyB#!enoW7`7_UO_+t>^J_@uhNFA$`MVJJ(-w_?<%O_d8y#lGTEE5BpmD|sAO5brI2E#`o#`)S=2Gpj-^2l|}#;%}V)(TdHI+8$O> zUHUTxi~y_ura|uaez=aZ;x7-3HB?K=&g8Q8 SK_UkFPeE4Yd6~57+y4Qm>7J7S diff --git a/docs/articles/sampling_files/figure-html/unnamed-chunk-7-1.png b/docs/articles/sampling_files/figure-html/unnamed-chunk-7-1.png index 2d2acda7c6111b2e9cbc9ef0e15545fc056fec88..423543aa7068d48c8126b2428fa57ac80b6b67c6 100644 GIT binary patch delta 9673 zcmY*fc{o)2|5vWGsaujt=w^lx%90pMg&1quvrV#2mMLS&Hb)!xQsmeg2Bkp=S+b5b zs#=AH{rB>Ii7oDBD-^o! z^aZqURwG|q%m5l2dzKqK)?cayu1!@w2gKm$$!`Y0+~y`-Eg=~DY1ITiCEn_V^U{w3zVc0EI5ZhrvB@oC4JSG(2w#RQZ$!kd34&W6)llq3Q zaPjbI+aic``U9;E<1x;u7 z_nS9`C5n;pi|PLJ^PK>^cXT*L8*HMCeRQ3A?|0uKhG>E3zqfb`Z6mF$kxM;BF4cjN z2}#aWrM0!lvED5|!9~ZN8Yvyx+vbF02)C(B1r#dpVXs`(y~OL-{>&T9I`w2mUW6e(NmeK>ex!>le1c}?HZh&%jXjVi%)AxGsgB8<@9isP&BW*M z>@z0>=Qfrb=1Vs>wTx+pbQ&)H=DgOn6ObI7t+^O+E%+HD>+0Wy(CP7YzAO+xC7d8h ztL~IJ1O6z%KWB5_|LBva?oGP;M95h8xQ*#)-M)LZQLqJe)Non7jt+Lj)6K{@T^n~N z$zIwmY=cW9CN)groh5@{yvpEJSowHG;0YVs1vaGmP2=#(E)%&X^o?FHP}J5!@xyo| zhDt7dR3GkTCLu-rXi(=a-?{>;*UPyC#sR#Th@%Ls#m(WfNUD~huP;nONG(uU_g~k^ zj}w1_iEZ*IyUjbk1%k@esHSdPw~2zU_Mk#>nM5ErUBY0Z>Z*6T0?(K8^Y99ZbUkT4 z;nJ`0z()9Db4qHee8i8y9Y(+MqQqJF_fws`68@{_*Pf2T_(v|!xj%MbeyC&uXoK}S zLZ@Zybz95JxJbfs zmOxX2X@c$SfRgj=^4m9Jv}c(;)mk1`5Jpbb^U7KG`FdFsDxHi%w;kHYZweyzjSrqb@T zdF2Y>-CKI+wG&Wg=(0`Ap%zcyaT(YQxrINQ5x%cbJZ_wgZCUrO2{YNDA*v4pWuygv znm+2<&J(JS6f(3y=am>asZ0z%amp-atGWpXM;EMluM?sGk*cD`p43z)e5)YrrS5bu zl+U=hMXoPHL!rJQe?1>4Zt^7As}Zacr7Q<^4PO7)x=&8ZIdfpw8kh+7&d%`(`Hok* zUg1UOJjZ@;@R@C9U1(PbTCRl(6T^{o1^BekrvvWS_a;yFkqf*{EUgrF4n|pCM3>lC zT_z`P0y|*o?Vk%Hfjr^a(QVWwRUb-;s6kPWk%?cbu8-FGJ4b8h#oEnHb+GuaU7ceB zq425X@xM{khDd6v;$JN`XJ+>+-?;0*908|Y*CswNN|T!v&@}o80ZFTGY~=iF=qD50 z$RG}Yu^mT`CgwqjB#U35eiTa_(mk$Y0hoeDZ#LF^eMAiJp0MIJU#KLq2hypD{`1k9 zQryso4FDRGw`c&b1O<&OIUXMz4S){+nX2n zGuhdkRaX*?SM!KN|BZ~qE%Qway8hSIa^r^O1IhK=jRL70mz?;%W$uKN9-tDhvra

    `cO1h$4mgCD3>I6eB=bZYrxhuuX;SlPY^z zf5d%TyDIIQ%lhqv@aE6z$!|$x9e2i}#tUEN|57Ovmy)VI{PWl_(MhjN-I0U4u@M-M zzA=!kBi`U&&x1gL0R~j>0PR1v2UQ$rxA6qfVW%|?yk7k@SSr+s+l&d?>MW=TMxHD8 z)?s8*qctk!D=$d=_HKDfPd1=`VvwdtJ%>WKE)m3cW896;hk-PNBV#t*`%>irl{Vo zSi4Nuut!pV$7ijKG(21zs!vLF&;FR{nW8%a4pB-o3b2PyPZqW`HGjOk@gBRLN_??k zO__{3Vl&?MdC!nT2S~se*w83c5#DdU#jNDA+%OJlwFAyxA5NKzy6AxDkgzy)wvf6W z4A;aA%)(LnR4&A9u*eFZ!cCevQkZ!NTl6CUle(~}OO@>yt`uUjAuFS-uOWQqKj~Li zxM!8*PhN}KB97!%MUCPt3xro`P%72&gz<*(`L`1$iCJ(UQ4Fc?eMl9>x|8s)LA=(q z`4HTExt)B@4kPx?^*LJg`|kwnGrm}#rCd7D+=$9qn=IjCp7mac6e)Ru6491EMIpOoUCG73)c(w9EIHLL&VucMGNS-w&; zHy>`V4D%~!?AI4MJI%^Lz*9*eKUgx|z{+T&?t_iqCFM%bP@m^%MFUYjKQ;6sl!_$R zr%YxzznkW|l&mJGZWew?I?*lejxv%PxAa(!Syy)rC4%1n(rwesVsOn1QvqatH+^7uT~QtuV@_9Nei0ZoJq=by8$9tejr zjPS`>NfYdFvd5i&d_onUG~}=lvF$Xo4-d+g@GXOQG2 z81N1T$Z_mXh?<%UocZBa^9ClW9C;Al%Nrq*2}9~@7D_mbzRmNj`R`Dx3&8=}k1u?FPLgV0BcfvrP===;+a`?a zrY9tu%VO8mz8AW_XW1Pj5Y9sy^C&v7pQ=UsH`r|>CQg$EGOzmb-Nt0Z!c0PBOhx>& z?<*;O8W{s17?RwbQ35IE9~xK%+)5R?fru5AF3#>6&S#f6EZS_I?EP}KD2}s-PxZOE)&QU z3eizCFs!hrTfa?C?y?SqFz40MIt?&I-<`IYdR(yWtO6^%-&h=d@^eJps&2j zn%To^R>0=s*T@2IGt}J^hZw-(&ktKEdKQV@mJu`9u6X+#Z2eHZEj|Z?IW3nf8w}v~ z+YAvHX70Ag>F6)y#c1eqM+jRtLBjq~Pb)>16P`Sf7I^*25v%2!GutlGCm;J5Hpi!L zZ_XNE!pw)ORC0mKuLFEnHxkVFD^r2>cfwNdLXIikx@u5NwJQ51UXB3jF4`EGPAP-O zq8C@jm(a-E^{Jzd-b5IFLA9m?Vgi7c!4YDrPQ0_DgG=n|viBwVi=r}?qUo2T)w<})PJojxq=ipuQDw8&v*azrIzrKbpv|8{m7ug^!9{=wJuoUQPq%yWy zuHArw>0ufAah{lbJw`9OSsds`DT;L^y*0NH7?W38_ZlrfTpN^VBSaR3Fc-~8AMOrtp_5Gv^TP}C(vjZ%UH^P_e9+rqAs zrb_ad`EmVMf50GHi`&&-9AzI?1bIfVIgR+gK3#(*HZxer{33}&6p;g*X3NyT0 z;U#^h?qjx?jpELJtUHiId_y#VHAm(;oHl&T+j-De@vAPc&N#eV5jB9vVvh{yyFFz2 zlM?~K6b)*vu^&&5GA>hEx`*0^Y{rP`t!X-dc}Ao>wXoGjke#eB+2(y|i=NY&nH zQlfn44n8C*smj>a$R%|8i=SqUiWtU>f|<0)Lj~zDpAs0p?+B&)h;VVu+O<00=~FU| zXi-4ZW{7VW(Wi>dgkL;8*I^v)r>2jJZS99Eyo{U4*-i=Nq&;7%-o47cYZHc%Gof*#E9g*P`5%)W z$ic*D*?4C78^N-XB+_PfVj{-J(Kt4VNp!NGZvAxUQ5#0T3FDldUgEKRLU<({rh4Ki zSH(=-=D7a9hyUnnk+}M+-Ue`EgdIPARduz?JL^6lY%6;!Cr{kG+4J^!@f#m(l7hA#*WlT;tFCqAlQ34$H3$;&)uvD;*# zk-e$8w7bVWO-ELWj8UFt9AhIkz)e!OxDS~iy+0DaP)aAH0rncr?TUuBre<@SWw_M) zWc(tR)AU?QCT$ZW)V|F4;g8X`eNE($K=nV9;dciEN=Mw7GE5C*`t|g$io$3AxN?J9 z9mMOO{Q?~xFQ~g5KAfz8aBAq;x%7y_(84rK5>gx-rihUw*MXFE{z2#(Xi3-&i{2w1nUb9bCAA+Zs@ar zRY{5xlFnX#{~TPpl$5->If_Vi?*6(V(rRS<<(CywQ>*8W^7WF!ueEzNut7Ey_h^Ej z{+Y#D#uEx}f%ZMc?9xlu3+B_d^=KbJpmx4uzQa@nWp#DtZ!$v*B)H$ZF09&f=;~fN zNE{$_S;AqWk*PN<<3EkmyhySl3Ef&!x4G~*m1qJYB!z@Nlb&=xv)j)4@dxXgUiejU z8U4nd+V+X7zn^KlCkMYfsEFnp(tf^IZ~Y0{IIGd`g7!&(X%Rq7LU$mIR1@wl{a{i~ z8Xy&W0(QQnG|=K;mcpeL3a{^&bTh$YZquKgYSCr)ZE?7ZF{OJ_*-d93NI6io4Q~w$ z+ap57MgvWn{lB{3_3IbskNG4LAB7z}Ecf!8_OcF=3)Fwp*ABYJFr|?p4d{v{$=rK! z%fM?yL^28f<-a|FoX~7=L(D4Qb-?xz-QNsUV%FU&eVIF*Q#rQO{ZISKdI8Zj3a2bm zJR6dDvXHZ^Fok5M^tWpBu;BFYl1u^DJ}MAs9zb`9BqAg0OeB$`)7uQkwucH^v?UPpy}Oh-M&6fKU03ZD{O8sSmFK< zQ0lhywAv+?rz_>(u+a^%wT0D3vbeVSv2tRU`J zNyz2r4+h8P?(5~>s8-nNEx@Lc+Di}l zWRDL{I7RfAq+N0rMp`5%wSR`6$~^S;}_azxsdA>d=cSeb%|yA{G3 z-2UlQt(jHer?=&I)4qFj#>`m#Sy9gpd91lzm7ivuTm*m1s8X`8y9!OAgSi>Vf9YEcRgK$3um^lwOmm zt>7YL~B7&qQX+J890@7D4i~f zRO1_8nJDpO2_JLaCG%jX7BrEx*up|RH>S?&R-CqBva{^pc?YZhkjHFn%6~l<0N(LE zP8x@k3)DYK1U?;$tpraktj4e=k}>4lWww4TwM(nK$a8INvLzDYk1GmSi(zQ&^}aKY zPgH%FXC1>k>~8CioV^m$$UBTJk_za8vxsf7A9JE%@{3E?m@@ z!AWTWw6{Iuy#l~>Y2ufp(NX%N`myYG&J7CM&W|C-FL09OPvR~^(cH#$-t@C5L4c2D zp1hs9-UDprEtau+n{4!L@<}4xTgwmxBxad!aelRyPh3$(ob|3^?CwFktu#Heq^b-S zm>4+L+u2xOX$EphmsV=n>j@aY{|$4$W%?cPtDgRd>Cd{$$})e@0{%j3n<+1r7~ zeo!OSjS~4;@}?lH*P^FveVQy_RL*3c;Og}Y#5D~M+wbJejVyZa)a166e$}TWT+6-+ zzsYjC#TFu|`pqGFu*BDU;`6ucs1SKqzMtX(OGBa*BQFa-PdCR7`n6!`Tm@{yYihcp z2ul^)J070nN^b=64*I*WN7kqSi>{LG`+|)BHLtTY^X-Z|nSVDa{W5)RB0y>?W<$Rz zcOVMu7$=OA{g{V-xMSYBJ*cj9eu?Dlb}4WvcyU%}pt8ntVgBOWGU+%=!DRoL*$25E z?ep`mvh%te^rtsGim1mhBKCfi70)dQ_R9Bo3^+Bq$6xWodNEaiC9et}lY(nP1>2Yk zPJ^BGXg=P6_p>Zn)yH;aT`hP}^AuMN&2)DqLQE0ZTzo+`rIfvS@-O5~B!hsHMwI{J z^`KZFW)>EN=&Fx@r&k>lIq7bBWw@#{eJ9NF7BgZaX`^LlIp5jUExYrW4A-s zOu($+Na1pC{psOeAD@BI28@8uW{-iG^zTC}xS8!NRmz!1ldGbg+5LI$yJeTX6Jv>6 zW$1l~Ck5G@$)E9c;vHC3N6>};kYy0fD!q#i5^GLA-GK35=obH}zSyPE9hE%r*lW5! zJc5nWMly14WoVNeQJ^j^Yt0SAQedApsL~5XGU;Ow+w;HNc`^oiTvt2 zRJs`VSKIBW;z+Oeg%04i#ZW-=_(PpNKJv4W>1;})s9&J>M~Ld+rxX`Am+HXzi45vP zD;gVeRH550+4Qv^+Ohr_d(`!jM@SFJ?Yov9*ITQgZ4O^v!OC--k`8#1l7(*cwbO40 zPf0gA|G(@5q%p%#n`C~&z})m<&r}$SR*~ds1vFRRd7@6)u$3C*w@;hVv6vv*Z3XT0 zET%@BA80`H!O8ME7^5?z(r_eW+-KR_=t_&y$0cqzi~snp@rfe!p8j%Q+0Saq#p1*9Sn`)Q+h6V+J!yK&*iA+x_Jc%$r`4yGq12Ed$ z5QtQA;F$de$H+IzCxU8i9KwRa^@xGde&UCvN2xsVaRB(IuRyzoF@ zXQQphZl(1#dR!tpwAed66K+h_I*QG^4x($$YVbIGfR`H@)~-zUO@)*rc9(f>c7a0y z$Qdm~n2^lsmUX+L0Ts{&ORK+D_DLgGeoUT@D(_tA*KrX$Zf#G$-}ep$4=^;ApAf-&FGt&4bpz2Gsk zf)XoP+`_^ygpd=RLA1BBeJrgklc{ZhO&f)0p9LZpwsDA@xx6{@36g^uHrq~Q;89(2KUb+Fu61ini%|bOrMlCw9z1CO;q{O<#ehnHtxCaBAst7 zH@_$1cM9aaP0GjedT$GsyD#;!C!ABmEb(o2=2~y6qVyO7tUL^|w&jp2JC;5NfcEnO z+C>if-Zjav>{!_cQ~A#$dbTUFV&j}%TrM*A_)hL)FkDJhl5*?er5vhBiI&&1Vd?jY zgn78z8_(Mo7f6@RAKbBlxZAA#6kKKb1mMAP7M zW1FhBcM?B)FCljAf*SrgK;@XjD}&|#G3$VgnXyU7B~d-RWdXD*7+^kc_D=igv26q* zdXb~e6p4Tb<-eniSw`f9xMf|ix=qvN`t68p1v3lGGH2G-I|C=kyNbqPE-T%0sd-f636PzuvNNiq0Qw4j0+`b5%`%12=}`xs)JTHTvSwtX`5IWZ!D9kAYy>aUVB$?l4%xa z8Xfm-|J+3~#hZ2s3ETra@RJ%&>!Db8PZIJ294_}OhIokk;u1))EW8BbEAMICn@fAV zk1iPf=&9b)`|A1e!fIt`Z=8*!@8P~Te?hfHJ65~wO5{O;6uQ`-j>{RV*F0u=@o^z> z-T4!9i5h`e2#=E?qvyhvSB6J&qdc*Voj_7<<|Lqq?;j%YOJ$I<=%<4-Bl1_8`?d(o+!VweKf z%WYz>f+z|?2g^^v^S*xe~Oj+`P1 zqw&P2hri>53i`L5Zr5E*igWbQ0UA7LMtl2Uwif=+&v>m9@a4nxYa!o8ZY$D{G?soD zEUUx}_;%dW%l>lOta$^(uYkm($d%yY<*J8HfzbB^6yw0$dte&GD@tDR)~CF5{mDv} zAW4Yc@+&-RvOx7=2t-B;qf>{c=j?TU$9BC7l5bn+7X>A4qhxOxRy0wh&dRTq8awWF z5)k?bMA_zU`?KHn+kxP>$+XE_%37=AsIG5TfybWj{-OJ%mJdVwICl2nZxp%o1$#wp zeRjB8^kSNVe?ao&@za`Cbp~Ggku};!#eU7*W@F=!-(BTLJ>^6JV_FdEY{53~;;jGF zf1MKPMKOGZH(-BDmo%PDS;lLiH1Cgx`(t-4*2+ z<;-kKf78dy%B{#SxUYv;7-D98qd+9PyONO)KhE_kl>-oFoWB=6ViNm>~ z3tiQh0nW}T_Y!erL4nBDZJHp=;lO5{T;honEDd95$g&En3rOMqlh8=i{%}-x9_ZMl zjc8u3b=rHzSt$5nmmO3~RzTU?hDKA>cQoYC=Xf4~Q?dxyjkm-d=&iycG*3b^1t#&6vP z32;Z@US4C*vUt_!JPQ;;SvEA{?VdmMQ|5s#?Fe;$mAkL6@7xgwkwQ~dyL;VdM0~Pg z3f)qQvgcXPwWvYRviz-_I}N4holbn?yW9p*-L25-AEKzPkM?3gKfG%V^fdr5P9m~i zxj{Xl>&3QsUJ~1TJiD@UTVJsgpCpxe*`J0-F*q@#s(ZByiM)bSP1Y9{7T^j<9cxAr zGlQ~MGd#_9!?Qs5vefZKzSC6{a!zD)UReIysOgUaXUg0M-)=fPG4?Lk?<7?2{)Vt- zaDwm4dCy>(DJgPP>qC6(lS8?#EK2-fvF%^`d-p}Q969r@aee2_=$X&5W3_)KGNgvS Kdd{u;&;AcY`6Kf0|Lnc=4`zmV8 zedU^aGiR7{j^9V~+vBnSKA+e7^?set*Yox1e7U#n<=&8-9sD$I>s|reQQD4kpwgLZ zPrD_LDRpZ-Dd^0|JC=LyT!hrVomo_m>3)&$((}9I-oT=tElm_X2$f$7YG91S{rOqn zIkSU{iz`GXVux%~`>siE;Dnx}G)1Pw+XrEZ8a*a;5mm2$9@D9xCWX%4;TZ6!!5K!0 z3&m!P8TQk0imoxEEFN%U4q3X#2-I#F<4sy0U-472_?F)NoJW-V6{%}(L(MB!HJ_La zzZ-VrNVlZs!}?koU$Wh88+XdPCqZuu73+9lyG_Wv&!N*Ca3jZP3-@VnLyhdYA+@-; z0$xd<43U{^c`%D3`sV)M03k4%FfO zROjhAb8k&NENE?ISCB1lWzE$Js|n=Tko$8buqjr#>z7rmqtd(x?o--1rYiKf*cmGu(Wa`@!!Lcd=dI}&ufme*p~ixt+FF&BUn<4?M%JI7n)^M`h^z^fbauo5Vr#eEjg{`CcOXSoy ziyX~CYmvW--48h6`&fp0dxtm$E8ZpTcQt!LikCkibeTP>QdY5!Ocw#3hUgn?tjAg%D{?(#s@c5s9EbsMZm+w4`y^XRkn!TE| zXFjD3*6w&x7D!|%4waw#K}NvBngxamjKOqa29W?a`kI;>`eg|cUx^kKyY zdPEfJNU%<4fwaYi{4m zOYPkG*A%oGK6T~_ogl8T{EI*B6*i|Gy?)~Z^`+5IuI{%wUQp(xd?vAE4S!;G6_BYyC4?y;Z3wq#S8QP}HZ zOMRw=yQ1JhH>3*+9!#IDe7__lFC^P_M%-kgE*9Bp_}xR@q9hd&`qw)^w$Ywtx!tGz zo7Q;iHjQ78pT25tQ^Diu-fHzusoQTF4(t#wwsV;NaiW+cok{R{Mv;zHFv_yVjp(g` z6pK$|;L03r|IfQx;KG-8Bx|P4Dl6Cx zb}sMgzh=#Z<^Pdk^e({_wTmiN7V|%nvh-iz-j*2|nXX!$5oTL>Y<@}^oEEL^^}n0- z-4gIfxdO17TQ<{`6!&}eNc>?B>=i*r-S}vpxZ7gY=HR~^ z89CrHsDcFlmS7{kKh}wW30!V9Y zpnhW>sQvfckWxNwD^F)0!CT<&1MHHGLeb8^x!jQT&g{}qt&^n=I`oXjw;I70^3KQw zu$59}0~`ygZ}i8`XV>>0qKw0qK47Nx<2!aH={snJi#eII)mndl@=qp;uJVRkOEMc` z{U1F3t*dwPOcx?sPb$z{(q;2K=e_|aaN}GRnNpHbr`=hhkz`<v}YuWA(G74mU7kcHD3n(JNcPrpLyhTq1tD#dzY0IhKTtnK>^% z3gx+gkgtxV*}uk2UwkdRIsp@nq93L9JAJ^%-!)ydWw0Is`xwOpytrUV+Xov?Ra-oK zz_(c<1_x^TpDwm(MX}q^Q@IiZVfMq#Yl4vpha`HwxeZqR3K^Uj7ZfS=TQ><*R#h4a zIhEME^xhqNOGggSf0zB79)KV)Q2r^+VoRz3TW2m|G7DdL1m*c>%FDDm#y%fEiK+(! zZzr;Y7RCp3c;@Dhm`Ir&bsPIPC@VTM){_KN2D{*EfgF{(w|t^qC%oEa`_t{-(vqsoTIDC{qWX{aG1L|lY8o3P0&RbGBaTV$S6cjB zcC95BOC==8BTz$zQ(m%tFYpMGWby45GE|R6B6Ub_+VruVfnRDUDfQHZWk+zo!QbTO znp7-_)d_iJY$XhwGBpfJgq8N824u}oPHP)vASXu_2C2&xq5eM98ZR%a3yIm;gPE{C zzYfz#c;WL-N@0?YN5hhXMedg?pCZwp0z4YDJ$Pp3p3L4Lu*$J&cUrAz+-b?4kS3eFM5fSkCToI3vJV=LuF4F=|9 zd5bR2FE|^`l(15n83Pw5aS{Ocsd0Z;>k)VU@&eMNo_ukCU_z>%%0MZR#Crd%t4}U6 z=3%#SGP7I^U=%#dlr=Lby7TzQD7-7$#M`qB>Qf3@W2?8u{YVe<3ot-iA9kIxSUnsr31D0KGjzHxrby$#2UV=Nks581m&4NKF5ku#KZogm zq8+rl#ZukpxXFUD3E*v#JO}r^AO8A8FhP%snSe>C^3No>L`5$!1s-+_y;nQ*A3W&W zBj4zui@}>zSeuCwASlO5y~b% z*v94G;plx;>F0hcPZe|S$0(T7z4g4Hx;jxO3hQ0Tf@r=A7UsGi^+kKptkTz0Yrals zPpSlC&ssk)F54yF{;;({nu7T4RMV9z@C9?iyfN1B`A8^i=&?2E^T>!JowyeYe--jk z-zeApsXzT|KGI&V{_dl&4ul(nfpd%`ZET0VgIe5VF14^V&bq95l{keO$AgwN$S0Th{>k%FS(@5xjmZn2L{hMEzlU=XPpoC}MwD_@!B5&|%wRDm?t=Cut z@Rw(nN@e7tU*o7N*)t+!dz*Vgj> z)7Y4pUrlZKWfB(r)o*mr{F2b`F>n{F>9OW{I&+b!LkC@b7*Y3rJfxBeHCuLIH_DtW z&05lfkx%eK5&(Uz_U^(8=`Ad^VWsIZ$7VUw!danu60)*~t=E3cluzR~r>~hS@lh?y zS5aYo(F@pae$KAzVe*~kdRU{rxJwMbc^h_e+8Nc?VD>1v)E)2rIt2s7U9FdF8q3m6>=xoK=l!X9 z5g{q8rOyKrlXXs_9qiL_uL?dum{3CA{A{XJw31m?Hr!sT`+>p6B%w+#cQX@4QB-Bs z<4?61Fb{@aTIgE6)c6;ZafRrGK{n4_ThlUXS!sN$x%zzE%bx7pcY^7_{a|kVTyq;{gD+F{tR3Q@{3lRTrSqG zwTA1u)Aewk=qz1&kCQF}?6dAc{7yV>Z6!P=udu4iD0cTyx!$ng?vNBe$vdBWe+$Uz zc-{JIkdVwD$tqk;RyE}&i5)0IsZKx~xYR~|G7{(^b+ z*pWb<)5-zV=bMgcsRho{Ce#uoc=g)n9`vHqu8D4Sr@0r_=aH3H;w6}$E!*Ga{5pL1 z3KBg;I{1<^*EHE*9N49j_L1Z#Zl4tuNe;e%*8cv=%TN%pMty| zJQf=;Hwb&QBe z_b*@?T;Hys%@wBb*w%TaRLRciqsB2bc&ojh_dK;XTuH3Q#KLqH6|MKi)Q0jd+T(2c@Mlp-JFe7-^2W-b>MrPfCog(1IlBA)$lB;Q#Ny)Qdo0fb+;m-(? z_B@1s1&QZoN|m3tW9dqu*S-eN0$^@5HaDe_CvwlD96J~;n|oMv9Wz;3~#1{$)rgJ4buo!U^2{8&^E=&1MAmO1PatR z#E%lF7D?VOwnJIkH|-!7@%k)}y|~uuE267a6*3j(6E--#NXW)cK8a7r_5e=o%Z^u( zM46!Ul60{1rGpvHo|$PhC(E8x4w@NLJO1YZ*>1;X0M;(0*kMHXUh{*e82ZrTByBlL zWD;wV@WuPpZ|Tde;6v<)oo%$690uF)7RD&<>=r-q_gYt%DnbMU#4&!@kzFO4(XLLy zJIiGx2#F^ye@MW3Arh08hZx8-MUfOERLDDy zWi5|Emd!Yfef!G*640@B|GK^mP548RsO;+kgBERy5bh2Cy}Koz8y7c??dU1Su|eX8 z{#eB-T+Kp}I-gBX|M|Kt=k|s69U(_e&oamEe4KRzWOF{woCoCe5#4H_!IHu-k&>jJ z?!WAb3QvUzxt493{cF$E!Ai$iL=r;NNRysG*d?#u@`DPNU!f-ZrnYxm>JEhOH(VA9 zE^!w9AWH~p80DEMr8fEJOBZ7nwL66BA=07nB>V*Rd$HX=wgoY|*k3Hiy`dtzXVRTfzAvT^mHF zh-l^A&C1sC5MTE~c?lX{c`dyE8943ZaRg?5>V?>=k}a}ea;&5{`;m>^)ozE;RCYLj zS#Ms^)q&j3{Vp~?G}eqz9H4cTZBr3Z+OfP;+q&xdQq{FZ0()|_*RpJ;PYJp7WNDNj zplVI)c|JURdl3VK0i=0Vq?h;N51irY_5Q>}pVlPI=twTea6N4aSKdvjZV(cLA#(=8z+QgAVSb#ufhr*CkTP7dx7VmB#o7RzJAO8dU; z^T}{-SdiC5-?Kcb5Dm-FX(aU@-fz5zdY${!1bgYFhAOanMKyaiL5;gyd8_xn-Ob6h ztMQ<11&>yonei%bW3K=<0q%5vez1TjXzv!h5Hi5cb8A%7@c68{k(y`Umm^AF@RGph zSo_Sdv8k#Un0+RT6|sbnJa^4}bkk*ouB$H6b`O^ae@8FB;`sX_O1EIJzAbtCAam%P z$pN;`%mki({lqDCo&EwSmYO|4&7c0$gVuyM#jDY%r}T;T;2VjT-D_PLQ>4Yl(fkAI zzQdtQi)lSA0rqzrRfY(TJ)j|0n#IG~J0_Qc$-yE*%2ObpQ(Exg zr~F8&W$w_7X?TIT+@tad{e;tn$)X;d>hONu4=OQd{34Q;!S#Ws`EInv5teCziH)4< za9O|*AF?MXycczba%fM<; zP><|3WubC%i!j?)y~dBtflIsEK3qK<+z-dLAx`q%l&YFhfbp8sImd+Ob31TuUvmcf+!2PUW84k2?N+bPF!hvKx7@3M2=x z)itUy{D5;BV~c^l=rNJDONR&_qkn{VIWw?Ynn-?Fnan@{5RalI&B=g&Hu+Lra| z8%F+p8^xp`HySTaDBpcbsDYTjdcfDuWiV1e2rs}najFi2K_MLh4jUP$q(3XQ;@LwN z$(NuA=`Ze2x)fGb4)SO&1vpKF==&30?`|}OW~g5dtV_9(0EjG%WiL*Zl`b|mM%^?_ z*tV@Jg!P&b$5EZ@DvzYF z?-|tx{EHpC-&CrBV>Anh?@2oZ(TsU>U&$~#(JT6jm`VDx?xMfO6 zXbmOEHj@4P$n2xG`HzYpSjH2r-}wUAJJI!Z5kGq7)Hnxx^|6JDNUd>Qt$be11DtZ9 zNNv|2A)4MV7GZ|D+NJy)okK5ajO|l!gK{hRJ2>GSFimpMz2(r??|+c6S`R2SY#I!5 zE*TKBWii&Aa~#EH~*F%zxG*vZT87h9Q1%OaOfayg5bhwQ6=eGro(}5>g4iF%<9f zFbtp}IO;DRgxZ_QyNw~jwcvAqNW^t`(EY^q`yIgZMi=#pQkU5q>$Xmn6EI6SAXe;s zclt+ zLkZHBZ=UKGf)1QQcIx>Zt=PMF;ec(>L1;0Xn$~2r@X-o_4IRCqB<^BU~&qZ~8pXvWc?lcVX^uh6n_c}Ud9Kp|7HRv-dWAU7;?jl42A!=zqToUE z$3Hmc!rSw2Ve)-J;Nr7(Kv8iwI=bzCi^SFhHvNTY@^RJ!SS>ICX9S=bhNex=flAND zaFjo5r5Lslap|_MB!^Dn`pQ#jw1>;vzPlysU#qI}HUc~4XixdS?N(4b7XxC%l+eBn zbLv~QgL#E+;oXXuq1cfvJ^VN5A8Y+&wcNf$BY~Dr$PT-jVNsY9=E9nD79)n(eW%+1 z_~ics{In-8g^y#L-~0$@nBH2?808RI2N^v`dT%oJpiwJIQ6?>kI8T^tZY13*Q7C<| zu>&A@e1<6tZWbsi6PVUmy9VB#F7`F`L^wps8RyeWE~e^YkIL0K>WXX|9_n~wMlYn6M6Fn_JugyEY_Zs%t$PNlQrif^p4HIqGLpHnH;Cv#qDyLI0ijof6 z_&7rj4$#NF7rkvSG%0*uIFex&e(DlZ3wx5gvTu6V0nQmY&!kT_6}By`#n_>=R(qps z>VHYEEiLZhi7U%^?fDa;iLM;opAv&?WhUxeQD$~2TPFm7^buDiGMN%IV#nS+dP|>7 zP@>|HW(^A%I{LP+|HGtcwLmYFx#~L>FMvghOih;LR=yO32YEfR?Q_p4tbQE1Agj^bWUT&~cCMxYiF8%o`m!ur7%g=9uKZ$yRl>uS%%E~kzin|c7Zr{ouZhLrD%>y45-ETjM+WCtzz1; zqkgne<47|POp&;&MG_tv+e?Ocz~G|viE{sbMV&IMc|SK@v&*wJ13P{u;5Q?byp4W9NXKDReKd+<$YnW|9t8>K#sXj933n8UnxCoBHzq4=}77QwTto#&Tjo91h5vG zp3wQ8>*}h3Js&jNz65w}c@ORs1e)FQw7k`^Co(brtV?kDwMZ|~-R+&pIxTT8g?nhs zK3Vo;)i3jmWhTdNT*&Gh9ZeE1t-n^Z9(oS(byFXj?Of;ci-Y_{+T^T zY4C2@3xKBBj<`t;)M^~Y&93BMQ8-+2Acp8Ze9jBoU|w(mi!U?PFrBTrxT9a>^`pm; zULPv5be$dt%*~6MN0*6njB;ilL{s6V-gw%ai8O@llrA+lN5?o_oV1L^uF9{2Mz=Q5=-nng9 z&nr-|yh4zdJudq;=axZU)i;w=<9c?-^4wg-qJ1k#Sk2R{ea!>N*T%}n%LPzJqVmZX zF}eZED#%P@e(Ec<+V?rxfKwdnT-9`kVDaP_wBCMt*hBx<i%5QR0&UIpxu~7f4QBONm0ObN27=zdXYFH!s6h6 zE+W@f$LNhWTqZk~xaSZ>fYo~~SAkSKD}z4hmO<^4mA&YJf;M+?Zw&v$5tFg2h|}x@ zsy9381b>9DRa~DmC{YLKU+m>@=vPfDpwj8)FpU*t2%W?sf2~;EYslEwxfndrklo<@fBkEu0m8bKt0Wk3QW`jID6!Mfru{ zA2UI*<1X9Y^MMEpS2wfv?_nx%Hykr?YDAt+M2)UNl@QPJ-aoVrKKgcZTjiud%v8T( zVHnI_`-QfDC9&KOE9*oAQnhPeAC2x!hIZH4hIm0p@D}PCtA+4N{q1xq)m9(^=I0?9 zft(p`R`4*y*cY$Y_hXIcU0V-AEUDAt^ZH-KRLK=PC3hDhn)v#^W4Z)^Z zOWzDawq?7ZNzD2$YOrXU%(S1V_vxM69nldF?FYxis=guMkbyk!ErMa4Q*H$aKt5Z1 zO|L}+Zohl&hoTTahu7j7gRuR_42v^>Sl?l2H&gA*xIG6pvsy+qrK(Wd&p5(EoqyXx zwPfkFg0_LJ?&ckhtRT4Zk^Z->D)`-G(iO+eMV-AIjXm`tO#5@lX=8wndnov_HcAZa z8zWFUQ?bMlrGn=iE|iN4dA}k;l`dh{vzCQQk5BMd44QW~m)!RDpCpKSisDtCwLS$i z))`lVzQ4E;Jrxgi%{wh;u@88Ah7jEn+fBF0_2NLa@I(L4aq9q<08bI`5j657#i>0N zz%&v{GD_!ma8NH-p8({veU1N=y9WFDZ82jxM(VCkUFXGpGGNMGgI z-tDwi7f+bD-3T=URVGz-o*PZ;ml|AYh=}r}%e-D$!4imY8B9-`5o0@XiX^ujW>tg3 z?O8n#Zq2ak)T;fhVM+yjT*gI;+_t`((WGxXx9G_35=X%;SR3c}e9kjeeoCAY-71Mc y7O;=(a*Os%Agy6 spsurvey - 5.4.1 + 5.5.0

@@ -84,7 +84,7 @@ -
+

to install the package. You only need to run this code once per version of R.

After the spsurvey package is installed, load it into R each new R session by running

+library(spsurvey)

Citation information

If you used spsurvey in your work, please cite it. You can view the most recent citation by running

-citation("spsurvey")
-#> 
-#> To cite spsurvey in publications use:
-#> 
-#>   Michael Dumelle, Tom Kincaid, Anthony R. Olsen, Marc Weber (2023).
-#>   spsurvey: Spatial Sampling Design and Analysis in R. Journal of
-#>   Statistical Software, 105(3), 1-29. doi:10.18637/jss.v105.i03
-#> 
-#> A BibTeX entry for LaTeX users is
-#> 
-#>   @Article{,
-#>     title = {{spsurvey}: Spatial Sampling Design and Analysis in {R}},
-#>     author = {Michael Dumelle and Tom Kincaid and Anthony R. Olsen and Marc Weber},
-#>     journal = {Journal of Statistical Software},
-#>     year = {2023},
-#>     volume = {105},
-#>     number = {3},
-#>     pages = {1--29},
-#>     doi = {10.18637/jss.v105.i03},
-#>   }
+citation("spsurvey") +#> +#> To cite spsurvey in publications use: +#> +#> Michael Dumelle, Tom Kincaid, Anthony R. Olsen, Marc Weber (2023). +#> spsurvey: Spatial Sampling Design and Analysis in R. Journal of +#> Statistical Software, 105(3), 1-29. doi:10.18637/jss.v105.i03 +#> +#> A BibTeX entry for LaTeX users is +#> +#> @Article{, +#> title = {{spsurvey}: Spatial Sampling Design and Analysis in {R}}, +#> author = {Michael Dumelle and Tom Kincaid and Anthony R. Olsen and Marc Weber}, +#> journal = {Journal of Statistical Software}, +#> year = {2023}, +#> volume = {105}, +#> number = {3}, +#> pages = {1--29}, +#> doi = {10.18637/jss.v105.i03}, +#> }

spsurvey terminology @@ -187,25 +187,25 @@

The sampling functions in spsurvey (grts() and irs()) require that your sampling frame is an sf object. An sf object (shorthand for a “simple features” object) is an R object with a unique structure used to conveniently store spatial data. sf objects are constructed using the sf package (Pebesma, 2018). The sf package is loaded and installed alongside the spsurvey package, so you do not need to run install.packages("sf") or library(sf) to access the sf package if spsurvey is already installed and loaded. For more on the sf package, see here.

Next we discuss a few ways to construct sf objects in R. The first is to read a shapefile directly into R using sf::read_sf(). The second is to use the sf::st_sf() function or the sf::st_as_sf() function to combine an appropriate R object (most commonly a data frame) and an appropriate geometry object into an sf object. To illustrate one approach for turning a data frame into an sf object, we start with NE_Lakes_df, a data frame in spsurvey that contains variables and geographic coordinates (latitude and longitude coordinates) for lakes in the Northeastern United States. To turn NE_Lakes_df into NE_Lakes_geo, an sf object with geographic coordinates, run

-NE_Lakes_geo <- st_as_sf(NE_Lakes_df, coords = c("XCOORD", "YCOORD"), crs = 4326)
-NE_Lakes_geo
-#> Simple feature collection with 195 features and 4 fields
-#> Geometry type: POINT
-#> Dimension:     XY
-#> Bounding box:  xmin: -73.64778 ymin: 41.07065 xmax: -69.96715 ymax: 42.73616
-#> Geodetic CRS:  WGS 84
-#> First 10 features:
-#>         AREA AREA_CAT   ELEV ELEV_CAT                   geometry
-#> 1  10.648825    large 264.69     high POINT (-72.08896 42.55508)
-#> 2   2.504606    small 557.63     high POINT (-73.18199 42.36727)
-#> 3   3.979199    small  28.79      low POINT (-71.14074 42.15596)
-#> 4   1.645657    small 212.60     high   POINT (-73.06726 41.783)
-#> 5   7.489052    small 239.67     high  POINT (-72.2602 42.36255)
-#> 6  86.533725    large 195.37     high POINT (-71.74634 41.87624)
-#> 7   1.926996    small 158.96     high POINT (-73.48408 41.34238)
-#> 8   6.514217    small  29.26      low POINT (-73.25487 41.20551)
-#> 9   3.100221    small 204.62     high POINT (-72.20897 42.12512)
-#> 10  1.868094    small  78.77      low POINT (-72.70233 42.18012)
+NE_Lakes_geo <- st_as_sf(NE_Lakes_df, coords = c("XCOORD", "YCOORD"), crs = 4326) +NE_Lakes_geo +#> Simple feature collection with 195 features and 4 fields +#> Geometry type: POINT +#> Dimension: XY +#> Bounding box: xmin: -73.64778 ymin: 41.07065 xmax: -69.96715 ymax: 42.73616 +#> Geodetic CRS: WGS 84 +#> First 10 features: +#> AREA AREA_CAT ELEV ELEV_CAT geometry +#> 1 10.648825 large 264.69 high POINT (-72.08896 42.55508) +#> 2 2.504606 small 557.63 high POINT (-73.18199 42.36727) +#> 3 3.979199 small 28.79 low POINT (-71.14074 42.15596) +#> 4 1.645657 small 212.60 high POINT (-73.06726 41.783) +#> 5 7.489052 small 239.67 high POINT (-72.2602 42.36255) +#> 6 86.533725 large 195.37 high POINT (-71.74634 41.87624) +#> 7 1.926996 small 158.96 high POINT (-73.48408 41.34238) +#> 8 6.514217 small 29.26 low POINT (-73.25487 41.20551) +#> 9 3.100221 small 204.62 high POINT (-72.20897 42.12512) +#> 10 1.868094 small 78.77 low POINT (-72.70233 42.18012)

The coords argument to sf::st_as_sf specifies the columns in NE_Lakes_df that are the x-coordinates and y-coordinates. The crs argument specifies the coordinate reference system, which we discuss in more detail next.

@@ -214,25 +214,25 @@

Coordinate reference systems. For example, we can transform NE_Lakes_geo (which uses a geographic CRS) to NE_Lakes (which uses a projected CRS) by running

-NE_Lakes <- st_transform(NE_Lakes_geo, crs = 5070)
-NE_Lakes
-#> Simple feature collection with 195 features and 4 fields
-#> Geometry type: POINT
-#> Dimension:     XY
-#> Bounding box:  xmin: 1834001 ymin: 2225021 xmax: 2127632 ymax: 2449985
-#> Projected CRS: NAD83 / Conus Albers
-#> First 10 features:
-#>         AREA AREA_CAT   ELEV ELEV_CAT                geometry
-#> 1  10.648825    large 264.69     high POINT (1930929 2417191)
-#> 2   2.504606    small 557.63     high POINT (1849399 2375085)
-#> 3   3.979199    small  28.79      low POINT (2017323 2393723)
-#> 4   1.645657    small 212.60     high POINT (1874135 2313865)
-#> 5   7.489052    small 239.67     high POINT (1922712 2392868)
-#> 6  86.533725    large 195.37     high POINT (1977163 2350744)
-#> 7   1.926996    small 158.96     high POINT (1852292 2257784)
-#> 8   6.514217    small  29.26      low POINT (1874421 2247388)
-#> 9   3.100221    small 204.62     high POINT (1933352 2368181)
-#> 10  1.868094    small  78.77      low POINT (1892582 2364213)
+NE_Lakes <- st_transform(NE_Lakes_geo, crs = 5070) +NE_Lakes +#> Simple feature collection with 195 features and 4 fields +#> Geometry type: POINT +#> Dimension: XY +#> Bounding box: xmin: 1834001 ymin: 2225021 xmax: 2127632 ymax: 2449985 +#> Projected CRS: NAD83 / Conus Albers +#> First 10 features: +#> AREA AREA_CAT ELEV ELEV_CAT geometry +#> 1 10.648825 large 264.69 high POINT (1930929 2417191) +#> 2 2.504606 small 557.63 high POINT (1849399 2375085) +#> 3 3.979199 small 28.79 low POINT (2017323 2393723) +#> 4 1.645657 small 212.60 high POINT (1874135 2313865) +#> 5 7.489052 small 239.67 high POINT (1922712 2392868) +#> 6 86.533725 large 195.37 high POINT (1977163 2350744) +#> 7 1.926996 small 158.96 high POINT (1852292 2257784) +#> 8 6.514217 small 29.26 low POINT (1874421 2247388) +#> 9 3.100221 small 204.62 high POINT (1933352 2368181) +#> 10 1.868094 small 78.77 low POINT (1892582 2364213)

CRSs in R have traditionally been stored using EPSG codes or proj4string values. This meant that in order to transform your coordinates from one CRS to another, you needed two EPSG codes or proj4string values, one for each CRS. Recent updates to R’s handling of spatial data follow GDAL and PROJ (more information available here), and CRSs in sf objects are stored in R as lists with two components: input, which contains information regarding the EPSG code and proj4string; and wkt, an open geospatial standard format. For more information on CRSs and EPSG codes, see Pebesma (2018) and Lovelace et al. (2019). To search for various CRSs and EPSG codes, see here and here.

spsurvey will use the CRS from your sf object, so it is your responsibility to make sure the sf object has an appropriate CRS. If the CRS is not specified correctly, you may get misleading results.

diff --git a/docs/authors.html b/docs/authors.html index 487b47b..6d59682 100644 --- a/docs/authors.html +++ b/docs/authors.html @@ -17,7 +17,7 @@ spsurvey - 5.4.1 + 5.5.0 diff --git a/docs/index.html b/docs/index.html index a380583..39de1fa 100644 --- a/docs/index.html +++ b/docs/index.html @@ -33,7 +33,7 @@ spsurvey - 5.4.1 + 5.5.0 @@ -97,28 +97,28 @@

Installation
-# install the most recent approved version from CRAN
-install.packages("spsurvey")
-# load the most recent approved version from CRAN
-library(spsurvey)
+# install the most recent approved version from CRAN +install.packages("spsurvey") +# load the most recent approved version from CRAN +library(spsurvey)

You can install and load the most recent development version ofspsurvey from GitHub by running:

-# Installing from GitHub requires you first install the remotes package
-install.packages("remotes")
-
-# install the most recent development version from GitHub
-remotes::install_github("USEPA/spsurvey", ref = "main")
-# load the most recent development version from GitHub
-library(spsurvey)
+# Installing from GitHub requires you first install the remotes package +install.packages("remotes") + +# install the most recent development version from GitHub +remotes::install_github("USEPA/spsurvey", ref = "main") +# load the most recent development version from GitHub +library(spsurvey)

You can install the most recent development version of spsurvey from GitHub with package vignettes by running:

-
install the most recent development version from GitHub with package vignettes
-devtools::install_github("USEPA/spsurvey", build_vignettes=TRUE)
+
install the most recent development version from GitHub with package vignettes
+devtools::install_github("USEPA/spsurvey", build_vignettes=TRUE)

To view the vignettes in RStudio, run

-vignette("start-here", "spsurvey") # start with this vignette for an spsurvey overview
-vignette("EDA", "spsurvey") # for summaries and visualizations (exploratory data analysis)
-vignette("sampling", "spsurvey") # for spatially balanced sampling
-vignette("analysis", "spsurvey") # for analyzing data
+vignette("start-here", "spsurvey") # start with this vignette for an spsurvey overview +vignette("EDA", "spsurvey") # for summaries and visualizations (exploratory data analysis) +vignette("sampling", "spsurvey") # for spatially balanced sampling +vignette("analysis", "spsurvey") # for analyzing data

To view the vignettes in a web format, visit here.

Further detail regarding spsurvey is contained in the package’s documentation manual available for download here.

@@ -127,25 +127,25 @@

Citation

If you used spsurvey in your work, please cite it. You can view the most recent citation by running

-citation(package = "spsurvey")
-
#> To cite spsurvey in publications use:
-#> 
-#>   Michael Dumelle, Tom Kincaid, Anthony R. Olsen, Marc Weber (2023).
-#>   spsurvey: Spatial Sampling Design and Analysis in R. Journal of
-#>   Statistical Software, 105(3), 1-29. doi:10.18637/jss.v105.i03
-#> 
-#> A BibTeX entry for LaTeX users is
-#> 
-#>   @Article{,
-#>     title = {{spsurvey}: Spatial Sampling Design and Analysis in {R}},
-#>     author = {Michael Dumelle and Tom Kincaid and Anthony R. Olsen and Marc Weber},
-#>     journal = {Journal of Statistical Software},
-#>     year = {2023},
-#>     volume = {105},
-#>     number = {3},
-#>     pages = {1--29},
-#>     doi = {10.18637/jss.v105.i03},
-#>   }
+citation(package = "spsurvey") +
#> To cite spsurvey in publications use:
+#> 
+#>   Michael Dumelle, Tom Kincaid, Anthony R. Olsen, Marc Weber (2023).
+#>   spsurvey: Spatial Sampling Design and Analysis in R. Journal of
+#>   Statistical Software, 105(3), 1-29. doi:10.18637/jss.v105.i03
+#> 
+#> A BibTeX entry for LaTeX users is
+#> 
+#>   @Article{,
+#>     title = {{spsurvey}: Spatial Sampling Design and Analysis in {R}},
+#>     author = {Michael Dumelle and Tom Kincaid and Anthony R. Olsen and Marc Weber},
+#>     journal = {Journal of Statistical Software},
+#>     year = {2023},
+#>     volume = {105},
+#>     number = {3},
+#>     pages = {1--29},
+#>     doi = {10.18637/jss.v105.i03},
+#>   }

Package Contributions @@ -208,7 +208,7 @@

Dev status

  • R-CMD-check
  • CRAN
  • -
  • cran checks
  • +
  • cran checks
  • Downloads
diff --git a/docs/news/index.html b/docs/news/index.html index 9be522e..1cde687 100644 --- a/docs/news/index.html +++ b/docs/news/index.html @@ -17,7 +17,7 @@ spsurvey - 5.4.1 + 5.5.0 @@ -67,7 +67,21 @@

Changelog

- + +
+

Minor Updates

+
  • +n_over is now recycled if the design is stratified and n_over is a length-one numeric vector.
  • +
  • Added an adjwgtNR() function to perform non-response weight adjustments.
  • +
  • Warning and error messages from grts(), irs(), and *_analysis() functions now print using message() instead of cat(). This change makes the resulting output more consistent with standard practice and easier to suppress when desired (#36).
  • +
  • Changed default behavior in attrisk_analysis(), diffrisk_analysis(), and relrisk_analysis() regarding the handling of response_levels and stressor_levels. Previously, if response_levels and stressor_levels were specified, their elements required names. Now, if response_levels is specified and its names are NULL, then its names are set to vars_response, and if stressor_levels is specified and its names are NULL, then its names are set to vars_stressor (#33).
  • +
+
+

Bug Fixes

+
  • Fixed a bug that caused an erorr in grts() and irs() occurred when at least one variable name in sframe was named "siteID", "siteuse", "replsite", "lon_WGS84", "lat_WGS84", "stratum", "wgt", "ip", "caty", "aux", xcoord, ycoord, or idpts and the name of the geometry column in sframe was not named "geometry" (#32).
+
+
+

Minor Updates

@@ -104,13 +118,13 @@

Minor Updates

Bug fixes

  • Fixed a bug that prevented proper printing of the Indicator column when using change_analysis() with test = median.
  • -
  • Fixed a bug that made change_analysis sensititve to the ordering of the levels of variables in var_cat if those variables were factors.
  • +
  • Fixed a bug that made change_analysis sensitive to the ordering of the levels of variables in var_cat if those variables were factors.
  • Fixed a bug in sp_summary() that incorrectly ordered the siteuse variable.
  • Fixed a bug in sp_summary() that failed to summarize data frames that did not have an sf_column attribute.
  • Fixed a bug in *_analysis() functions when popsize is a list intended for use with survey::calibrate().
  • Fixed a bug in *analysis() functions that returned an error while performing percentile estimation when there was no variability in at least one variable in vars for at least one level of one variable in subpops.
  • Fixed a bug in grts() that caused an error for some combinations of n_base and n_over.
  • -
  • Fixed a bug in change_analysis() that returned an error when at least one varible in vars_cat has only one unique value.
  • +
  • Fixed a bug in change_analysis() that returned an error when at least one variable in vars_cat has only one unique value.

diff --git a/docs/pkgdown.yml b/docs/pkgdown.yml index 7d4039a..a7c3b1c 100644 --- a/docs/pkgdown.yml +++ b/docs/pkgdown.yml @@ -1,4 +1,4 @@ -pandoc: 2.7.3 +pandoc: 2.11.4 pkgdown: 2.0.6 pkgdown_sha: ~ articles: @@ -6,5 +6,5 @@ articles: EDA: EDA.html sampling: sampling.html start-here: start-here.html -last_built: 2023-01-16T20:20Z +last_built: 2023-05-16T23:11Z diff --git a/docs/reference/Illinois_River.html b/docs/reference/Illinois_River.html index 50dc6e6..eed8dd0 100644 --- a/docs/reference/Illinois_River.html +++ b/docs/reference/Illinois_River.html @@ -18,7 +18,7 @@ spsurvey - 5.4.1 + 5.5.0
@@ -74,7 +74,7 @@

Illinois River data

-
Illinois_River
+
Illinois_River
diff --git a/docs/reference/Illinois_River_Legacy.html b/docs/reference/Illinois_River_Legacy.html index 53c18c1..e69238b 100644 --- a/docs/reference/Illinois_River_Legacy.html +++ b/docs/reference/Illinois_River_Legacy.html @@ -18,7 +18,7 @@ spsurvey - 5.4.1 + 5.5.0
@@ -74,7 +74,7 @@

Illinois River legacy data

-
Illinois_River_Legacy
+
Illinois_River_Legacy
diff --git a/docs/reference/Lake_Ontario.html b/docs/reference/Lake_Ontario.html index b423093..e832f67 100644 --- a/docs/reference/Lake_Ontario.html +++ b/docs/reference/Lake_Ontario.html @@ -18,7 +18,7 @@ spsurvey - 5.4.1 + 5.5.0
@@ -74,7 +74,7 @@

Lake Ontario data

-
Lake_Ontario
+
Lake_Ontario
diff --git a/docs/reference/NE_Lakes.html b/docs/reference/NE_Lakes.html index c50b475..e9d8978 100644 --- a/docs/reference/NE_Lakes.html +++ b/docs/reference/NE_Lakes.html @@ -18,7 +18,7 @@ spsurvey - 5.4.1 + 5.5.0
@@ -74,7 +74,7 @@

New England Lakes data

-
NE_Lakes
+
NE_Lakes
diff --git a/docs/reference/NE_Lakes_Legacy.html b/docs/reference/NE_Lakes_Legacy.html index eda8756..bf3c72f 100644 --- a/docs/reference/NE_Lakes_Legacy.html +++ b/docs/reference/NE_Lakes_Legacy.html @@ -17,7 +17,7 @@ spsurvey - 5.4.1 + 5.5.0
@@ -72,7 +72,7 @@

New England Lakes legacy data

-
NE_Lakes_Legacy
+
NE_Lakes_Legacy
diff --git a/docs/reference/NE_Lakes_df.html b/docs/reference/NE_Lakes_df.html index 7a8b5c7..6077d0a 100644 --- a/docs/reference/NE_Lakes_df.html +++ b/docs/reference/NE_Lakes_df.html @@ -18,7 +18,7 @@ spsurvey - 5.4.1 + 5.5.0
@@ -74,7 +74,7 @@

New England Lakes data (as a data frame)

-
NE_Lakes_df
+
NE_Lakes_df
diff --git a/docs/reference/NLA_PNW.html b/docs/reference/NLA_PNW.html index f98a77a..7c0bf46 100644 --- a/docs/reference/NLA_PNW.html +++ b/docs/reference/NLA_PNW.html @@ -19,7 +19,7 @@ spsurvey - 5.4.1 + 5.5.0
@@ -76,7 +76,7 @@

NLA PNW data

-
NLA_PNW
+
NLA_PNW
diff --git a/docs/reference/NRSA_EPA7.html b/docs/reference/NRSA_EPA7.html index 94ca6b9..7889935 100644 --- a/docs/reference/NRSA_EPA7.html +++ b/docs/reference/NRSA_EPA7.html @@ -19,7 +19,7 @@ spsurvey - 5.4.1 + 5.5.0
@@ -76,7 +76,7 @@

NRSA EPA7 data

-
NRSA_EPA7
+
NRSA_EPA7
diff --git a/docs/reference/adjwgt.html b/docs/reference/adjwgt.html index a8d1999..9a648fa 100644 --- a/docs/reference/adjwgt.html +++ b/docs/reference/adjwgt.html @@ -20,7 +20,7 @@ spsurvey - 5.4.1 + 5.5.0
@@ -78,7 +78,7 @@

Adjust survey design weights by categories

-
adjwgt(wgt, wgtcat = NULL, framesize, sites = NULL)
+
adjwgt(wgt, wgtcat = NULL, framesize, sites = NULL)
@@ -125,20 +125,20 @@

Author

Examples

-
wgt <- runif(50)
-wgtcat <- rep(c("A", "B"), c(30, 20))
-framesize <- c(A = 15, B = 10)
-sites <- rep(rep(c(TRUE, FALSE), c(9, 1)), 5)
-adjwgt(wgt, wgtcat, framesize, sites)
-#>  [1] 0.300614370 0.235850796 0.720443635 0.449966432 0.211864685 0.705859988
-#>  [7] 0.489414893 1.013659494 0.581508838 0.000000000 1.011888269 0.722010331
-#> [13] 0.550443875 0.806363092 0.002483645 0.436143047 0.685594491 0.970878940
-#> [19] 0.370406902 0.000000000 0.280166439 0.746747302 0.902128606 0.820763554
-#> [25] 0.438965453 0.220665812 0.092562800 0.323913259 0.908691054 0.000000000
-#> [31] 0.785703162 0.511329536 0.146718136 0.527393011 0.558032299 0.401771860
-#> [37] 0.213129011 0.951877905 0.843303504 0.000000000 0.145586305 0.699088549
-#> [43] 0.793258704 0.003576231 0.118941769 0.582050316 0.822761903 0.900746482
-#> [49] 0.994731316 0.000000000
+    
wgt <- runif(50)
+wgtcat <- rep(c("A", "B"), c(30, 20))
+framesize <- c(A = 15, B = 10)
+sites <- rep(rep(c(TRUE, FALSE), c(9, 1)), 5)
+adjwgt(wgt, wgtcat, framesize, sites)
+#>  [1] 0.043236942 0.303467182 1.203465906 0.005329816 0.026742781 0.929493721
+#>  [7] 0.550054450 1.106700002 0.856271032 0.000000000 0.725198992 0.147868667
+#> [13] 0.839568174 0.353124934 0.415406438 0.163085336 0.226615377 0.135662011
+#> [19] 1.041519884 0.000000000 0.675017306 0.233142048 0.366534191 0.306492615
+#> [25] 0.987999204 0.310199240 1.107077620 0.744478986 1.196247145 0.000000000
+#> [31] 0.588051104 0.879216137 1.241887296 0.584546511 0.760906513 0.052847179
+#> [37] 0.245573235 0.282495513 0.168751034 0.000000000 0.483873311 0.922223200
+#> [43] 0.647267182 0.215163713 0.816041558 0.820951051 0.103030270 0.418363640
+#> [49] 0.768811552 0.000000000
 
diff --git a/docs/reference/adjwgtNR.html b/docs/reference/adjwgtNR.html new file mode 100644 index 0000000..4d9facb --- /dev/null +++ b/docs/reference/adjwgtNR.html @@ -0,0 +1,175 @@ + +Adjust survey design weights for non-response by categories — adjwgtNR • spsurvey + + +
+
+ + + +
+
+ + +
+

Adjust weights for target sample units that do not respond +and are missing at random within categories. The missing at random +assumption implies that their sample weight may be assigned to +specific categories of units that have responded (i.e., have been +sampled). This is a class-based method for non-response adjustment.

+
+ +
+
adjwgtNR(wgt, MARClass, EvalStatus, TNRClass, TRClass)
+
+ +
+

Arguments

+
wgt
+

vector of weights for each sample unit that will be adjusted +for non-response. Weights must be weights for the design as implemented. +All weights must be greater than zero.

+ + +
MARClass
+

vector that identifies for each sample unit the category +that will be used in non-response weight adjustment for sample units +that are known to be target. Within each missing at random (MAR) +category, the missing sample units that are not sampled are assumed to +be missing at random.

+ + +
EvalStatus
+

vector of the evaluation status for each sample unit. +Values must include the values given in TNRclass and TRClass. May +include other values not required for the non-response adjustment.

+ + +
TNRClass
+

subset of values in EvalStatus that identify sample units +whose target status is known and that do not respond (i.e., are not +sampled).

+ + +
TRClass
+

Subset of values in EvalStatus that identify sample units +whose target status is known and that respond (i.e., are target and +sampled).

+ +
+
+

Value

+ + +

Vector of sample unit weights that are adjusted for non-response + and that is the same length of input weights. Weights for sample + units that did not response but were known to be eligible are set + to zero. Weights for all other sample units are also set to zero.

+
+
+

Author

+

Tony Olsen olsen.tony@epa.gov

+
+ +
+

Examples

+
set.seed(5)
+wgt <- runif(40)
+MARClass <- rep(c("A", "B"), rep(20, 2))
+EvalStatus <- sample(c("Not_Target", "Target_Sampled", "Target_Not_Sampled"), 40, replace = TRUE)
+TNRClass <- "Target_Not_Sampled"
+TRClass <- "Target_Sampled"
+adjwgtNR(wgt, MARClass, EvalStatus, TNRClass, TRClass)
+#>  [1] 0.0000000 1.0531091 1.4091418 0.4370921 0.0000000 1.0774517 0.8114191
+#>  [8] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.4893536 0.0000000
+#> [15] 0.0000000 0.0000000 0.0000000 1.3645626 0.0000000 1.2943413 1.3897962
+#> [22] 0.0000000 0.3299456 0.0000000 0.0000000 0.0000000 0.6828898 0.0000000
+#> [29] 0.0000000 1.4909182 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
+#> [36] 0.0000000 0.0000000 0.9333714 0.6208610 0.0000000
+# function that has an error check
+
+
+
+ +
+ + +
+ +
+

Site built with pkgdown 2.0.6.

+
+ +
+ + + + + + + + diff --git a/docs/reference/ash1_wgt-1.png b/docs/reference/ash1_wgt-1.png index e73978b47792d5b1be0b5400c7ef9565ef1fad43..6de7862fb2f5dab435adcd1c08e146df409c9c77 100644 GIT binary patch literal 36024 zcmeFYc{tSj|35rKQb|%rLO2zvY>CKzDwHH;8T%4N)*;3+j2Wj>Dh+K)*$P=^jIj^K zFhx{kj`X%06DKnEG{!dOevQ-T^Znh|b^rdj|GTgI`n|78z2C3(xjtTx=c~JyE}j+N zCc6y=gNa+7GqZ)kM519ZVec)Q!JC1nujasy&E8gL&A?CaET5rb!H=z>=bXb~F!@Bm zZ+ObL`D-xP?=VZVQ})prQ$sOnBuD4*S%&4s_kWxgy0Tg3>VreaC3J7z8Nm&mZtMNq zV)@mU_ET)rJxb%^{Y|=?*8bzr;_v2AUE#7WRMs_&*Z(|DgoDCZ?Su;BId?L|6Ns zVvRx*7hWuCLMTv3u-D$y8RMZ4%$=}dTTG!#A7gri-3LLs#B&>hDEU5Oac=dVuu((7 z3TaVsY9^NYvToo|kC@=A+Fe?b1}?sC(BX$ zB#bV`Ox1PyAYXiqBWH}Qy>TN53qG@O2w^5P;0%co67>)>CVq8%Ki$xhv&DuCj9#wO z#t7Y0a&rn(i$8enrsXTuZ1Kq!Oi-Po;1kX|;wq{M2=WV?Y#91|l?j@JWotb{Q2Kuo z;DQ#tWMk+Ak?Lr3{U>Bh;gMO!gsM=kFl0?Bv=DrU`G$Uh&tPw$5-pBx-+1xA|D%*Q z1=Kxd&_h=6l&5?@EokXf6HXXMNNdzRxK?BEE508PwCdG0 zxkN*Enyab8XUA6i*+-K!yycwTYr$VXi4_Y3fqQ3ARp;X|fpOYYpFZmgnL6~iMh!oQ z-X$IJ8;B0~SvD4oL+#3xg=;3BqEnYmJTh%*)Venj!wh>(S0{79XL@pIbB@+Ogxdap6kY*n((6x=m|($5%JOWTnKd(G;c}VK$vU_u z8iemp1)du8kXTGrKd2fF_ll|snLmNyv#*SqE@P>LfXq>(?no;}|dQ(NbM@V9jvC>zn}%)5^2OD&X#!Jgj3 zMJ<1)iNS)R9J7?G7EQV9VHeHknPi2=uWP6+IZrT&$V!+t^ z9-n~0#-=N}<_)wvs2~*h4PnkAGz0&llCS^d4(Sb&I$PL!vZ^tf!9RcS#$-%QKxmVP z1HCLnwnVH|%ZyDG&1lnj9Vo78Y1yCLcDATN#K5h_qAV>M@289jXiiVPVUM!)dG}GA zFsbX&9sT7%Qoot5voJ1m)&oDj%Aj_x9WHv9m8Jhd7lRoNXR)pE<7=jqf3KPhR<5+` ztZ!X4S}dDbC#RR)?y*^zF&zb#S)Gh~_WDK;Cu4`gcLnz18oP$15!bP)9#(2}k)VL! zd5;?WBLm$e?AATT^~Foot3sZRdVP#EV<<`oFMcC(As(u;V7JnwU zgO<~_y4>yJK&x1J$ew|wiK6zJMH>DjS~E(w7RYHwHW;Q<_Id}=Z|024>O0?m2XP5j z8T8=V|h}{Y-QWO}^lzRl6O3${Bx*l}+hcy1# zF%RcfM@Bj`{?nCi5m+hnM8RkQSjvZqXp(;Sjo-0uyqHmm@!`JcTVKMU0zxBsy>NxK z=L^V`QwMqif*n4@66{L;i3vf_qK0Zq^q#S+v!sBH8}qI>mOyU<0uzTbVnL>via^YD zfT)u`n*l({tlrxpuDxQB$7LF6#SG=a`PS05Eu}EI=wi@cHBrS1%wD%(C|6F^0R)S0 zw61wMxoKHlwp_vJ>X_>e;Npun`0Sh=gW4gvl(QkIui=8o9b`iZHad$f!c$yp{83>X zh;5N>-{V_n$@$r$IArRMsb1-^F#T$%QKAOJxi(~m}IF9SO7Os9^w+_h2-QEJU zvAWXMomG%>vbi^xpl37c=R8l9pCV=TZ7Gn56pwT<99_Y}=I8yBy9 zU`rD{N%2LJVmhFjh>_jcE=IU)MuqBWieN6228B|8oeZ81@_ zH*Pe*qSvO_7n6=GoR9U$T?}`bRIE4EBQs6$7@tIs&h0Sz)Ta8Ah%$oo@0yq&oeg?wG?*A@KAR{aBD{h<) zwoSok`SL>xV(~D6*#OWUIm?Asiniq>raQ_4HQXruQyS*<#73{=Ohf!_{ZR6m#Ky5+3gDrZZtpiYT&s0Z@{ZG1W}#(Cai1z&z7SPo!ySf zr(}ET!(hi0fyculZ!#R7>7uuK2H%c}C8S?KVgou(z+v<&yXQa(lXFARg3+su9mi%T ziE?^EBN83d!!X!Mw~ekzju%?9Ny$w5k}<^3V8&nb5jh4zr|Q2Sr5zNDLfmOD4Swt# z&9*guSyzf48+!^)$BxN3X&7#3B!~S9awMF!$2w$|XNUEWitUn~=)>X)Y}Un+oV5 zt=phZjrL#VO+R8gK%_kgc^G{r)Ma#K@{752d3!NS1m>l;62Vzwe}Ig^wo34(muasJ zkYTUE##=T}&L@pxW~l%mvObo704e}VcmxbZ@E5fs0)hTNzUZfZ2Tjtb#t=jdM0gf< z6gAZSeNTXeuK>rPcZ3bGu?~tQCXSfWl?YTMCx?wlQU%Bzm&v*x@Y(>=c?(A05gvew zAB~B8y<*EzgvNV@qMSLEYY!D+xaqHzEhu(TlE&5NwKbwJr+8CaT4h}T#}6_l>?Wo= zs5p9h(!69>#kvM!s~awWB|gmrA>x=P_j+-=dr?;CoiZ+|!3fWLV_gEyGCSUF^Kd#1 zbd{EE3=POKNR8!h^b0PIn%ZTSTB3j?EVe|C{{gTL?i(tdEhj5SFvi>r_dw8c>kufu zH31CKdjNFDed7do&7Z)Fck6n;MlYKzz+pILWgufG54{)3vzcK`_L7`@1Te+YX@P8? z_GC@e93QQR=1WB2Fs~2OAW*_!ZvKkd$&?p@#uZ~uZ6Q%S_E!i)kkdW=GsOW}xL#`D zCr}TpogstwjK1g@u^(0{JXkhgzcRt@74PV?qg{K!y<<%X)a!FK&aEq**B=_5wt{S~ zzSDux8!iUAX=c`aKaIl!v!<_26*2pwLwL*L9WivB^##Zh1h9~>3miw1NNs^5Kez4- zs=xx*us-iNCKUmLO>T|8vQ>~l8fLmcw*U?;ac?Yxoz%6Y5^}?x`o>B&yNzMbHF#gc zcgfVl^C0y?5WAeW{OYxy)!%=#^BJO`vKsCR_1HJsx*OqR-kGFmQ)Bf^o=MwN2Ix!3 zVh#UI^OT|b@(s`@{qzBFk};$Wr>0wIFqQonYP46J_`&naPS=Gm%#DBQmd$1B)D+>GYWsm%24$rq8tpQ>zMUCbAUZlkdARu-ehh;gWr<;ANlT++dN)%j&3V~8XP`;>6p~-L&q~fNA?D#L-G#pe(2bz zsf_>t{~?GAX`fnU;nOJMz^7xg9*`C!3NR=f#wrzb_R{qX4svnid;$8b2$@nH_mBi` zwnsm=6Falv+o5|yoZNeBN@CVFxA5QUEH2;`>S3@i{`kN=J8Ad#$16aXg!yvk*@^iS zYy~<5^*O%9oru27scg~IOeyRb`f~*st@5Hq9dHgO+eT0KDzpbD7s@3x2K?+Dvcq6F z!B81w4oTQ!t2YA6m>F;YuYy`DPJYXYj`a|1=ayJFtj0)Pc8tCaZ0DrWY+(aH?x<`F zER&4zLtuxlkAuO}PXpKkTbO^yj*@lZ zjfhpVHx)~g`x$AI_SlnnYE9kvQwLF4ss69Te9VY8pAqdms=TZ+y|9$UZnWo{;8#OY zKM;G~Kdp@&4UF^WkP`P&3(!oR^<1bk-9-jQANvIg{urVHI^vRMRU?|i=vs0N4slj{ zKPl%q>^aC9M6k^M=0w!3c8p*^Fr_?P@g7HN%_ zQ?AFE)?d-SCnN}(O#PF9-T^uLxE^T+fhk&n#5?qfE1471iAamfYVFfPW6)4$fV~|9XdK<{e&-Tnc~kw-`U*Ls`^5mhTsa(8Y6Z|0 zth$?1FnSjFrolQoy!h5TL!?2+=d4%k0K9mQ#`Vf5prdDkd=^B~v}qmPX!lmX`|St~ zYrw3k`?!4p;rM4G|79+4mwAA2V6Ky<`J_C9~A9gKi+V>1L15eZ) z@W)TS01mvRGz^4@LQkZT;`$l6Sm$*v$VS7x_DPxF?yxmwJx42Kr)3w%-?Q&Rue*9@ zhaa&)=agU4Zy~f*$TIGdgX@j>e<*lhuF0<6O!t%(yWxFs&hvQ)IixbE#t(pq4|v25 zVv1?-eg`2~`?Fu2ZyP#{>t;!tIvBq;cx}*7=fT0TQ6v#G!~MeZpjWv>&mxV0>B)xK z>2~&;q@z1wUf_KBFZ3H5gG^DZW60Ml-XKsadPFA5>9}as*P#P*`9G`(iHKG;0S>O+ z{R?S+n=V>+<@{hDgl<88vYI{o=WLe^44|8ei`uafnQ-nQuhE|(z)2?UgQNg4f(NI1 zRuE7?4$Tv&13Xse|KGm|n9UIkqC2Dop$H2^hNEhdx}U3IS)C=yjq`!s9@hXIyng|B3-%8>0@WGxx@j@;__)f8_r9%Iv%#>4w>qj`1v6iB^N#H!@#;SGdi8% zVJkUefFpX-P`hG3S{L}bE^oz*a|^{K*)xdAE|>5F?@kbUD2w{FHE0`7vc=v8G`|+Y zNZTKTP1zTm$nvvskJ$e&0@Ll`$tKL4=Pa_Rvg)z{#r8A@&Y;DET3cGa!HvnbjHH8d zeCBY`dI{Q(;|O&T2ZFrTAwra%iNv^lO7@H^$_&M2VWgB93lh&?S>mYbk4 zjDE$|D`<@mzMXlJ|hpkz_qk_x8IXuYWQ!n*H_)Td#lg%kDj_2;37TOIjGS$;c4 zA(kJ(*K2obGPPM~xR$-DXgGxR=j0W2W2XJ%8X8aHd7orVbzxIFLLN^)&*PE(rpW1Q zKB9G)vd)T0QNm;C%TtGTZp@`}qNE~AZ?vAAKE`VuRDID19a|Y5So-r0GHuN5?{AJn zS*AnSk^3i#*AJ}RL2-v(Rt2u&*ZxFP*g5`d#=dJyu+ql>r?T#tOP40?b2Tm~JJMt& zm#(od{BIc_;oGZ@jRW5y&RWTmEjXGKR*6Fm2BY0zLP8rSmJ9)ckegp@AqXaMq5Q;H5oiw(4A$&qOzvh206#LmuOGm zHT5lRwTl-=$)11`<R={|Kgo0UF9u)nW!>fD&Mp8VE$l(1qrBnh3(kBJ%{FB^U_V@kY9-qvtF zkX&e3Q09W>`KaO_#O2C0lF-9C+(qpUz;vDl3pz=i$D_yfGm)HYSH?SjFyC!y*-k(b3ia@+>}&E?OrZ}z5e4W0okfc7C4Lq=rC=Ug z&G3l|R9_pqE_ZMC`B+AulnCw@Mb+>W68|S43mX&I84nyX}-G`nARTMYV zP6ZNEQw03ploIf{w<37tmvlhC>4gN}q95PL^bLuWNclQjOpauE10_tp7R@Kh$;HXP zuOd=P!;FpOz8UoNX2zrk#e=`p&-Muy1 zc^ffdtR6jPa@Ani5O92?LxRXDt9QN9!wF;F$DaOdq1ng({HE!BuB%uSqj&~`3oEdn zb<&%uTQyp5?{?8{_dXH9E5pq2U$DDC#VVLjl3LV3ub14WV*9T{p~twz9(_`dM;mj| zwxXWbVsCJ6`LFGkm=6p1DeWQNQsoB@{=4VOf6MA$vfw!-@;?(ti8fUz>OSOV05$2| z203*xKFZV61Y&R~lTj5ZA4@xP-?(}u(SJ>GdZCw?zpB{qCWXr0Dqlltnsym@FkRl_ zdyP>X5BMK!VHIxiC!3%hH+WFiI1>3esApEfldFZT?POl@j3u@rq^(D@w3?RTUMhgr z`mF@&zr~C-SQ---4X@}%e_{By{^u@0EGgo9($usd!JdMc|Q_OBqs ziRw}ffi1G@js8q4iMgc{#NnV|yIKq~yI7&?mE%lDmjtEyIJXPWY&NwwCak2ghkGDy zy?Ti_toq=8iAjCvAYmB!7j@SEr%J4Ou0+3ztejh1ZJ1WHnNLOHZn^z4@^VCYNX1M> zN=WfPBEZ4tg7M6HzCA7GW_Sm|qr3N?=~K{Z{wgCYS?@*JZD`(4ku}fIMJ%toai*c3 z69^S-{$=hkg|muSn`L{-@ldn&#v!IYCbm5LTzPOLvifJ8MEh+rG$dt^{dQb{I&jmo zGWfu1&x|l;lgnfbm95ovd#v7{S{y66BXd_vbP8iAT-?}5YtE%bK4N0t}|0I1H$Zb&qr3l6Bn3_W?W zmVmn$CsAjoEE@X?bozG<=7wd){!Y1GsYfge>tEIuob-YY0ID8V-8dWQRzZtziD}gR z6uW4`RkWkgsvHZ9Uv{>5(GJQIqfAWkt3z159O^Ew@LuaS-D@d2F>GitncaKl{*WClPL@w` z4@1omatSIC%g3U4(@l8mTPY{o`=fFK5fpNWt2^dR6^vg0i>K&4k{lAWiBrs$AV}-# z+R-qgJ1AbyGu$wFVbhBeP|rTE!MmheR8PXiK6-6RVZ*DH1Pdf{mOS%-Z@6kuhxX=> z-L!`qru*|S7LO~M~(xpssK+2I~gO>hOYZoY-$ z(0FC{)2~(#MKix$e&PxH42kDf`w|_+VYc*mbJn8}dd?T_!a{q0p>DN`To>vV_adep z&(??Y)rUCjuRc{*Q+8QOjXH@SPtmb|I|a9uK1`(swI6|`WwQsk4iZ7dW9|Uv8snet zQH2VKa>y_|?3e^Ni_P80`ovw=on44avNq6!m0}rze;t*!Pw}6=HZf^ji}nRXp)%x0 z;8Sm%cw3LDLtpo)s1kLEDlT!z>~XSQdBG;R&+~;GJGAicb~*;eh49aEzF}J8YSGRd z>8@TR!NY+!-qHeY2eo&a%g0qUeI0!I5D;@}#8sWFriRa3F7Nm@(Y0jb;5gJ=hs*qC zNur%*)rjA3L5!8a|6V-a}U$`{;KNb(f{#jvvPLXmgFiLpBI zTE(3yvw81Qg<Aq3{K z?yl~BjkiX4=+XFT?B_|UeoYE4yy%7HoAe&*v(&r7r5Bjm@{O;`h&&5j6G9yqaF#p9 zGT82*2(;>et$!24r-7QM^|H?{7(L&xe1$o&h!g24zpNP&e6uEIh*|fVF9bUoheR4B z8i(B+Cwq!BjLbBJ_?{E^qmu7$>lWKu(E5d=4U=Rk-;P)eAW zjB8d#;4L0hbnqx7g7q9yH3s_AC~z3=a@rEp|7Rdv_xt@8^YIBloWOi53(zs6F;f)~ z2GsGsv$55S1SwTE&UvW5v*gO_m2(`vgQF{V=>(w_k)6>JS6s*Je!2w~4ruBP9Nsllj4X{~YGAww=`uUuUY?!<-&?6G3uBKg9>gM0eRZpRldl@EHY;$( z0xS`|+_1dUjw>c#)3X*!M7rB2(38t3=&PeCmXl|OtO$)ELAQ-k@DJc#mp9dimx7xa zfKz|oM(}ggENmdwMfq?B&GFA{8%xR_^R9^zBzpBVNFK+Bl7rWZmjit4s*?6NNyAF< zTcV#a9J*tKL^Wb$52nFAKC~kr#FF)sOaC2V%|0U`6h$ltaqab##1uNb;SG;K%QWo%H z;OQL$_cvyj*i>So1Ggwy|9!8f1Mqp*Ob<**7g2D51jgEyOv?O#JmV@Lfuf_iqdv8iC zxFrdgT<{SnAWU#AMMS|s-qVfu^-9)c6|?}zQ`RwtpaD!xUvMjCabn38Anw_Vt$d>b z!0&?x&=1t*dIlm(RA7 zk4+mlXsA-CC+oL||2x)2Fjl;u0kaT&7WFaJi1CR)aqP)tV&4c#rQlJk1+^eA>5~O$ zGtMeLlxqx~B{wOSH7lYlGOjja|7NaS>dL z0Tcc23r7DbDHZ)&>jD>NhS&)ZjWFp5s%Ir0j=XEA`H}O&uo5)@PfOD?+>C4LY*0<0 zR#bt;aM)}yKplB?xxHSw#cn0|EG{hN%AJ~hOy~)@0_y2%ue4sJl|l@ovE`JmU-6IoFWwnHf4(OElp5HTYst&7FHRO>6|wdXqJ_B9r)O!{}&AQ6{g zrJ$-PD4O6%5$Fo?dw2Kw)e-BWEnb0xh4U3tR!}F%aLBHDO0WfJD*fFA-EN8^QywVq}0F1O7$}^~53FUl{8KX6JVt>4V zJ}hX8d0AzglxKhnS4`LZQp;E%jIIl01&bu8%7qkH?g`D%X}kfe{^D0Kit@{d%AAM} z$yL#Zm3{&e!DX_wyXIH$_?x=y_uWFt;bSh6^zIl(P)?U~S-sg~5jPoOmd-#ROOgrk5jVq=i?fc?cm(UhtuUNC>wb%sr;VUS zHnmOjy3uTX5J*z?fMQwu;VUIlYCZ!k#YBd2tOeBfN|pawtE`-Z5Z%|1G(Q;5&Jnv3 z?UXBNy6^smFdw(f%&S6Nq}N)CjZdSKd*H%Hq2A++;59dDDf+_d@X2WxNb$m`#>C%O zj=|cKa8c>CHS;1d=DCc=ixN|SoyCzBzqf=l&U36F2d?&5Gh444ANw8f^rf|n)r$eQ zQ`t@U>?l)Pp4ljuqG_Gte#tm=!vI10e-7cIIFTWoE=YWj^KSz{#W?fm^F9@?QY}0` z4in=EVWc1B7UUr)H84eh5Yv5aMx~x9&irVsAT`oT`c_hf=|s7sXL=4@+$? zkZpA9qhF1Z1Y8#kc1eg?+dGB-Tce2SW?X2{fPVio9zw}|;+fjfidK>>e&4v|NZ%Y3 zNvASJAR+-7GG&h$X7j;K&sg+o5~NKCL<&3`JXZdy!c2!AkTF-vEZ$R@S`Y)_r-xor zpj8RVq`>=ANZSCgs`OiGWrss;1f(Z-sf|blDT=8-#I0d_5`6x1&+^b&J;e9*7{@`c z;MXhT7T;qB(SLgKE#e94wo>YrJUgA0fOAMCU7qeqyydyKl(0e5c_WmB;?8SNpRT*0cPwFdfX{{)&qoS3BBYAjwD>Ru#QNyrp z_MiR#Y4`b@tIm|fKF4`pQsDjPTi0HVtS*~raS>h^*0kBcZ3{K5$Y+>8V*9fVB779R^FIn)1K%7Zzbbs?!^Hc7`I!d z;@Z2OR(Q%68OpIt(E#p5>c;jSDM1e@qO)(V@**j}t9Bp;az`egi?_gwGppt7@rK9! zLjIlpQQqdUis;E(7nwR~L7l(9-~(d7rru#aOjP(cSODHhgW+W8i3t_BK%Cs29`Qt> zz@Nu9Wjp zIdQ>(UrJZC40!joc{oX*o-TWTU~`QM-Z(RjqY63|?FF5B*>rO?=VIQ$($hC<6dmqk zcJ-E3_!AgTtW>2F6&j_u8r$!X`hCyrVtkW=e7hBpv~8?2YkIf#oi=4kUX|6sDBjb-jn;Z>~Jy7#lznW zA3hNXqq>4Vu-T_Sy2Rmga8O50nHj%cxIZmP$?|CaUAkJ1d6R?wNY>^O6_0`9frNU2 zzKS%fD(JD&p{8?xW`wBy4HHI{o5DG7O$!B2`^U>0lXt}BoTFNhcVG4l-wce( zAy!gx^D|rwJ%+BAaPW@q4x4y7uBv8aH`g2}A9j45?foWhASgf!roVv?#o47DnGO2;dq<#S{ zm5R9i0t>KYKS{h}!`*OyDGOT`ZOh)C8M8;vBEQ!Q772dogo4*Y2^~_uVuX^Vx~yda zS4M5_{J$-18TdT9A#K|E+^-%tU#;>+TqSc}uqVXmM+Oe5;K)bxxx@N^) z#~XU?o_n-y!Yt=vr6+m!k@85&^aFaBVp_0Pca)yGVl?aJH=wq z!|6d@3ZbHNrt~_RmGvVfb-WDyboujI75jbZ&Sm_|USeJ`tTw4t%8YM0TgGo=fA6Z) zFTW?%A6@X@gVn6TMU%&0XgU8Andd)Vgq2k5~ec=zSZf z`I^lC?@VRB{p;F(gC`v3ffWh^D^$lC#Gahn>?OjQq<{41Z>29tjXpbwa2V3XU~T_9 z*HWeX1MQOfj*m;XLB#%SD-$wWs{sqyq$_lh9JZz^<(Vxq=O5|p zyr{H}nCh7{tE|zYKc%lX3k9}8dl&p!zj>X_ksw=00GrV1-J#@iJQbh;G8`!sDQvQ7 zExGvbSgrZ5rAkG7-oxmbb&sS`y#p==YMVTIi}I8#Z}}xS9{pX=wZ=nK?LgLe;|?`D zzrh{N-x`!zMmd=`m5LgJ&-@l>MTc9rbO?o5`=m^VdOXVW1_9iUxoMwhap$Djmmc7% zpS_N9d)49DfmhaC=(+xDhK6a+l!`DW=Od+B7ztIxWSdP)tDnxAa7W>`NbOUWwqKoq znSE=h6XhC6a!v@AkY-|L)aYqh85r=6YTItzTMjI3SK0?vOE#7QpM@O)I#88- z$8=2)MT4za=Gq#9+Z{)PCEm5EDO<`0=NC**WrU?Tyt8_A&qrZS!uw5oQdy0vrL7Gx z(A6`ns~~Gf(f6E8cYKuBInr6_uH`p)USN_S#_a3w%lXB(d7A z)mnh4*s#=u%Gyl!_fj}TErnyn$@b>$GT4M)~ zj1ev>3nFY0x%Rz_TxIy?*)zc=*&v-JKTgnuO$rYyt1`PQMCLd@InNBzUu-yJfHVj| zpIQA0Q}?nwVX9yDYHzBSi9U`ugiHGgoZLdyZ>~B)J4D&img;u?H>Ax0kC!xslVUZy zqW3t7^$PbY;Z3EYO{@Jkf^X5Wj5n&5H<3Q9s4ug%{GD^Bye^P;36lL6X%NdccL)N< zbfoZ{tk)T@C@*=h19PxBY1RR+5Jvf9fk@!qf-sKyXgzTVY{ZhiQxh-fE%@|j`9{1F z{6pm0{{;Jw04Z%WP?CC*RLseCNZ{b4aDF($gaO=mY?@$HL2r|*36uqotZE5iJ>9+B zZLC(aFiO7=E0*qSs z2g`xp7;t}8Z7v{Z&TwnZUMI=bALk$SBlkvYmF_RyH@7oXq*KCUW6_rjE+^e4=lLw) zo~vgBV#*`MV=1a{G%Cz*Dsc+#(*1B}3x^JUKgvQGw_OAsKL1{Ben#&81WG8^Z5jXL zYqK2NH)Q|4x3JZS1N$vM7wRNkm;8zH67jB{*-F1mm!attrIA_LIR<>lk6XYpNW4{DSEJEmz!}RLq z{`jM(yrfvSnnz9;3L6TI z2HYR2Z)x~IS3KI_xuxD9SlQA=mXSAIu0MLHU^+v0?0{g2vT#?O2)gzPXz@XC&(#T5wKWk0|Q$EO0f*m%%uw~9-u?Nlu=6ZZD zF?As46tE$+QscRJmNtF$PEK%z#EoGKBNb1pNfOrMTwJt%_IKrtlgq(tNt=ssAXwY3 z-WN6zGWuhhITN+}9TWX-;M(W3U2`Ay%pi?I!(_2PKPzbn7U{%-aC=2B99;QXvblKs zg@W}UW=;ig#%Zm`#l0>euude9$O3sC`J=M$ig+|K8nwHuc z#%~b}lnWxX)aR=sr($=^?W^*0OGVni{otaoHtvDG9RfIFg*-49HM0EEBTk)~Es0z+7$V6@`HaK#4b3n-%#Pe0!hm)IgQ#>o~_F{Rek8KN)YW@0uD1k^>(8T zT%*@n&)9%fK5_x!<(8Is%`@fU!+f!m;wQH)Z3}hkS4dqPzI1TR;~vJj7-X81{ z_Go^|`lG&9F+?kVZ|{@naQ8mHGH59tfLPm3abY>Qq42;X@~w^z`o8i5Gb*@G2~r8- z3EW3gSZTOu_sQ1PuKDorF-*+80Ykry*oC?$7*^rxtv<}NA8xUT3}PYjZ}oD!k)i+G z1(-X3l;BLaxuZ~-S`jP_eKffw1S%@KCSpEA0H?ap7om}bsWf(<+=K)m*5vtIMJv}QN0Uoa~8MC`?C9INWk zzi8>xap+#nr#N+dV?vE=-c)@hmXTrFWN0^N`M-{+a6qBZl`;{Rp1)ws%wIsI1DOt0 zZ|`I*rZ*>svmCqhjWn~G0b9UUeInUrRbHGM;_$VBhpPn7DRok@kM zPW6h&+DmKIdl+_$Uw`9{W`qeO{pHA>XooF~of2PA{Sgf(J}+k>yO!%d36b+cWDeY` zkhp}^s%X1oQpX9}p?1#4^z%RK-3QQlJx6n%u8w78O{(CU>;@%N7v&!=Vob+tKRQ0y zm!U0)vX2bj36ZzGa{D{Tkuiw*yj&9UpJDf&tvqm8`UY9JL8w06sb;E`esH39t+MfH zcvo7kYyGhG-9P6}dv{irBMTPx^{=GBn%jqV&8^v22pQ%38vG0H6 zZgSS>(yY)Sjc>Jw9)B`3j61@BQ~`~GYU*qb|I|evC>pwVW!s$TRk7F89;mo)l|TpD ztr)&q=E9wO7}LBeXF3#lKI|D{O78sdGn~(Lrmy#wlPByA}Hu*t$2y`WACAKub)H+#z(QkJV!8vj323~X+qUG(}bdQ-G?sL|y?T9%W} z_%pg^!YWP$=Xci%-MUju$XfYcjVm0ftg)&dYpV5_;>z3>_oy3zLFT);IaPl>Y$;o- znLqvP?s%VX!}ckQpCcH>xnX~PfPbu2$Es$EC&}Bhws+NKWI5t;(m2}PA+FDXZg@xc zH__K&rkmC`8Eq>*_gkIm1vU1f+MMqXzM4RlN=N#3r=8{9ig%$+4^KDWl^TDhJIfyU z=FZ!ygx{mO>s?n&B{O?Zd0(BhvA$=g zSWtJlap*yOHj=!#`aNg2;6!K}b@C=f9ArmhKVelEUnFi@+S7xJ@R4$6_AZ_hb@~tQ zs>QP4lRcVuZzU=OG}S5<_4}GJ`c!cRH=5laRJ$Uks1+j_F;B=fHAL@Wp&Y4Zo4X>+ zb&<7-H~NUp7Y~+XoUCKJrD|9$)8M_TL)`7GvWWGryA4!Q$KI!c-C3&dJ%G@`9x2tF z^Y_-uI+#EfN`$TM)UE*Nx%Fb1C^_%qQAV?|y5HbVE!S$ZZbszMW2V!dhOM<7=f?Fb zTQC`ql0U&s%-W|&3JYjfmd;Fe?`Hvf@|ksGGui$RV2Iz!wwE62%<(!cHX5az<+Gl# z5TE~8%0pE?dokNO5c9r`%iov8WvRQ~o)WomH_bm*wsZ4{5^Lt34|c!F_6-{76bQE) zr;ishR%#cQ{a7*Oe~t^WQkvC<(C@k(KKJ@1SnAJ&lYeuh9UhQvKAon_I;#^B{PQ?# zUS}~$yhR)yE8KIL>NkUFe(OIvnfZr6vzz}C@z_Xm0avZd$M5dC%%X|bJS)C+dTY&- z!(-h)dUVEo)S2TuFJI7*R1YW6ZeNEkd6Whr%d5AZF_Rcn+$HjTS0}eRwXXpt2SXm* z6A>$2YMtx^27Y(JTWca0=PAi!OC0c!KKE!dh+O#dqpBh1S3&qT4iuKy&5(?O&+cDg zJ^chT*)o{jGH5-0V0QBJe8Go3MuGqMT%F#P4_HrOXV1Z1W!L+fzybV6!!0vSl=QJw zrJ@s$6J~`L3Na2=cduWm3=rUFREA)RZ_Za=d#D^g4a5!|-%)crI=%*$*6lTQq1?Id zS@}Qrd-j)0Z%u(yd-NHbSZ!AsMXNd=!VX;CzOI_YI1~>%xu>_r5+H|<#T_Hl_u|j0 z>GC4I7iW%Ky)`U~lja<@letoHUGhL0IuXjjO3BnXY>#M~dERK8Gkv37_!D@SK$zZb$0;Cj?! z!Ro=P#dB2ej^Cz?-C6d!r{CByUq)B?u*Z^!qAEmxdv6O&_TW#{$n4xFGqHS&7D?=+ z72R3B!|Kr&%%12IN39EMq#lBh1o`e{h%qF!kqgc0N_+GIe`cIatr=WUX)b2kB_Ma- z8Y(;Z9-spJpgqfZ1j$cwz3(iO_Sjo@_7XU;G6BkvdLS4@S0zijMDElS?MNiP+80=i z!M9J%!!t?YExeQOpKjRyREg71^QY=A_cJbtAe8UbOH>*HiuQ}7YTk5{{^-ZiXGkBwDvJO0)kEd? z7D?j!i%Q#O#1dl6Qi?>30l#Vyum||j@S+I|Ay@lr?7i_%R2NA z!6u{Tu%@LgvgZAZZ9cMn z=VwzXSa<>aEZlRyZ!Sg|gOv?EgHMZ1NUckccLe}rbDJ7#{|KM+i7t1iTl?A>`VP9X ze|sETIz~?@>%wTrg>k~v2SdqT>6*-9uX^9u`0ZfL=HKpW_Q364+?N+yJA~)ECoX^k zCCFvJP!}x7Vv?7Vc(>t6t3$?U^1gXqix64oWD5*?aNWjpi&~G@)UmnUYZX zKmDUF$$L*$X2MKd%lIzdmvsT#Y-D%$gN8CIo4y&&4=eJxr^Z5)VL+izn;t=4a35hGB=wujB-ux%>TtE8{r5_0EA1j>C37Y{%7k z=eGc9MR)ICy~K@S*^eOCCKGsfw`wr*MpJepm^R2U52ZUG|zj{?4F?Xy_iX{QUCyj(7PnuQMWMdP+DX|fEP6Yah+qg3F#2_uPjpkk|kTszVG!pzTXb@KUV;$M0m zr!H&1Mf<}&r5<6qlsThGn4W#c|JB}`M??Mn@#AB!gb)g)LMmIbWly0blC?0htPZ3rykjJ6!=TihZhbSdxKZPZ;L8C2z$Il1cVt{sM;wcAR8^VK5#;Ixre zdl3qyKJ9FlD4M_BSY)g4iKNR)3d%5vb+upbGSxMqELQ3RFu)&f(=Jx}fAkYTkedEF zH-Rf_?c^`hVH={I!HOLREuEE*M=H%6&3|Pvo4@OvMJ9;y9c@-Fg>wc@+i18qknM^Q zAg-wwJOqR*aOLDY857~%E^=qA9MR~3^F~VBNd~a+oAx9*(3hv-R%WFZpO|K>9eLl} z!AF?c`0=+lbZM*@T2)UgjnP=%I{hI3lzLJ?`&V@+yYR$ZQfq3S-^4YyL7<S-sG zI_3<#R~80>g-#%!!Wgy-|9ab+T3@I=Jd(m9hP4wKo$RNS(WBkI!+;XMmTwR~PR+wsZO2DncENs8 zdHMqGxb>y$FY1dv7)V~5U)g)y$n+`mb(HX_`*OIul+6_QZ4I!aH%|?6`g=p|LfnOw z;$vZ4#t#>EnUL4i%w8Fq3BINC`yAd`g@4Za)eKjJ^fhk`5fE-0y3{yCTUdTo4!3 z8A-K2Z6Oz86ySp8qsA#E_YMj#ZioAlwtKPR-QFnqPUIv-vG{YBV$aJ)<+US4w&R$E>E^O=Oq>V#=Qgl7bqo%oi zRb-CTq95iu#uq6Z`M%L1fg_xpvJiT-Hs|F3Jr@!Oo-5^*xP$D!iu>)`xq4zo&G36^ zYd=jaZOU2A;iK0`QvyHE{a65er*eH-+mo~DapM?csG~mAx9!_QUPcy&jkAS>3b85$ zic<|ha6FGXkDeKz{}h4VlNf+@B}ifNsoSVxh2Av9 zv6ZsK(gFXoJOe^bbx(B8TzFlBmRJgDE4g-rsR?MBUK6XzAF@*%BG##$_M1EYwv=0v z`Q|DAYcUE1ooVCwwmT4Zvu1p1ep-RgKT2u?@>8san9C9DaXZ8)x<2m7G@!$&l`VZ; zPp%I>TkTR4pVP>vlKr${)stL#BzI`A3W{0FEt^M;WO>ZXNH`e30d3NV$qo{!Wu1+t!>S$gT z6szWSP*#`#(`SR>?SV|M-y6lFa-q@{N|ljQ*+_b%KIRGL1V#!Io4G@YGHWKBpn$Bt zoz+eXR~^g)4kVd6lftxsyi&%Cu>po%VWkt&9XWeKDQ@pCE{%g~y??>vAq?#R&|D8{s10G>3M z)bIs>PEqJZXo^D4MRhH&A^pHf&19b0sdTKw(zegf?iGeVtkQQtnt3;rdq<>V@|e$G z(YpuOlp?bvoaekmAj9?Q?um_d*J(CS!z>9rHD|uWI5h)gg{>uIoIx2flN3A1Fk7!b z`FFa!;IyCy?sTZkS^sqZx2+`|Y02RZdVQQnvZTFc+4_6hO^p(f2K%M~DD8GVfBg78 zJ-*50E1QQL^?4m>4B_m<;{^M;Y~8-G5I#?_N2^&hGwOW@AzbUXG2;9^rhm8G6nN9O z687%}RMs$h1AMH;^mFZm>7+Sk;-3ULGg44n`&Ts~HyvhP{0%nXh2L+dCEUu7ELF-ZwI^SI2ij;BslrcvwxMb$i89HAJaWx=Ba?B%Kjd)m*-c=~y8Po9^=g@+!8JQfFy=JI z)4KTlB1JfiUm0IO&^CYWNHdDJc!hFpq0`h`0%tFUtHJkqe!CYoX6I$)77kP9XD29u z%>astB|#ytyeqZV_7lpQH(CVT2Ky=Qh6N=|S?B;>$u0E_sSv&uHVHII6V)zfg$7=a z@>`zLq&n!*+ol4b?(%K}IdFOhA`vvaEUWYngg7;MSX^m?+3M+bMFy~dhSwV9oSMuB z>aS8*go6@4dtnoV@y>Y{#Nc^hojRw!Nu)w@z4s5vD14#fJ1_+F?GSluz(-0pQ<#}K zis@=FahW_8DmkgBrdStx{DJFrKd4Qe#_?VMrN@-{M7ZiU=LfxXHFTFOh79J_`zj=X zfS~U`h3fk?F0u>tN{waKe)e6b3RB;zHAPEfGcRKF=6%r;Qf=}sCq3y~`Qr0JL1c)c zPMr}?qtr+5s|CF_B*}E}4o89bWx^jgp>Hn6XX2$XdRJgD6wE(v)cbnI`di!sL}1{GU?z1O+TqCewx_ zlZ5?AQ>P%`f%?te+G$F1Npx>3_6r@T z4>*#!Yh}IR+Tkt3ZjY_y*RQPWVxD0XZBo(%G-&{Yn3vO};uK85W(xBcV~Epx97L>`HwWms1i`P9OxG0E2J7`OSH3urdc*5 zL{BK;NH=I==|K>c{)n)1+EK)=Wc^In$xKRrd|F0eOgQx z(%HcFb$Cd)aCl63Mi`5)uiOd@_!59>{ojl-9(=z-aI(Ml4XZ9S<#P4Wkg?-c>JjTD? zNjbVhwy7@Dn6XLvEX9F#b*7+2({m zCrOM4uz=daX~KSopGDf`>=LB`1krs+ZEd4_%6Fxg_HvojHjx@`v2WZO}gtdAoV5YzHJyt zeu#khm_;@)@3O9MoDQ;H_z6ZD)-!>p*;QQhA^>nHsB$Yz=qPxtr#qRWda4Dgg;YX5 zjIA%#n`!$SRi-Vu(`d@A@(+x9~bD z$Nf0S_@T(ERFRw7Y46@>NV%TFOe_-ZGy@Ocu;|uFpiiVMUVTh}@HND#2?&vILIuKm}EWW^8@S z$acI$`cdM>PQ2(o(WJTYLBi-Az)Xa%)R??K1cam8$J*rZJHz8$ z&`T71C&tv{!89L@E(j+wdrDqspZLhG3DyHlEI^iHIbDMG5o5H!wKU0eS5wP0&N$Id4s#K64YQFA;4Ho9vP*^?kI!^occE?ae= zmI1;gZ09F~9@tE5CY-HYsVz+sw|^R;H7z-Oft#Kg;%?Kuqcq6QZe7|#ePN4Ubs?%*>iNv7xB?a5Jsm{5$HNWiQ46G%jq^!@woIirLU6R%db zq4}Q(nqg{bt34t{$Y)@@^^ed^^MGrxf4tY^p7QkUVf~NtE_fa?`@4Qm) z0&)ms<&D$u(GOe{PPbqx8P1SG(IiINU>%~~*TLy6)kT=m-|3OJt*M5D5gc%!JB|XT)eYi3{ULI;moiA!1F!<10;18!)?cqWx*P0CD}vC(c1%^EZ3GvBcEI?*H4On=WG1kx!7_ z$Og5Kt28%Vpi=KU=3Cs!%)G~WPXx2nm(5QIs_~(nx$+mv2LtAW3hDurM+}&P8pm#x zX!KpkW)T_xx_i;aetlC4uP$2q;-8xcD3q{|*2h@cwfI0kOV}UtXY%ymhRSKxxz=Aj zH!ZM4;`@@&F*7~V+V7LSvUwWe@6<%}%&G))pnwAwz)lz*Hs#yBur7@$MusD&l#cXAf`&UMPy?(I zL4=LV3wWW75dUM31Vo$o-4H$Rzoi&#yyFPk;*9QHSTb0HpE#hKVDvw+duhYc{lrlI z6G2Q{Bply?;O?WBFP2cUO1}_YZ);)+n5Vrwq5GWj1zTI3PC+%RqM;bD_w%sDW z*7SBPXsV1!5$--Byls^=P^%T2`8sS`Zzj4pHtYR1aNkfEUdgcN;R%<*whx(7Y;}(B zfMJNY-aR(-xlQelqx{)j>WwJ;RXgFn0fyO;Twcog=OoZWSFp4AmKgj-p~`0NG$y_V zM&=xlNck_wj5@Yle!I4Y+|Dc4BGsXoFkn%~I7w{K=s;H$B1^9>ev`vlIRm(pA{xT*P(-4czZE*$lxz4;qu}Rvr>Zth*DI3GJ zk|d*s>LTFEst>eg9GjvFA+*D9p!_sa$PbDY#&tkIFE&8Ju{XP&EEuU%@dpSi>- zlJQumU~}zq72TNgS;ovq1fS-lv{HqXwBN)>7-jI*4E-!y`bo9S=CXU0({UFJi~ebu zXqS`gr#6Vwm+sE!TwScw5unhC6r^!unk@ zZC$ENszywk=S-01>4R@9j^E_nWiYASVa4!bvXGvPJJKm>x3(0cxgxj>Lda0-Eba|q z5dYt5l$BllqA)_^ks8ywU;SjO z{P3)LN9CJcNRaNp`>lz^J6O{=N7A}@PMgPZ|1&pZj2S-7+PXaG*i|h3b4`dedX1N+ z`PeQ$!Ql%0c=PqH5a;#3-j0Wt+nobk8Mo@{+Eu?7NAVT`LirO+hKO8m)jkn+itesx zOL>BY(nN`;9M$e)ZkTDz0uL3yTGM431_JC)ReSVyps=ro8lN6JlWH5>a3RDxHf$8k0at^)59~mOjF}C7GAq`VP zWqVMzH+8;<~U2~e-A3MkoiP-++s195Y zS==&F!G-D4KejA;`knKtvGiT@hUP6w2b3+X^C!R`U zV%i1C_zQu{GAjl|>G`?!^~{}Gk2eY}U(zmGb72_N%pzQ(&bQ1_`F#(7k?gdA?q>63 zui%PC1f01el5c2f>~>y)y=5wHc*6?e-)0*Y{kV_o?mGniKS+{udb=Hum$P{~Y43N* z@UsQ2>(m!Y0#jb-BQdG$H2(Ypd7^|(-7m*lc9Wmw``f41ovdxLCgAyAd_4hhg@XF% zyYKK9j9KdASLgP;Fy1zo|GeNJ^5ywS1c?j<)vLA2@R#dIjK@iNF`fLk(XH@zExW-6 zFTBbbvhUlrpxDDtkZhoXjh{z#j$6R?-kgS~ z6|`WYR^wFh7vSR3JmIah`F%|d{xLZUb-7FW#I@^;%`cvatOr;#6S%nj*>0ux`FFW4sK2k=s)6pw~jT}nuIV-ES{p6l+rDZN4^1qa>Nxs8CL_uV)8uJBmK^v(D zoMa}fyVpJGE3db6v@@2{IFaZmhO*Q>ccIxW*Y}dR&C}zbnM_sEb^1bEqC4gW#V&>B zBUnYxV6Sqys!Y$5N|_ZCZHmU}u8OY*OZSTt`R>$3{^2ui_7HWt@yOWfUhC~OjrKND zu2lAEkPXnK2FD0RTK1)~mfkevQEkPlfCQi`>`@#tJRHw5(4n*suzvGy!0`k7FnmEF z)_-v86R$)uD_zwd(mU&3(H%?8)BpA0P53Te4l!r!E1iHzNXX?)1==wNq0AIZQ}Cba z`9Utc(8|*TppNA?B%`|Ze-kamyFy$v+k_59S^8NYi*=GcvKEA?mxk*#HhDL`+{$G+ zHA)6}()E0*ovL4nLv4|hu^`?_#jG`*JABCF+&;rtGK&5){Wpy@Pqj{RBYWw14u_R+ zXtqsg)qExWU_NIoMQ&;lX@S4G0 zAJx$TlkX5mYp)!pm!vyN$AzVT8EB?ZOa}X0!W4f zQ`CInu3mLE5<%l(-F@l5DZ5uOY!baS*-=P|QE|f*k0sVMhV%gTM*?Ng?3KulLG0cW z?j1AJ3^}>zl2b-_y*_!7FZR}-5=*tdzs?Dy^w2PC>mp+xzkP@VUsW^GY~3B z^LTsRgOEarH{WTesSWfUjGsy>VGU*lH$t)`+WCez-&EJSGe%|Wt6TL^5+<<>3*j#! zZ#xrQ@D7ojp#)B9VFl%wwhYG|qroC%veWACQTL4XhG)Ub5FG$XLP zT8?hpuC<#%lRb4O62lxu4*Sg%2Tz%NA=1eCJcRa9D{J?qx3bn}r?n6zoW<*m>Lg4u zA{3Q;dzIdopVO?u${j_sB}ymx)(lJI2X=xp2FBeu{ex^p)`hFM5*=tf=w&XP&uF6R zVhd@$k5q~5prRN6qAeF~HprxKM zN|Hf;2KxIgCS>?>YuNW@hqi&f|E9Iz(%wc)Y=8QY;Cfr834_?}0uH|>_S5E91FK%v zYQEYz$&~0TDm`9hBYJ&M;6y}CG3HB4#=CBNJ`INkRMnkYf;?Vn2e;03HUu#ia(F8e zzO)^`os{YI?W#L#4A;S97$u+YiWN1uamV21^x(3X!4=lx49<9v2tEC7H|Ze2dWo~M zTr-&4@>jW&J!*ONe=PZGPf|zRz2{j>gF>`B;flcFXr(= z&0=iLsNy~?uuw&?iSpQ=GOBDnTOYRiroDWr-io7ZpdG*SCev%>U9F#^y%OeJd!rPe zz?8z{f#chdZ)`b@xdw@FyT@gS z_uY!n!}tdmIUUVtOH%l83+)RFqx80Z4jbw$!XCO1tIia@7T_Dc+R)*IZPwH5UaP$J z%Mdx$E>tWTo*b!rMV7`=JJ>tG&ESCeH~nO-)tjY^>vyCHr@vT-wDWUHY^hMv@RDVm ziv05lExpy=5m4x^>V5nv^`F@HZFBdCV!5@GaXd6WkNXTkS{m!C`h{?_NRzG|DlV!B z$jH{GGHUr`|ICBDj*Z8WUH76K`Sje*+Rd>ugo9zxI2f0arXs zwbHG7KR$)gl0DLpMbO$X)+d>`INO^5?(7P>%z5%xh*!ElnB+!2v7?)Bqe}FiL1>h- z#G~$n-fAu{trMNh%bP?tN_VcR8qS~#yF+y7#k3b-k~t;PdO))q-)a9XBQAJ&ER_2u z_00rFwCAx376~73jX3XBaCrbN{d#p|@V9s8Y{I^kdHWRuuHC~RaAW+|?F+{rU!bRc;_Arp z{A+E)g~WT&^K={>s`?cjA6e_A*4kTc3)d*t{h0c|bmDX5cXh{8tE%*8xj%mVsQUa( z-^=SSuP46q#PPY{XNmfL25TWYsKTPh@WHL-!O$II8FbA+Gt0n*JWDtY{Fb5)##~b1N`ZJof8LD4)b3orX`4g?Ztk2( zq8v4KGcT8p^Rs)h&LwOC-!znS6aA_lP2UUKnIOLJgl$3V4)Ca&7s>pff{ovpTk)W* znZVj~V_@UUX({R_5!_!Y@WusY%kz#_W#=0|WOFybVEL1YVR0rOOUE7a!s-4Em$v{L9u->Wta1q)uDmh$4sDy<00n8R$Y4^08^)?Yd@p6e-WFHqA3|Q=wB0 z@$VH58?c8wqdpaZIP*QI)L7KsELJrpvjLx_KpssY&r&sYvuBW)%jXa53;D);DmGrO zM)O>~uPl3&%mrEsMQ2qjf*B<}=8=16XkzZRwym&6%KJmze0NbMhD_#j+@2WWDl#%s z8TNnX!Vh(#buBo)z(waiSdu-oy5m;Op#^H%+b+Gu8Wro-`FsDU=GJ}XzIcnU5TiaZ zM#SxfcQ#(HFe15D-|V?|xcsXTTJCcgdoJ|x)1mDltb&opW~(5wH`^<#Q)RuD{NLR4 z_uM~yoqSlU_sz;a-ocLwHikN>-GY)KcxN5gUy$@cxn~AOa1sgEnQO+=pv%uSE`=Xk z;TBFfw71pROI;dJ3XFz<_8itOysmx!g;?_+3rdZ3MZa~?!S1egCgzHlh89cEOvv-D z`pymQh7#*I%7g4yxb zANw85b+U}nt>5@^_qsUB=G?YT!*(#tW4;xE0o5N?s*4zT$aoehYLd#(Zb;f}ZJTGJ zeA~xB%j#fL7et%uOgt#=7uJFu#YV^A8=$6}=`<)aq49&=bRRCM-dCi|F{}EumsqZh zkhr$4`=zsuXWGL>OI(_cuU82L8&zW_S$LmXu%s2QsNOXh*O^?SnsqUXD?MzCzw6K_ zzvRLb=UZe+3vR{wR-v#VPgt~DS6>TK)^ zp@h;q9%bvHYvmE~Dm$zwn8)_HLoUuyi5RYC$Bw~6RJZS-u_w-IAY^f+7+*Tz+vp;XJxOyq0w^e*cJFtq-y5$ci{t;#4W2bTfP@GHP=l#=T^j-$wuSE1^@OLR}q%R>(%WOn-!d8!)=V0P|}iw9C^!E=IB zDtL6_3a)P67fjVtQ68~h?xxs8U`Oqg`;er<_Uk!Rpy~Eo$u6;TO&c}1j~XAKxo6tj z-X{^AqaEfBCua5tQ&zSb8(Zn0!WE%~aLmLhK-4sPDa17g+zTN>i|r9n&BAtGVzXjo zNEw3V0gHJDJPOVHt%lVKFXGHMs|%t(lQzx@xX=1uI_NQslXc~ynici@sv~R7 zw~Ovxk=6Gob%(wr%rpmTRll4aRPOPUnDN-$|JupV)Vq6|kRUxih$pM&`j~b`a2MNV zKSVp=cDpW@bBUM?j@BG>$%s%&Yl$qxB#y&oH^WDZ@afI1PjC}b?(27Bx-EO_O9GeE zSC)3jAAZ}O!h8HWP?}hbMpQ;*){ihvFesyp->n41U~o-5P-n}Dd%sAPohoDEvi4rt zKhiVhjEJkewR&A%Wqz`qPi3%Ed;|AskDZ|yqoauAp32-OdeH;FkRfKn^^|F$O z26MBUNUtqU7xS&H*MI3>8YrDVhf*3F?Km%l402U$V{H%dvORIwUjz$z>8q5papth{ z8G@PRy2q<>H?NSp&gm&XH#y2P2DV!|Wk7*y?4uZzJgh1HwvD8&JMB*^(-8L#8Or;O zpz8eE-@u9U*h-%?$ka2J$4V~T-#K^qa_vtLxk~qxu6FNWLCQ?e8QP%C(@b3hy~Wi$ z;pkq&=I!}T=a_Na1OwDXfVa(!|9eo)G~;F8!zJ7C1E!GR&A=@tEerG?o$-SQ*wT^} z?HI+50_jj_8Dcv}`us?J22`C8EgVWIZC24bSA1B)ni_D2Fk+z;fjf@cksbyOCN~?m ziF@&#O!>c6l%cM|wx^J+Hy@%ufJTrEMM6^cR)-pdB+!`dMRAj%1MVRYqSr&l`DbA9Kp}Q-5&ITCTj&TVJm-TT#BkWM>p2H_sDf$m$Dy{)_yha z)dpot$!%wHU>ogy!Le*s=85*J`p&(o+9Zk$(y-Mad}P)&Y>mgmliKp+eQ~=7&Pl!b zHU3}o%Aj>OO^9+a=KUioY^lu&HWcC%P0mP-KE*cE<5a6*h2a6#8J8jL%KTY zVvbwKm4#O9cXH~^n67Z~%q^)*E{0Efl(ycyN{*ykA}{=!A#$^~%WR@!!q%^S`E9Ej z#$d?Ca$kC{ZrDXxD0iS7WPyRr!I=CFE=5@X};H$!qt>&7kkmiV7fmTc2&t)N!qKf~AMy_+&HA5E#Y1BAs#3ll~w*qEf9OzX&f#l-xddVd{d?VBs zHv{_*%igtU;o;q1bMOgO%p(ygD?5BoXOLvm+kZnj1spG_Wsch{KH^iQRI}V!Gc-kr z8gMZ46cNQt#=l^ni0Tx3KIMIHXw0r5mm~~*ceh3 z7-VZmX%bbTa<0fyesZAHef-|??y|Rh7zvKE-BI(W=2YtS{8QQ0u07*I~DS%x9H1RBu#>aolf;w!8) z=)efcPfxf9&55LBX6r+1PNR{vn(4TKija&6NYEA|b=A`>jP!d7 z#b*R}p}o6PrIq+5$pV+qnJW*S%Gq~UDa2Qs>GL5CcVB7D{YlDlKURU~b^W6PgMh@l0ZxTdLj->gJLWuTZWW0mh5}mdc9*WdR!z~ z#A7gLu9R0G`ao+@DJe?cD%@{yv)ktA*ireF5eQL{&N#M3`zq2 zVdB!BJz_{+jWDPKZ;{x0SIUAQch%k;F;ke*{r_=18z{O6J`=gLe|suzU!k(3{NexU zCpt5rL9D0w?r6GEnC8wm+E}A!e2} zAjILTF%myC70{=wtw4LQ>MVC~68yj9!|NlYpK4?z(t!4HNI%Xi1lrE&wZJ-7%8ZmM z1I-AZunE|>A_jd1L{&J_%Pm>?`tj- zPE5D><-bRIVdPPFc|y7)4C`?bQ}tGX9=>Q%x2v9trnM|LG^k_SYm1EP0^l1iF+7?) z67*9MM_XGVgbs8k*P?`EuEM&vrRi?QW|_4VHg3Eb4{;zwB$DC`0T_@gpBt!8V2=r1 zRYHjtiF>HqhA#}n|55F{hb+=5nKeg;ZXWid9vAI^rgn3Bq(D&q*2=&^rc*Nd3=I`T zi)hr3gTU*)xlzTcFz{I2D#Nay73%HF1_dmy5T3p6k>*MY_+g$kIPrX&x+^tz`NiA# zFauI>#NZF5iVvV7xY=S)$jb8@owp#!`H2!PGG*zhAt`I0PNwCj8@-Ch>HbcBl022#jolj(ray}h{tfyBRI;WQ@Eej0|GgDMN>^xe=@NY ztIKU=KISttb9l$l{hVjBLIQ=f#;8IRtW?>&#U*MJp4pr|`cp#5_5#FOaBg@t78Fh7 z(bskU6|jFFw4LmZd8G+4+z7*_riZA$57h1L&u-GHK3oph3Z89B?|)8pbBZ$JgbqV- zFHcC{6diX=I3z6jz^?ksw-JSdN1e6P;)sm}RYH9jLkTe`_VnNI#23sHCwl3P&QF)%8#>qs zhl}QWl5zPIUY$I8y;y-1r$^>C-%`1p2jJ0?Un6eH#9yn}7e2pnAtl@lys0TnWr~F+ zZ9W6w=^pbv9zJzq*uwPR*PmlHEO#ICIKV!?q1$uD(W?48H>CJx<$f>LqnJyUo-3Md z7uL9OY-qH)uFVNzVe3vV66}Gwxsx%R;MlPOth456Lm0-kChmAR)B23x095+R=>_H{ zq#p@S$z}U1Sh)20i@*c@E>p|+ftg%Y)u;A)uW~)vY=+YsCZR!HH>HWP(%(sMCc_g+ z>Qv^oA3_FBT0-hZv=+C;Cn~|I*5R%o%>FmA%*45LA{B-pUkR z9Ya(3zo(Xy8c5=6#=>Ewd0QW1ugG=pmF^XzV&S@0ImilNZO(>@eIiyPaYwiKuv|tr z*ZO45;PG|pilRhr=&RK3h0vx35^N@W5pv)GlSPpGGm?~y(NC(#M$;p_)^M=M*iNOQ zwnClkW|%+WC8zjAeTu{>NJS0Y<>Yl{gPrNT)$q=RhzM?IrtZ{iK2=xcj?{hvi<@CZ z<-?(m*p`f>Cb#Ot)kk+x@)&=_13tUAw7fAvQY&}LTt&XtU!$<_Rj8xP8UOyvPw`4d z+so54Vwl~!`(aS!@7}#kJxW1knFpyzjg%vC=l8YrHOSSi&uJvFj!`t52oOY^J3W?{^CDHBeAm}~!F{V-ipQ82`~AE)bsFM+7y|pTfB%D45#HsG1vyW` z%smh{k2N(z8)NFLT`4OnaaP6zf=*UgIW70-;ie;P*7TI{#h&J+`m{raAfDkScQL(x z@%f?7kWq$=(uYhH@do=BYz3@2%3T%?ZF1MRS4N#E%K;FYGHQ#vSjEc3!j$B+pi@bA zC#=+4fNHjgN59RyrDf33 z#4}Bc=gR~_T>&^WRHy6-b z6ReLp2*zK&HYj^pUa_(9GcX3KuwPty;1AK&@mt%Z7^!1iMlef~zV8@4y!MLvHzgrB z%%J)Yqmg#3#nAUAGk(Eue-0Lw%B(VSp709+q`sKQAafFZgxS}d>lotPW*VTZ{pN|Y-OjiIIQnxn_8@AfZY(BGH)?VHaRiIs)c#z*XMYlV&( z()$N|pM0MUdk zoTXCRz8z?CIAu0bXAs;NuQOkqxU=K2aJDnmfG;fwrcNNNIdKCx;|(~?AR^lzv0dEJ z2^PjAZ$hi|Q_uwBvpiu!W)0TV%<7um_>=xApB35}N0K#+L&s`RK|EKFfqL4=&a#r( zvG3o4RAQYd= zfX3EZMhR#(8SIyo)+C^Xa%C&ZPhQn(-8eK=ms zU@#{OJv2xJ%($vb4VsR5)_WASHti2!<$02b|IHjO8Ga`Jm^sYZ*o|J=hS?`J>Xe51 zSCPxGT8ur4pX6a>t&XBX}lxkqZ&{MgEkfDp?0Fnq8kv8;%_g?5Jdya>%mQ1 zs*86}lH8KfECy}U-$#gL4O`-->v9G9seQ=}%g=9YeOZha8mDjxWL3VG-rt2*-fHBh z>X`bpuqp3p^cAET;WeFaNN@TLs9T=-LTc;{TvPFqAs<|r2t|z) zF^(0I&%5-9oq*_O>4(^r9iU~e9J!cCR^yBpKz_$8t{>^%Fbkc(ZsF1U{=fTQSO8h2 YSoJC7ingjIWfwHnb=1mkTR;E50JxVc_W%F@ literal 36691 zcmeFYc{J4T|3Cb)Ck>UNtSPkEvqq>?lCA8!k&vA<#x{(4N2MrbDO-z@8O$JKXNst7 zg<%-Xps2A7X^=78*LZ)v-}`%?bD!UR?*G5elyl~FZLjC`d_EqJ=kvPUy<}wy+b*#k zf*_dLg|jvg#1{oYJXf~ygKsFAFBZTr{wwCDXTfjq^Vg(40sImSyWkuFLDI>be_Uxl z7JVS-0AzOdv|Uv0>}Ygup`$xvvFEDXK*j+3Q6ai|EOd?-yjS{?`KkYk~ih1&B9?bQs(OJR1|Za%F^T zl8jL*aunX`fvt5!1R$cT?DAY2@%kY*0~?~G>b02kt%o)FY>e@>6WODrNoUeVU`-}k zobx?g+OT>isn*Y)5kS7;^<$dq5ln5V;%(UKGxJ?cMWBL#4XK@|Vq+O)s!rdg|InY? zmmQ|@aT+)s?zy(jTdhQR%(CDXR<}xOr0MmzdX@XG1#ZsclE>A$|CAfoB*(KHH@{ww zVhxfA?teu8eMp*jynEcxQ2 zwjLjI8S%G4$k~p2Y>1K&gmW{YVzC1DjJNa7>^SBl`jeq2I^x!$t4*AFpVK?(RZFT@ zE(=EaF%H4J=A<#!B`-EJNIaM{N8M5nk37=OwGe&-hxw+awX72Z9Oxm&<++U>LdI0S zXFIgS*KUrLt@MxPO-g(id!3Zg=xGoi|80eax@yX?R;Ser*+U3uyEEXX4~RlH3!+!{DJFH_0N#@ zR1G6zyqEc{cI#RrPBZvv!KlIZLzqp80&3IRE&AR-DOL|mj!`w)&cgL>Z5a6sZ^O)F z2Wb@RXXhzxjGW?~+^ijcND#5CRoxmQ5e(5oA}wKCFu3A)-w%s^_MVP;c8w8rueUHZ zXLM|Iup4dCjns3dUwRFXmPMO(X}5*wX?s#{&qz6F(#50 zki{`}%w+F`*x%ex2@e-zR+<`CKU}V4gtTf=2>}b1Sq|0PH`f~}+h2CWj@bf}n-d*S z_w}FMlqRvUEIYbGOgtWAR(MIAro?^wd*L7F#MvHSp_|MXA>?md`ot`=U za#|;-ctIO`-!OWX^+vFHDz$bj)WSs>!YkzUsw4HH$8IZEu&3OKV&UP;E)v+vgv-(z z&DSA_{Jp7o?HZFp($y)UHNG8Jt#GxoF7AGtZ`?$vG)S9kwpv9{oB9Bc`&tm|pgCT&R~zH-~4puL1^a5h=00S z;@%MXm>%q|+llgLen`?qDw$Aq?UJomtGLh~57B(&<~-TN)u`3nKxeFM2>Hsy$kCH! zL95BEDFhn;pHA~33>FiJp;)TVGgU$d@hx7Y*OSxDhzEnUK8U}1Q>q4ykzvgI#i}Lj z;tCri2+!qOsrldV-@a zrA3>dEA@$B$7ZT}Y<6Wj&W&9W8LUGwYs+Nyd7zv$w7A$q5G`<>4P?v7nH5DTth%mwDtys{-c{W+b1 zT`4PnqnnCi*rWWI!`cbD5afEF6TUjhOKr=kqN$W`n+@&_%R@+c=^opVciniHyWo)%JZco|4{ojn!)_f(8$FR_{SxsX$Qa+l3jmc zu97F;uKl2!4ysR;kwh_pSjX8Hj4TP^OB9k^0QT<}vJ9}hbSxu2`a?Jv;7k0HD*7&} zw(d$Cfai-nLFD7(zes({Usnh)0qVRbI~p-{KVXea9*g}DPE{w!7FkkVlb-7x^nda^jNi$vv)9SfD3Y9J$#hOTZmBlY@yGmUOGz;u zW$nNDA0Xm{-s|yc_Gdso1CN0f(T34iTE=P(rXCcOj1BLcDqCNtI+}LYWCoM!+i)wU zfwP-~-kZ&NUhWWaT`+1WUD##O=`6Pggl2~4B$bM*hMf579zYHSd$@URo9$qWp{sDF zr=4_7PP~BQCUSP=W62mFy32|vBy@o&1mWvg4he2-N0U#{r!!wD+_1TbYsdGeHpiIJbw>DbA8->JiN1r0Cu( zj3;*9UD|%M0XW*TOp~vUgc>;p7s(srXzyn??I?@!aLDT)ZpQIoWs8lzF-;}{u?Zo1 zG#Es#;cW=o4i+2~9@L_OY`4=5Sz)EC=mU=;BBc9&OZ_q|ZGyERwSy>lJNEBca|%Ah zf$iFnI6p1nU|e9sHb;ECHyB^_5!S*5uM}OVcqkmaYR*bZa-DUkH=Hvk&0r2|myD5j za74-=vsq%ww4fx_&16$Rr{q#&Mcv$vnc=s>fliC{KnEFOh7*d6OznEGWil*w0aJM= zcR;qRVbINRHQDy{Ddl^^G>?&m#)QK0 z`D)V1n!145P1^oJKFGp~*zrN{r5ECTcjBBW#uiJ(=DQlk1|@{9uO}llrbd!nd&M$1 zh%h7wi+Ckew{fhWG!iPcGVZ*mDlzXXKISiG@vqCeTSszraL#4mH)FdNDt0b2>Q2vf zVCuD{RLjK#?2x4%6%!JEmg@1ZID$%L(u?0un zMIiLwziIS)^j3PN=zZ2$IlH>p@m)Cz5marhH%}{X47yhZAZHtx)!;^uT7ECHNsEwd z`3sO$XOAOhP`jiJ)h*F3<-nd@UC+>b>wkz+zI!E~gKY`D831t>HbwTvwu1RSEyiq~ zcs*09n_R*LxeW@E>|qgwMF49~!zhs|+9eyK0YW~TWT3Iz{AyCLa#>kw?$$Ph zf07Uy7nj(0nLqlw)GK!8YZ7WW(}lG??ZJ5vnqes8UUgF!%m!XRMjSOy+8Ly(Jt7_1 zj=+XY>b+YF3KVJy)I-n9wr?b8wA4Z9Mh<&PjsCvMzEAItjn13Iir{Jn%CSf)p5wgr z%kPrx-<{a%BWo&RJ{)5Umw9L`v*RAmh3|k$M1bc` zE~;36%EDA)JcIS5CS^!-7;lLWv>f|(dn8uI&aiTgW;I#R(DcK4%l}s92k?9?+V04W zYCCru!{)lh5e!8yzVXMVYG{d!!{|FNp_EB%k?w4Dy&ZsBYTOrIX!#Ve<4p9m7QxR3 z*8PW3C&L?s3XXH4H(#2B-$y$N!`d}h>4%l=4L)gI)V*KEx8OxMn@H}o|HOBX0pvCLk_bZ zB)NW?|B4qUhr`C_mXqw8#Iu7d+= zfcoS{_#i?qkXRfQ3qi5%+rgyh_b_ZIHWerAPwrWvVywF>k3eYBHW23M()phNRzw4^fEGnvZUA-D=>PlyhYI68t(0wgWj z@(Y&inY%?T_NI}{m+OCCU0YzWX6dZdnqW0t4M1-&JgH7D3C*{@Iz#r z*Xwy3AYx(5UpHg1fo&U9JxVVG@7TFu^&Ze2SUg-9>`LYMfhyUzWg{k=&87LqMhWvf zfF#boV+a-xr%GQoY=}7paNp3Sr+BO%-#n8w?I=;d__G}46}Y+dw~JmRv5_0SD7)f<3BGZne>zNv3;{3LebaN;<3@PiVhCR|JGgH+gI;a)}@C zH^m{ca(uOy$I?f7VPxYOq-)DYSymdVpelq^ez+iXRr7?ewKVcNU2pz!EPWd^`)Dta zUcl-^-!MkfiLSjQ-O?AEx3Ga2EY_eKuR1VKmE722{S4kopf`k%+^sya9U|-lPBW{^ z00}0X%g{T>)2Y!L#@>7pV^)>G?5jL>?{0%vP{P%l8Y0CZV>^F0CD8W*BXD!p=5&LC z?U0z#s?LUwxVswN=t>M+LO!OO!x9wJTunA#VXRZxn=8Q7=+f5h|I#7+Ti#dog1_JY znIza}-S-YXKKGKWWE~uheXuz+e`{sZCBJ>c6!A4?j{xL~MkBWeeFIzg_{5bUwP#@? zHi$*5L3q3OZ?s0?B92P!s?*>$p^L~+(0b6?34z^=cg5}{ddLs$=lJag~d%deL z2vS`6OfPDiR>Q>?4>zU6Cp&Bwt>rCF%9a`FE`f3b`S>iD1d5$rkrXzM4Ph#g`mlrc zemcs9H4#A4-l{Dtj&E4&sI>zNQdi()9XdITw_{ZG_94<_9!a;SR3Ab==n#Y1!ufy> zoz2m;Kb)E-;80ysR@z;>QM?w`A_>%OHb+xHv-Pi&3^J?=kaB=NRD_**fMFn~OB~<< zD8Q!xBJcnF1%lWB77LO85iV|eU1wR9fbd}ANarF-1i^P4On~|#f`IB3BrWH8)W3;A zF@=D+LADKl%rO>Z(ay%&Vh^>aQC(4ZIdY>nf=VAJnP7_S)Z90Bb3!)PL&d(Rt9~a~ z^2=C9&*1Et4O_$q)io*C#;dcHc7~Co7#{S4Ur&+>?jG)`-wB`N%o?Oa!ET0RPdC+g z^^B6%JIN~*^i0jt9gvRBe}@1hHUcsVAjqtP$?0C&&Gu|dL|98a=pAbb_zJ>@Mg~DOAAEsvjXLA>pDA|)Yx>bgeNYgu&BC8fK32z!JLvx8*qn6_WG{&xi^No5TdX+aR7&QW_^ z$LCqvO4$sOLr%yNtKgN0j09{`G{Cx_sn~qm##j2yYi=!hL27U3jhZV!HKF__a(fBQ zN5unB@tpDPK*I*Fy|~9WxzN$kQ7t)lO(a6H5+Yh;Fpj#s%~aCP`HetkB`LJ4$U=-f z1mj{vOu2$$zC{6`0d#cCDU*lw{diM)7xLRQp04ZS(Z%XVV1*%gVEN5|)6wiK6Ks!G z=ec<7Fd=zkGh#N@9>IF*zz^ZI1*3|HryYTh?KSQVdpjJ9EeMR#EPuA?+W5}PwbJvM zzYp-8tSv9xnhLR3*8-2W!MjA%KIIHZ_ zfP?YYTOIjKwL4L27}cDx*;?<|zG4SZ%CkMd;X$RE8$lw0zfUZTd$V41ya!PDzu%Xv z-DokYJ8Y#szd$b|Rl!`ff!`z@&JGiXJ9rD$o{FvPz?9RTCbF( zL5GAb;DW1h^a${9Y4&x58}lE!Hpx}OAvF$PS6AoFyhDFPA|#dW&;N?A051dYs6595 zsfSW9vN%=$?5tUOxDV46mR!LFsY?>BWpgWmAR`B4VyML)9)@qcjK?M=rrM^pOXw(j z#B#&-f81-F5gkd*&C_-T1)(RvZrD2jJRuHCxv{Sz&JTL}#K$lXkrE@ot}f^Ohbkew zAF|YF==yWkYdV`GfWeilt_xr(UB%}ivLpA{Q8K7S0?UL+BTF|Lho`RWodj0|Ue@D<^Z=pXaNlkN2pQOv1wMuHuyr$HaeR#gH%vL&P* zOctx)Mht7~;xd{%F-^F&8;CSI%MXMfew?GHAe~fMDT?PcW*9Qr9OEfdU>vRpLR<3L zR%m;Jmz<{e(q#|tLk1v%nWZF{? zf2H5FmP5Z|zcyA9(?V`)jG61i@<2LL|Mm{IZ&}_U?jZ8k$jPvHhQHC&(bxs`d~JL?E-uyI=?AL~RKnR_1gfuaW>LP-qg<6fsJC8 z)B8xV7;y(r_Bj3#xyExW%@VoJo(E-iG0 zl{AKlp^{gOv2!yv(m`&ZbVK^BcHY5tG@eRd@}^RAqkSOtoeLG0<{k1#2onmP(@Cb1HpnelX6EDdu=SRfeT(`-Yws>213_~*O;;pI^K+F0pQgHQ;Now z&Fca1f(vjGK35mRcR*B(SQW%NGh34=BAd_au73>daiab%x(Ha_V&W+*BDuK$-ib`} z?(TT;A;_H~AuQ(>P+`F3c``M6T=^b1I&WK)^EQF%2Kv?FwLJO@Ajp>5dr;5EwJ6fn zqB4ysGg1zX{vQz``ZFK=&Tb7#m7EejY^m<+gGZz}@8J`osj6(g^iDT`7zU}VPyan; zTIh)@ZHWJtto|YeT4!=)kU?G&o z05#H<%#{X@@1^6A(+&V!VI9M>hLJ%9?x?V$!KPuvCimtU#IIw6broy1i+@)vUUMYj z97k^mw$EkTmikaHlkW>lP;gdy^Y_XP)fwVkaJkh)!&pyaLPBNEV2|74Iw*-XBGcv? zR|p4y61@JNJQnaFy#2wPUy+lLa{5yHa-?W#eHYo|YZy%e!oTMn7kw>njMK$=)=&I( z1f8*Mkt`2KUI?!@c7h-RN-eucy1FCtEBVEayeZ?x5@WaG+&f;(xy+IoYjb_7+n{W~ z)3d0cAVx#ZV4BO~`f^~+Sn5n}ZGakt?iwd~vmOKRky?s?`H45YUK>%qcatwH8bM!O zcO2B4`b76@o5p3woC9G&ua{Y>LZw+7-S4)$`EeAkVmUZG0h#1l z5-n0&B)G;Tpm?oqD3f1uY!Mc_Q1;{DlnGWh4Yg?~P{M^blB#Gsv-&KPXQW!!q9Wwd zXvvSTl@yrL^%bqfwcC3K^}{0-dj9oxX-tZ%aQ=K#ijk6E7yQ5O0_c|H_u>71+O%+0 zpE7Lvv9h!12769|U@uZ)q_tf8ypE|qAV3^Yr1^L?)ci0bmC2-GWojoT6N1RP^FNag zta6cZ92z#-m?{Yv0Mf*<8b3rx$I^=xQ08pJ#{@H9@5LGFx;}b;(fI4{i{QMC9lcrS zWxrnJ7`O3?ls9E}2y%Ul&bnQm!0e5bo^PrfubyJrGlne-GSaLabzS}w2D7C(cFpeY z17*`@jJNZ~xC!{JdQ?kOT^5p^U;wHSRQzrk2o!X)Zbu9z?Nz`9I|W}aD66j~y(dWy zqiR@mv4ma@)-99dNVl-E!FoIC-^&sxC-8yEb}LvJTcFlDM3u(4vc);_oBmbJciLpq z8>xzGDjKhz5ecd>1k#fYD>_x6JHrjQis(Z!?yTSDbScX|GzYm0BL3MHrTfPEz6b}R z(WAQ;x~YjUimKE|SYW?4X)h@Yi=A=;bN~bt@West3z8Wu)&mt=h018katIC98(n@! z7t+LWgb%3Go&afOz457Fl{DiZy**x!PH^%v2z~w2u$|NUdZX00-ETw6`=)zJHn955 zb%k|x<2~Q+(5Fa(q`|VEoBaR+46#DKuE#l}K`ckvkm$Yhp!Qg`9L7ci?Pc!ZHd!Lr z7OKUOBoK7TVWHwcQ}qw{vIZ-vG`Xy1;L!4-%MwSKLC|whbS$Sf2$8vEv_e~V!PgpU?FAt9Ln5VRZ!?z{7h9RCAkRg;MIzHyN;sJUWYOX-DOOsd zGuYg)_Oyh~2k)`+UmXhn4bHZ&IxLhG4C=1?vP`iBrK#EQSwD&81$H03_g5Cd)VkEe zo|7~*KCcU&spsAgGBhOBt+Bk$tHu3pvojmj5-@6l34I%16VtjnJcpI_kD3&QI`2^5 zcDEDgZ%EP@SBG}{WbGi=uycsZ2&n7sCNXfPiI8%kEvDVxSlviKjQ9)I{N8wr!J)uqQ`pj~ZZ*N+w5;}W zbD{oqP%OZcgTATr_33E=Q=z*+9kudQrUW6kJ_hE!fsxzMbh!ni48hNDiMEm{3g#9D zX)pT}KH_WppeSdG-vAYzM3ERN@^f1rGMEF0i=EQ%}U8LVOb+|HgvC&Uw_SJC ze=fI<@&rP-lm2VQ=@10X(0~LQ*Ifh4nIJo`Zy+pNayOpQM@gQJn@%XN^>rI?x}5#@ zi6D{t1du;%9Qm{SF_E;3R8CTnP&}cXd$>B9+5@S( z14h;3IQr>iom@p$c9QKiM+4=#UT|bQBdK`FGdmgq41{H!YKeW;0uGLqZED}GIWZSc z4DdnfwgQf7Ki8Va^S}Ss=?JH01VN`jjIhSdk6IbZ!Stc0L3tTRW3P<+&e#isjhDAG5!3~v7O)|NcqjI+Y5~< z&56;S;85a)QW^6Os$rl3C@c7kUU6N+xZmcq1OXd!mMKjV#ezh-!JK4@aqTIxfS{?f zpspPi-Qw9VZv88!S<{0d`{qU?QxQn=(s2)xqieo^G$AM6vk#v^vSDtBZ8m^q4uGSc zGd0i0)#!tu6H*$7TzpbiJq9)z|95V1=YXnx!U$e~5fI{riksam0UQhw`47_aZf>3U zhy5g5DLrKOlIKJAfn5EB-u?yWXvVXeb2O8k zQGb7qa#*VR)n*>hI3T4A;2>#Vc_V^3w!8uBSR~bBz1z|@ugY>N${CVrbK;7e){ksU z0Fvue@o?@bgn5C?_cd&Mem|)Q^Op??<6%|O`8FtD z)E5CLn>>v*&|bf?)*^bJvY0a4V+|r0LZkkCrQb_3Iluga1B7v3tU_0fwn{a`&h?O% z9+oGNtOUCEWDTq9+cXNg+av?E$Ac23*~+H? z*6Nqg^0-Aoe&stZ3d&1^9P#7Ab_WNvDKMl4$`OGp-)y!^`$7i=5Hzd{B+g`)5EB0Q zhB$f+u z4>WV(SEh&!0Gl`e!q&;r7co(Y9{SIuQrGTl(LjN%Wk_+bxWL;a&F!Bv-735V4tglYyi$Q`#z z4+D{tbWs>XXv}>yQkR{Iv65z?%H{U(!y`DgtK}RdhqZ%_Hrq&hvi+FBq#|(LMu>C> zJ7|~enBWxbn#Roqe`KLaLs=kx?!gHFaGSc$xn6^<%D?0eico_N*8X}?b6liGKNo38 z`ME!TgBn(~)WaFo@&pH>fH)BwhJZ7t=q7KB@P9h?%NS%{WgCzY{mk>B+h=?ff207yusSjECZUS z{P@JV5HqPNL6NjB7lX)q-t1q&eykTRKHb~Z71In zherU&-(+wiK@k~c@|-2&uKTmGAtnUT_cx>M{ub&7vNDoZc>SuT4fI7YV>-(TUH50W z;cUSu@%~4o701xoHKk}rqmAd|$tQABI8_q@;g+QE#MrLi@slBIqvbKvWJUvh3Z$~o zj2W^1lrUDtx$%{IaxL!dyshE$A5d7a{;Tn1fYRAu=(fodWm>-#<6~sr^(OQPpWMj3-{uCT+*&M>vAf?&y!Ye_F$WO z%cz+kc6;@?b|!SDc%5x_gm4I5$6U)5IArxOuu|s=RMP7^!NL~AQ{eN5Cml9UIB|m z7i*lb+u|YxOD)-`m0Qj0Po)kt`EZ~Q{E(jj2XM%9WuIp{!YCTEDTnRE?LEf^UveHo zIvfjjo6EWTY7b?PkwFkph!uG!<-|ksV?ZArzEF6ykjU-wmlRlV}qg` zLxqsSo)2V@im;WypBPvfe43~1zpaL|&?|*>AyCUc%y`qogNeW-&rMXtI)s*aT%Kzd z;jl7rJhRyPb1kCStdiAL$;fZhKj{SyadAE-*{nr+Drr)J5WKoUzezv5QX#h0e&FZZ zq+9)&5@#rWj!5#k=B%=xE6Yi9QV#lsYcqRMsRfrCgOrPO*Q5Wv4g>Vfe_vj7SQ3S8 zj^o~j)aDpbT!lljBpjCJzig29dlyVwS6k>D;Z(jLNP(7juW{(s$}VqKAE~zfSH#4< zX|=xzv!lpdH~YV?$sfO6`T2(UVniZ?M|61abFhw>n}TE9 z-z^JOxm7KDsE^~zP!`yLgo~WczddQxfMxS^`C_IH|AuAf2w%<4)jb*!E0wJ$DEnyJ zXfE))f#f4#q5gWyuaC!iKYlitDd6kSxN+}vTa33og?$fZEB$4EL%KYoECZc<$D7G) zl@Me$Y_Bn_su%V9eG&A$miwNf=#4JAYrKA&c$X;C${j@dJSrsdNA{e2l67%_fxy1O z{4Z}xsX zX+N$0UdhbH@7cvCpP!j8R|w@487wu5FZ-vpEeN}!WGogtxmz&!>pnQQe|2E^R|G8DRJA%KSG_I?Dm z+NiQO@*|h4N^vf^Yw32gympHV(TsSD7~#+24lnvujn1I#&6YPCecAAH*yRMP^rBC> zHq%Jl`LTSlCMsX=d_iU<^=~m%Kq&1(dc`lE)B|5OGjJ-NyfS(4 z?6iH(AczFcV{)wrIp!S^%oUgw zS>H|0xiF?vp|ub=A+<0~^tMd3PNzppE;vst(MMaajFH54r^I>+$8FQ&)8ne)t9gg; z0R{v&YDa^6Gee&Dar=O?@>TtpL>nT|fdR`Z^68NY z0x}X-m*{$)TurA-tPI=+xpCaSV(OXlW&x?miPbxWaB~7d+by{B)fP-}*4-bj;WE4go$@2LW``~i^ zTuxQVEqOEP(oeh$>UJpr2Vn0KPo@(jr)C{PHm@a?Ur6uQ892R#Ylv3~Z{{eUJgh>r zF5l#*rGGdC93Pf+{MJeVG5aNtS>(0enymrGe*0Z{KOc-n?o26#O|=m9iKx~y ze)*a_eQ%IF)dd_CMA}ho0falWnp@p-~uXj7WUJ^UOs6-CPuhQyapR963&m~ zyvM-@{8m>N>rEJ3Wr`Oyo~)?wHeFbbX-qGiir~lf-{yc0uxOGa&oq}>MO4KKA59tl zc=@)XSpf0htvEgdDk`?J3P;9rCN zdWv(gns`gjCjC27kJ9n?tYxjS4&oXy7VAN2r2jQdbiH$yk(KCK#1;_Sm-0VH{2@Ot zo){bGVNgQdwV6xpwz~ZhLCq{HZ-_cZcMdsz)vo_3eXuaM5$uujt@n3IsjO((hICFUTI7b`a+& z;1cFG63*r6w8U8o5d5vP!3e!qEEXc4|8QQPc)3ole={nJ^RphLI8@vt z#sO=2vo9Zj&#nQJmbRV=2;8gp26U33 zCsm96r`_>jwXPxD$QXyt&1|xO8`TF6d)U!9ZyQkJ7P0aWp!?O^2Rq0s4fjioi0^iNuBeWtl-6+Fe$=OX(?p7})cPEY^JJA<9K({@!NJr8bN`I0t7lqPoV zm!YG!j65LNTF%sge>f0qx~rYGJ1iV*Lt)60#<4+stnk;6JqwK(!i=u5mKog{Y-s06 zG3#03A1}uIZUU;hVhPP3OvP10k~-I_kB4~$=!!bw6uz0+AhXXt@jAjKaP=BhU|pxm zxae-UnGH_!y({_~U#j*i+9EKDR?T!G3Y~&>+=aBt6Ikbo%Dvz+yG?4FvQQ`Y*p3lO zDqNx1M0%UDh}-scBNNu{a`JHe*`cJ2JGaT8cTBz}aFKwZb8v6CCETLBNeMDm5aS8B zQQgl+tUJf2WM=q1ZX)9M!(8^pv$e+hg*)>8SHt*2xpKpm01|sBK?U-@Y4(HRxhBeP zu?NEtN#VX+vQVmm@6Qk(3o{nuKze<(xLB1uGqb91+4ux&^kV;vd+ftVfQSz`fm66V zl#*Sgew2MuAZmw`u+!cs^O#)zINqoeE!iSG#z#)tn9+lO1Wxh+ZG`)!W@gjDtTuo^ zzg={Q)^qmy%5k_Z{9yTo;Q*pbYtTp*+T<=@@9)guhw?s4PQxJ&D?Mx3-aG{0mUOuR zzz9b#YIMq_-fh=d$eMSBtP2V4oK2BK=mE>b+2X z5dZLkd`bQ*>QJl3pOmg`7t>o;?(__qI>mkKh#AWnR^|2>1d6pd3#jq`^jUG3aEdbP zj_3?zH~?H@s4$FOWj9z*CwEI;8{vMAg7E|5(%R zcq9o#+ulG`{9%p#J_o~gFYE~8S$sWW2&nW!mJm9Po9b^~m@aRx0bVG*-^Dp#e!%va z)^;-+Lp3OrYni8vzip>>G?GsT@)fP@(&37~Q_z)OD6C#L$_3csfx1Z1oKnQHQguQh z(MjIS{214CQTx@GG7Mfgf4J_)5e^OZrf*Rstm`;YhG<0$Xyw~v6VDM5TKOcz{_-O| z-9!xW&wU0GKD^<5XYpeC?^u09;Db+UK0T8!rZ7bj;sq}&K3UC8^21qNZL1~$Nd2LU zIt`f@w)gN1><^%Epe8x|k#?~VCxby$mJ?6d?XK13_T(Pplj6?Zaq^Kzjz~lEdp$`m zwbzlJUNm{e8=`md+})N97?`K9+v}#IVJPVj2adL11(DZZx`wvBJ4ucpa`jtxs+!AR zF>fuQpd|0FSRK1Nk&-xAzRF#L-T8TPsJP2G@pTf*oI{+_t-QFHv6B6a3V&C#XJR)h?v}oCyyF>fhlJ7xhH>*G0+#x(NR~OSo{GiDsnL4nH{zn!InCYz? zEW*u9swMRcxk;o(k$K`eI`VPir1SA&*6uJle8l zN5H>qbX{(PJI_1r_k3dn7gP7{A70+|`Y8b#;K}UX|B5q7u*HHH{6;;`J}zG_@1zrL zOxUuYGXms?FzOrsSi{Srx>)nRW&8cZndo1?Kz<`{_Vka)7|2%qTU|AR3p$5F70bU4 zU*EAQ=LSFs?!ekOuPR$huk+Y6W1sDM!ddB$lJ~BVxz@Wj zTcR+ry|1SL+7JjDA>082$n+%!-nrc)+(RxBS-lz)?*Zac9`OK%K7@XpSit2e5Gjxu z;0Gwm|JnfGhPjUpLmYh>Hmtv;|I5Y0cjWK{J$k|Rvt2FRxI zY$gj`Gnc5%eUB~EmRJ?bxV1LdZ$0shlifH;inh}v(TDE{%>*WTql<6-nd6B+C)MuD z#k#zCGfpb(WX9xr{5f7#GrE4LVgMfeT_Kvf6B!wIM^9|@+z+R4MRfv53T#}T((DIg zwKcFsahEpLQ#_AsjlORZEz2Y1e=;S&DC{85;AhWgdPx~9H-R|eD1)$_3+}Y?Kf~M= zSrHEbX3iD6_2h9`l=Z!ljnaLzuEJ&9{+1N*vM)p{jBf!4pn zJ550Nfa+L}LI}<<)yau;J4nI*yZ%3VnIm09$YuDxnW7u z{H1{{-343>{Pl-{XcZ#i(JN|CZ=@RBZkD@~`d@bezMTd%=n;Lo>hN^{Z@B6MIr3(( z2O&u4$_~78xVe>a_%8h{y_$lrZJ@qDj||*3t-q--pZ=MCn&v;j9jowC6(kSNT?bQT zm3I3iRJfF5nn5s~xK+(;6GfccI6IQ0nWl#}7Cw2=?QFLNt3aSzK={>lJg6NEDd!L> zlfPDv_ziKnnx(%hr1V7=Nukd3;LLj%M|7mj((Rsv6Ynb5qQR}~G_;S4bkuvdtCs2g z#{ze^=N5fldA;mJ`_Ye#6P*B>pO7Zn{xC4H={`!>3N;@9_^AJd+tpGCRD&MeZLO}s z4$d}9);!K`WGUm(s|HWEmGB4g2Dy@ju0U9vAewW#p z>;B|le6ov z;17-Yo^Q>4oIJe$B2_NcAmI>28FQJ4DDIig*_S0>Ts>#{V{LARXagG#wvOBH%)N2b zXOF^zlif6XM{?GeL^jbYRl78xgeU2QLp`VBP}RGKc4C6OWY2H)dzt6(Yl1aAn%}H< zA?}IO*?QiSkQ7hDezNrHfk$6eJgM$n%G7*yh2l~Gv`XvGR+D1_PETg2o!oT!8dd7c z!To?f^tsl>X^WRvO-hSfKfFmYJ^_7Rhj>vIa$N-P6EosSjKY~wDBJg$104JA@ls~vEZmf~x3zOL`R;JC+B-EZ z4(3XLte^|2`e?*(*Q(}aZ~wP#Jco;>r$sbX&C<_f{1SyI(*J@P=C)!WI@J*j%_Vqznr(FHtpe>)5NF#Ayybpse=6miV5CLtCOLi2~?K zbYNopou_BjxP|V@(|d`(0l7O64eovNM$rpjM4V% z?CupQ_))kt?WbHS;>beE&518`se^I`7<4&7&UewsmFUE2ua$nEE0Qnruoz7Sc5?f= z(5h1Tr)rQ~y!?Ug;i+`G&YVw_N#iMasryB8Y8&$8EspI)@)qVm0Yr=o9`{*1xX8XhXQu>YlnNvRR-6g)D3)tGtiuvyFG4v&9j zj1TjoSo2<{8O?@vMa+7&n|JIh$Abdi*x#+IQ@FA?|9*B`r}RsYXgXDR-FeZMuh!m>mOp z_Q8c8l;DeV!dLHb1RnoV$b{3Py1JYR>oU>Uwjh*);pr~^QsF^4rW<^{j0>phBl@6c zHYg_lD=La#kL3{BxqATW?_7^qX=3%9F0W)Ejy9 zicYA^555c2F!IIp!uiWhIX`SqtVum3h;yllNv47Yab!0Cfa!>p3->_Bx6q@U4B>%d zE11B*LXQ3|3*DmmF5%E+Ts3bHsTC;tBdQe+kRLEqp_R=+UnwrB+*edBICpu#>Z`3~ z<(%Y;lQ-PlwSb^!%}DY!$kwPEZYpZjo(E!{xDO;VM>^@mW32(j(J4QXLY#s4D|y08 zvSC5lFW6^kP5sj?mHV8LH@AvpAfO)}tmk4mKl zSqV>LBi@Gk;BRKVU$X)D?H9=XL=+r-FJsJ|>5riCalr4(m6KsS;hotgBLQ`S8i$HS zoKmv8v<_88OF7j`Cju8d!zL~h2hpCp?>?GLG+Z#ZG8_F20PTFW0eaV!gJA}jZ@w5F zCFZrB`&D^XWBpq(JD~Oc>j&6jS*!kiBhPA{0~zMn#UIHPf2Q;Nnp=!AB*yKH9rh5E zx-e34%*;m3mDeo~6wZs!o!=$Y^u%vGUpUBW`TN>6xF+o#=KrRjCxe7m<=4OLQg2tH zjiFFQ-#?s+4&CTKMDy`yVvAIu3&}}fM?^^^CpD5teVyp@FGv=i$p%T5QlJi%(zmQd zoApXXaD`oui6^VKgNY>@E&9K2RT#Z)R_~3prr2(mU`+eh2cMqY0?hOIDv6KLlsnp9 zzTDLiRdL`Js9k=Rx`O%Jf3wY1=|T1L=Zh{~yJ1_PWi)xW%IhM}Nil9?_~JQBh2s6n z-!1_k(xDpq*ZZ8FY*Y*mRl0VPGjQ)GJa?Ev*iQAVBV08+>ieAp$r&|)?|9?()a=_g zmGqM!+5?!|X9r_A=?$mj^5L?N`HB}eVZITxkNtiu#Wn^1 ztC~PPFM5dK{B9VBN#WJ-d-1CH?T>bNJk=wI2+wlG$<$Q6*<`s&#=rQtcxp4_e%>tw zrEFT@ZBsziRyb$|^r5QegSX*Ym*iN=X(k+r^Pi@HD%Q%mI>v@Q0n!s|bJ1=srZy3r z4Uzp?8o_nBX5$)dC>K@4Q^2nXH6PIf2n3Kg)HS7MV^eLxEj3;Q>VZ0TA#*RL>wo-R)uj zp1e#mAbuwRYU%w{rF%J{ns+^a^>@`k8}Vatm)q}*8xIQ`x(^tIj)6L+ybq`B6ho0e zCVpE1E)ymhCS6{0Eqb$(XcT4FF6%YXhrHBfGQl)ngMUXB??}~twP=!zv5DO?pIw%mO zNC`!Hho}frqe3X51gRPb0Wq|Y_;z{Pfd2;0%DI|9h<0i)H@V8+A*g1x$>ASDhZ_)O^F_=+3qa*2xzUt7zy6ko(n;g z1_SN`PH&Vd&LKy46QMv>4;q?s*@IE*L}b!!s)4zNNNBMX-M9)LVUI)a5SM?|No5pm z)Y8K+!U~uOoA$xaL)|>haE9|pES%?qHjw8Uodg)q@hfm#r1xsTON7AfHce8*&7Xh= zQRJ=~XTY$dgi=+g-r-mh>|Z%%dd>g1sJ>7dUB?|pq(-^=d3>NNYfw{cl^H#(UDooR zLCX-W#n{dl`u4qXyp2t;{hTwZAC+U1Wu1D0eg?v4?wMhe`hiF)?0a-2uoclgv1^&P zC-Se|p5lpSj4p{5h>m*An@je3}KVx*)s~WVN1?R`v zXOjAdvN`pIe*m^qTn}L!GZZt4YIv$gXWo0>F8uy18!kz(rC^&7G1UwDyuax;t>{v& zLAtGSdh-U~;FY{az19WxOz_nuq+(rDPgRh1olL-#ca@IvD9B zJ-*fkR({faT^*GD9eeGv{*P!*l*&HD64Pbz5C}q)75iQ~xeVv8cqd#Yp2!H( zj~vSqtc&iAK59t@01-3!r|7T!1t)X%ZYeGQf_mY%W`OHd=AEY4Um)q z{@fc9FGVA&88x+q9|ODz-RBQ*=wdvJct<&jx-ma6%f{r{Ca@7T@B5ZHdMY|7z74Jp ze-)m5{2%MAD5Y31o1x-(0wjojpl1h8k#-DG#i$}Mwlk@;#hIZ~<9eHAj8@Gq&*z5Z z-e}76b8SV#|FJr7?aRmzkh-=5PUAR##&#k&^JvHsn91O@B$$VxkT0QuBc)vujAj%) z^|Gdl+2?pgX9hH0@I`ta0gyp$x*YmAiA*M^3soFVLlY%}%`zkvdFZ25)x`gs$LY_>^ELXKqATJS%5-E)X^F)+H9U>ZAM{5~F8yJ%O>1*o+UBFDkb))unL@ZsAk%P) zCvZEW6X4&(hySP+z>FHaJ!QQJJB=R~`M z=M7Q4WzJRi_~v>>eN{h%$8I))^9>03Lhc*u$9=$SCnC>;*5fJL;>+W&-1w1zIqi5Ez&z5!AL!(Z9Xu)}?B1mgeABUZ+=rQ;am_>`TDDFy1(4F1od?*e{5qT$JwyHD0zK}bI7sG9Y$VR=DF*2K5E`S^!)vpl zbL}wRI08!_|9JKjL^W$BkSxJvB!S^sd?(=|I`D3Hv zy0G&={CHcObVD+e38<<%oN&@5k7*&HjCaL$E*5330LcVvGPb8<^AhF4irfEFb-_t( zap=XNz-=<;o(B~mdqe-(`yJ7uWzJUjPWnrHm3Q1sN&x#z48Ur^~);z`Nrun6Q@Hp%#eWJlC)`$$BoJ6_OeM*fKWea?N+3Smci(& zf%_|?D=IF(4;9*|NeRb_n&7}Bv3ZpE1{jkhWhj3dWt-kVAA|}QQQ!_SmqoH2PNQcItKu9@Y3%p7aaE9HY;+Yp&kLSeeSz9AVS7|2`= z6T~C4gD93XAR7@}NB$AwJvYry0V1Kga`0Y;=Zpx3vC^&m3{+M$d@0lvaLw06=C^T& zHsg=`ip)|a0ffItQCCq<=;4vn(MxR{D_ZOvKseG0V#ObcgDb8a_6RZSs zG@@iX>pcQ#d}Q6ES_`yhUosRrH-I`AU5~h#;D}fJUvhHvcgW?jq^n@Png=%;eNJx> zM%Ud68htCBOUC_k_5$GUWx&KH?(F!=--0|g;Lu5rAr%v}0Y zfhtJo=sDMszxxjNYp@cU#+NTnU#XEGo%mnU63vKTkB>*AdLoul@fLEUrMBM{$8}8kYy-XRE7~vq;t#pslm0-^Z?WCPt zLy7k7^FTB%35=}*uW1jSJkM;zTy>;M$iV0}FPMIobaAV&&9FiF8-3-?o&E`ELw(eR zl?cu3Mx=abl;fN|3e4uzC8*51D=_JrF!K5*rMc?5N7U8a^7KshdWfaX~O(ul3ZfxXTy1Io!Eftu0CVZi64d(U{2RYo{?OvogTs$J1|Ape2$ z1K$TZ|I;5tf$NzPazqRuBM7E%6r##Hk!529VYtTFd~#R7?AblDSSp&~Zk+UGM+4=T$g35jZL%sopcZf9; z+js8Y$lqru@22g(-+h^+mBOIVM>bW$Lxy2IB`{_lx&}(MTgvNJnYnSl@+pvj zgJ>5QjTg&1#r}@6;P#6+xy!a;dw+Y~v`je85H%j4Sp5QUeh%G8&rq0gWD?bR7^YVY z6Fu|KP``sLQmdexD`9QmDMq3Qx3|3xFy0Hco*XNM;pFJ}V5|fizp-$-q0YRuSnB^Q zN_|0MZZSm#n0pp$p**hmknh$0P^$O z!xx=^MmGYGluvUh{c=j~|Dc|*3k-99-C5KK@ZFdI)T6l*b33S;jDKm$*N!){?&?0< zQG0%6asxc~vfJpM{*PlztWNs8`GxW5?+CyJ^u3$=S)}A)Vp&B*{HZ8%21I7+*9KJKuTLbn_KitE*g(gl}Ixczuw9N;akb;@HWO* z!ul=KUN0U#jH2N6;b(NryI3n%9J$@xzy@(%x8yRc{*l|2R* z!8y(OvG;HeITkdsLB&0~&u`Gzw^SIm2Z8%4(tHT0^YsHicW z_@^H6`>iXCO%M1NUGf}Ya`#foJw(U(I_-#67NFUS53?M(_vQPO_FA$nQNhav7 zNg(8^??@j=xAjc?m+#y^LdOWVQ2T@vbm)@MCy)3bbXLsG=uRd=2y?y(1pfW?H~Ggv zYU+^x5+AH`kOB=+k#iDrcU+_koYt>)7w}xZuS=AI#GBIx&=%Za6iZ|E1!;oUnATV$ zqp$P=&@nV>qEV;Z2}mX#4zpAvZ`SVuX{9{~44XSYFSnt~i~g3!nyYuYukD^;0T8$O zaXa`}%~`*~wgIOLcw$n&@@y+AEBd{%4so)t>a1%iuyCMSVsIN#w6}y!OFS ziB57(Bv%fzOZW0}Wwsf;!PQ_z5tC=kbqv>(I*8ooa2`iptnhV^;j;i26j|AEH$PT} zIvzV<%4YHbwR0**_d9xBzHinf1BtiD>-pDY^?D$-A-s8R^Fjb};z{|qD2F&jGasvd zV?o$Yu%^{-@5mn@3jfJE+7ARjx@>ke_JiKDT`LiHVfCK*`1vptF782K;nSY)NohyvD>ueYk)_mD7&dmPk(!N!}woUM-UER4Z3C+4)=qTblIq~nl zHFIck__is9nqG$hgxsiD#Hp1EG*?|PbDcm&AGa;h_bw4|XXs)Th&=+Is-##@IQ_5G zeEsC2c{@^ZdSJdTgfHiYn+Q?O%W3MF!SQFFu?ZvW2le=ltn!iN3*62sy9yGTccHQX z!1+m|&Zs!j@zi?yUu-W^e92gng@HL8aFX|n*sZc^rm~+tUZUJ_m80y7K;J3M$Z{u~X8 z-*3c;^mFDis_VJw5=vJ8B6Qqt%><~-LOIRO-_y)ES2u81uHS_+i8VmM7!TBjz7@jOZ*;|Vk}h|#urn6Y(-lJ zCXmE4jrx>Sl}ZjlH4`!ta%!prjE!x0?Duf!QWA zxE0Z5`|O3TEl-+#U_$Ui{8n{&ly^xK8k3-v ztzq6}U%nl6i9ps)3b^1!%#3Enw>OGqpg(eMn9e;cVA@DQh3V+WamuKvqV;R(_v9ok zSsAX8>{Ay?jzO9uq~&F#f|>udzk`$FQJXro4Hhe#(sRLV`$?DF(V21kwP6QYmsk7G zYr6$JbCd0%y5NKShrFALDZ~MeyJ0d7)z$=Y>4Xr^qyW&iAw|l2V_z1f6n|?8Pic_` z)Sz%IT^^Y1-b5^3mKdon3rXh z*M)0%9`Ki}H9dHf_<>U>mfb3|%siN+7)4uRU18{IT@Gg_g8z7levrG!` zq^ZwyBh~wZA2wA^cFAn`gcGFhGeLrlX9K$97osdWH=WytcPZVU9$ubPhybGWOi6O~(EbUrmkDmagD!8FPqk+j@(w93*n{>wx6+qM(^b4Tuy0!rR=F3 zUFz8;>93r@`|0w0cbyXhR4jnO?vn3izAHH$Y$=bVz`bnWOn}AWE#EN0-@%exFK(#a zA9_*I!?m(0%Gf13yxMirN3ZetS$w2OD8{mf|E!@8AM4{O*%Un{T!``VH7lt zs^Wh;G%>o)oq53D4&DV#t_RvM?Ox2V`$#%(DjQlkt7M%RaOQ*POX)eqj9s~Km4-d> zYpORR>9no3%ebN!a(ct_{>2q_uJQf&Tgixbn=J=ysO>LLD-;1#Rh0}!X!>QXgms4D z%T^Dyn05`YfCfY*Hk<8e)KgaPPJa!5`I?ZPkH8m1 zT)!LkP_zb7qccF%srAzpZqw0xlj+)5!6D-h@5>a8l=n1i>CsF8jCtZ3>p^a_23&E| zn9vpfWZCZAelpnP-eyjY$En~4aFByF2^-r@L((l8wp?a)BOtrN#S$5n+w6EHIlf!J zPbp4kE})yBYipH6C``=-Oo=DA!!!L1c?}1LI||B&)bI&+tDM`yh9?GIz9!h$(U2CL zLw@Jp(iFQ9_x5OTrCAe&n9^I3d@n_V5kg+1<*Sx}Qzz`HAEh%}q+@h)GI@XecJ#Ot#xA}`;dOs<3u-)0+K6}0%!@4Re}v>= z=Bpn`wr6m^wsFa3>Qvnt^9ygLjj@mLTbZIJn*B{1piR0-?{fXM;R19k;#YUOYxt3^f&F37=t(d~!wl zn&y`SskztX&6+YOvhmUNDlf8W0snwr{1v2kG(a z@qRZZtAT4K4Y*<$(Q5;SD1A{g>#A83zCMvl1cJH3o{LwcpB(fh5Xhy|l`7wYb5yhF zbUp`QoggQ8{p7@yK8wTs!mxcx9Qj`7d+daHNrSty;tXqVr3|3%n1vw2rc|EY@G!k?utz;JDG5B67Lf&<&>h8uwV3>JebFWX)q3zXs9fHa^n z;DI{6i&Xpjzq9d2{QPpRM;@bb?lPwgssUG8_D%~pI@v7eV%v>pJJ_eC;%bQ7p8#-q zPmX@)5P{=UnN<(gEd0biP;Ck!ua%aGjY;_60n;G5Yan?0V ztRYS-YYPas)4!U6a*PXjtgMZjE~$=^WLlGfh?p`La&OppiYq1n08OaVp%7F63h~TK zeiMAaSfIG3pi^0>5z`S3M94UC1=QT^i}qyOI`9Xnjnn@3l6EvDAv;yrra-J_s%tKO zTilv3B@Ur67@?JiBkyO7W1F{yV8pGsoEF>Z+k=nK+sj$)3A^3v3Fz-9=vfmYQnSCX zn3X`^ei5|3jF0j=GOfL|r3c)Y)EA0!kP;w$l+V8N1*6NH z5=%9;!%}PV!*c|fC@1{6^eMT1zM*d#+5I=%oU6h*+GX*$z|NiKQ9maP85U>IF|Dqs zPg$?R?&Q@Iw^Vw?a0Y*O%A=NU4Qsv%swgz?N-N){s1PDNhHHj>Pu&zuc`FUicQ6{Q zd~Fcf=)=y>u8wemXV3Q!(oJ`Bjmq+mZKrFRNjkL|OLv1*VyztuBU!@s0<;2F|8}CR zx{Z1);~s4E>*UQ0#c0Ioj8rO6a5(G+i`(O-whY5#gUliQ-(b@CtgFfw5`&zEcZjA7 z8F8_)sMWH_nAF~TWjG)uN_ECUb%tv~3@BCQSZkAh6XaB3O{{sB9CABKj6lAb6d-a6 z=b}^&o@I{A?tdJZcpiR#({`9nyitj9&hd+g!HLdfoBB4LXSt&`3G~amNHL0<*Q%fV2Lm*v(!

>t~Q|_jR5hFU_F%3Q@brIyGJ#)wFn) zS?ndNrelNORk8R%0lB0R=4n)FoqgA<-ynfN1rE~8>~jz6b?v<5ew=qt5&qGXoyg{&Hq0%q4%zm){5I?cS6Tc;#Vb?xziX|r_x*;fmB!j1s_jogG+ij_c$V&}~;dxQ8 zS_x$*wOV(tMPe^8K*ct<>5+~~JT>Jt1^1S7%ca<GjEcgBO%(qp0J1WI-_v(aC?6KPTE385n*5giyy|^TH z=|yQNN{&_QUe7s>Z_ff4PivnN=oQdDqJ8QCS4IQm`gQOd-`2jp1)Z~IwkbIrwmBI& zmI(CLw5acN#CnTp9ez1Jl-NSta}c`L{?%GB|GJ|$>z^=}y1kT>3Z2!|ofcW?zDP^a z*C1);v3ET}Xeh+U|L-pTYGT_ht(jxXnnfJhwjmFev@fFCpjDG+hg8^p0S#E7r0t%W z?|Y{&y5kUD)jJM6<>bRY6=0 zT+r97@U=b)7N9HSevRU^Wt|vbAZVr0F5}#%r9^fjL-9ir9{ zq^lVt3I$4VOh}(p%71l`r3l0BkrMyH`EuS5Md%M0zYoE=DlvNcO?E9a_6Shv=H<}f-5YW?0z0V0a0!$xgOos(ONVa zH)^f)L-8P-l;l4CIRYu|@F#ag!92hHeYmMm*M=c)@|MHB_yy^4pTK5MgD2LO=xQhI zS5ftuo#zl(6imNPFN)f*`Ee1+w+9n6r=ZeDD?n6Q8ZY|%au_nn4&6>u`idHvM!3H zl#fe39I+E3bT>6RFjMz1M87-eM`5ic3weLZ=6XCVn0|&=)|&y3l_1q?L|X zM6G5eD=r&OKKv7ybQv`e6W~jVN$S|Z%^vg8XxlHt_lj1d^L^k`k6kstEhkS9p$zTF zh&y%DwJ$RV%AI|Tl*jL7<#0Mdh3`e)}h62w@%7yRd z;s^KymdBMuc&FK+*Q;?~%?=2OW=&1L4f1F1t|*9@M~1l;{TV1nJlre_0VwB#W^W)} zFTCZesIsoXvYj_0@$|DD&^TcWS)z~+%7ZhINRYhnWbNoI#-F$Kn7y3u%rq{=T9sHf zd8+ejRxSuyDZ{!{9)f2pMS8G=*8Fd4IEp03l`r`K*SVQZ+Z)pDph9|?Xz08(@~Gl4 z#Uss?SmR4}eSI_&UjGFuQay1tSPeo}@>@6nR`Wr?d3;xD|HYYPa(Q0>yw#VS(sQ?d zq{OJ}ovSEK(_*G%^4Dw^Wb=B((3%D7{I`>14O76khNs@c`Nzti3wSuPXCqfX_S%j+ zO%lPg;tJ=NcDHmpM;q{57=%2-8)VVf=5SYwZNAq_Hk5~?wnT>y_Qpj!4MPlN$*U8? zuK3Kv?{nUXf7!N3`6Jtm?eN)o5b+&ee~2m#D^1bcmci^Ot~;0njXI4TGXR7EDn5|V z1N{N_Yfwpi&*iHXHnUBHZ0Awk?MDMJ?zr!8*vr}#`5#xQx9Up#w45krq+i^o%N;4+ zCRoaNV#&i2LewpiF##9zn4z8jn6%GZ)@KT>wyf@59Prutx<_P9R{#*p`pk1N|SE~qj(En zDDCe#InO|z1_1?TP$oIUv43z`67aU33&n`4c$M=?oeALojnS4L1W@e54&AQ zr0_`!maaE^X*mgeH7!xv_We&1{$-{QEnXPl+G|6ut!5YefYT4rTe*O(2G8m#kqdY5 zJ;#0{6?KQ4I%M|u*@kqBeKP~+JcEKMCawilL44XHt5!fM+@M-o0e+SRzuVbI)$-eO zsAhl7zcm}&docEZypUBzBIs)r*D#j-aP1^Zf8@e6bx7o5n}e&xj=T;0b1<1!iWv##_f5FwJ*lwu->kV^t-d(< zJ8cGbPs_6&`MB)fsnfeVYvJgfwt%jH1(|Onc(s83cp!cY+-PWc2=A{b=Y_r*B_+O} zZB`xiU(yORJZfoeR_eqoS=OFLNy&zj?urZNH&#&vir;Y7mJNZIAd=+H9$LQ$rB=?t>}k zh67hVrH2XI9TlzE>FwWNiQvDs*M02w$l5|Z zF#Qf{2UGBH1>Nf5mEw*Hj%Z51BK15CC*lTw_$5fwKX6)nxpAoEX8Uw1DR;`}$tKSr zgtqPODUy|_Jzcb^vs;YG$WnK2I=->J(yf|Kme>8=+4kMGy}8v*=v3s2F6<&eY2{zD)=_#wT?9$K*bZOZ*9dZP;)OL` z+yYJ|tYhKDO8dwn$uVf^eL$?UC+oIdk0@{9%avq=Gi@m|S-ZU?WozfQz3FTZI1uZk zGwm)U*JeBPL!KWmqw2SsD z$*)@wy4hkprGOmA+p0YOg}zljYjxk(mlk@0rjkmk$W_QyQeu0%vr|V@UwDLtE8+G*iS~$M!`PKnKsgZLSaRePBB#E?T|g$2uE<|+ zbpE4SVtmExkgY^a)1ybzb0R@xtIhZL^Q-vzXs$U88K-Z@<~y5Zj?i>5K*+gD&!VgT zCc$oOMpYHn&ZXJ*nFJY^m;77~9{T+dH$XIZl=fY;hxshXq`m|$noOd}BCuJXJMNV! zB|DcB>siOEO#BuPC{1Uk==Ens+t}qr49Ks0cDAa$SiemT-sQtJ;U+>;L%jAo;FF?p zCGVG3?i#K?V13MJ61~$M7AC}whbrj;-B3Q&@K~T9CR7|O4l6+nab_BIGEZoslslwE z3~e%|HRRKCk!q#M`q7&A(AH%=b9iYA`-(_qh?1|FW0z$|aVvz>-b3`MJGp3Bj>xXi z^6cAk8VywkSQa!fvA}ngZQYs@?z%Bkusir0gSNtroSoSIg%1iMH}S=0XVSh+H?mtQ zy;+NxIuR`SLK`&YUz)PBRE7D>3%``pp&>ihfc(r(P%X;%`mF%&Yin zzxoxlwes>EAuWQP5C?hm(TxtCsypN75=W1(rWKE$RiKphb>h4e4xEU8b)RqM=(l)O z`qM?Mi;A;3#k;O=05KXjHC>v5-l<7c@g3v+I8$wZr}wicndbj=>%6bx#r=b64byy| zh}jdtj_>v-7MtHx`cM1H_VMyxCrhFtOoXC(?DRy%af9RX0;v=@Xo3srwQTC z(_byy#%?>-%%V-VDN(^4lK58m0{f=b$E8(;Kg!NyJ$b#cP0BziIgtOsNd*xDxQT1+ zpB)7z2*r!^t?_&)sW6fFN6>c_wU+l}7CGE@2w`(Dkw84i# zD6*_oS<>oUnUjXvu#4HAd&vsRn_*@otS)cg?@mDojg6CQZYlkdejUr!p%uUjUp#-O zqv}i9DW{oGR@ZZS<$k_{4_Z3&4UyKC(CLqjbhc;ieTUb^@Tn^LZnWUhoK&ep`I9BtF!8etaT_!N#5DwZ3)9o-){L(F;KoGI$&J>MoHum z*`L(YQ%WzaH#b^u)$yp-p}I9#sCYq-PbQAVx^(pielKll>&=%7)E17|-R`7@*HQXF zOHA_IgURE>90}k(&}s*~cI`zbmdi1|EA$_oA-P|jLT z@hZ6wpN!11?sB9IR5byWGy%bXt>~e0z;H$W_hZ=353TSw%upoI1nZ7Q6VQ5f3v(u< zCh>46@ckpic)&{-!>g_~b`|co;csF@%MJNxA}dzoRla63UR4KBMTX9%YN_cN5juTA zqM&6&b*>D^{q~-Ssa!~^uG?+2Axn7r>=+3@ok?MF|I&^dO&Kt;F_C>>QV`d(hXh? z7z?%{RrKu-D2gAW|7Y&Okx(d(Zb?)F_ILOj(sWU{WAIQP*;#ow5uo5E*e3@Rv8lVV3sKaOfpC9o*(5ziQGZ9uLHxczezaSSk z>#}t_0qp8Cl>XWl@A$b75mj~+;7E?-E>>C1xB*-x+Jdx(&aUdxC;31Abh8*e1%Xa} z*4NRt_&+}Q|Kfk5s#@)U>cnh7ZA})WbJ_Vj0+XLZKK9M|2L}ZAr4DH9ywCBUb7*TV z4M)G|{k`Q9hII1SSD(N_00(>jov9_wieg*n*Sda!^a~A&rfrZgSdoD#q&U%bb#AUL z4$d$xyLSYoRCvFb4q{ zwf6!KHyzWu69p%|$LHeBFiqA?rL$I1FcLB1o38RNUzsMVC`QZAjQVND`$X>PD(jB- zt;7E;aH@ko@`NW)dv?lbwySafH$D%uRIX-aT3O{p@ej_>#ns1ASwXw(9t!7M-pu~& z`1Dwo-8Y11*H*O3)8BmWr~CMKTlyvbnk3&@?=<$kFg^2}Z7Di-i60$o1#JH74)pJ_ znVT&Axn>={RnvLg>E97xkltR5y8sQMbakh_CC~#A4N!5}GI4d~F>pQk?>tA6jRQl`e%>LaxC>73%xLGg2G_AO z)?n)@J<1(LUL>;6UxQM2Xgrjz0k6V5Ih$GULsg_lHG zfO@Y94j#qm*u-303JxEIvCq6h``NepTR>pt2Ysh4L3L`a>~;kQ_OEAdF=aw~-N&(& z<=z&izKcd}rQt!O^qvQbsQc`tu!_knY*|yo^w%3v=Y0sF)pb8sKAI?-J5DzzjhWsk z)nWuC{dwgscyidj;J|M%qib5Kk;Oz2_k9f;)-%0du%r*6mJ0aSyD^#qbnmoeXx~>? zhV6KU1NNXgP>)SE%8?mEwwW+1*4GE%F$v$j>AbSrVPM@w#! z#)SzoeYiR|`W79_brZqdyOMxEXxTwKG&#eWK>SO6L+i^<5%GVtG_9$sZQ~Nkza#4_ z^~4<;_DfmH z=52Eph3MFs5_Bvtm&()jJz($B~?6o}N|7@w`YqorbfS>Ih zJhPsvvqJUhA(+X@n#p%(NJyv^G`k({8H`qB@5ZB*-HvTANUX#LtqutP>iV)slEYk9 z!|}hB3HmcyvQu%!{|~TZY9V^TBE*Tbj<-wOF|F=wtsJ@X>%UhWgI1fS3f5BajcFt; zY~C_TfAw$Av6pVk$D2vh`&w%zL38NQ3OZ?Yeo5o3DxtH|Cbfq- zzRAyQ-6}268&eq4X6DbiH|st=OliClQM%cTw{!j5^Sfz3agN8-VPvkzzck#t&imJt z;+35}Oo@n_lvj(sTr`Hx))V<|)pEdiYj;TR-N$=1k_x5h!zB3mjO{twXw(Nl_gHv^ z#NLyoN~@anAWve~m=g6i-jDzAv!a!?I=L?PBrB0$b&hSH$Hd;nh=FH;n-)?LmO1II3pce@WPDV5%(-;@PjOj@~;qOQ|{H>td5X3ow129qMRxz#in=GwSn2=wic z_HytL$&SH5L{avDg!>Xw1#F8S0$bcSIT~sRjPd{f{GTY`KQAx|+s)D>WmR2v-rAAWY!5W`0PG_(&9P%WoxUFd zq`!3jS{GR)c)EQ5Ytgj(Koh~D@X&UfP)9{L)y=KVC@E7_6FE>Lfn9fIJZoVv(hTNH z5LvK2$QY~Wixe&qV)cx~*9bG$2iHKLlI(wci@7T+7CWyi zwA#W4n3gmxD2w#w%(HFNQh@t$5ezsv6VATZny3->>68YbXtD&zSMDCB^1OE{8J^~pZla$UD zk0{pldO~s=lg0r#H14CJ#D-gr<9X?7-o8`4$RN=v>*E_%GmonBU#{SDpzfrUmOv$& zJBR%0f;MJs=P`DIBU___k@yHCpJ~59`Rs(muf0Y5$uyw#HsGOz`_g8(bG^-?cM^0# zB>Uy0sJ{=U*vf^1+?+ArwP*c2kL1y3(D1Fw$2okUSubyE-G3T>NDGrv&uD1nexdFK zXv*H{|K&o;8X}Ni zv=FL&7I24$hRT1#z5&}5S?au3HLais7$bNRCP+2p&-?-#P@R3`>rR`k-E$t_?>)RN zQ6*t;t+8XQ&MlL-m*JJevjvA9UbKdS;9SQiV2H@7X*pHJ(6)rUV;d%pP5UuDI({!7 zw`W=IOco^V)t@pY{yKdMYFqG+w;AE3$xL(~_Enq@u55j~U#5G0c0f9;Dvx!;#8}ie z!p(JbWB)qQovTQ|tEkupJ~(2ntVKU2RDKRqD6T_ilH3?z_e86zv!)d*(o1xYhN|{q zEkz+YW26_7NnHlPn+|(TmL-+`Fo3n*5!8KwqhX%BY?!`B!9T-n@fC)x%yfin1AXz9 zFc~2qAjsW^LV4XDB19r?StvovjIuBd$Y(UcWCY-Cvm=MSUUsZ-*zEMRcDz1DZ9HSI z94~;$5pDFO{hZhR5QcyKCY|yTzZ^vD`VcX(6m+?( zEzzEfzoQ1GsW=<|e7SO#mHuge?VLTAt)pqKhYQ}$1IATg$b(OR*B-kyAa2KhdPV|e zPr@G!o(XWwX_GgX^1(dwXb6>UTp7v;I}p)Yy}R76;g=S8_DiykE-Jukj%qMtav$ODxZKnt2qvPpqk0D*$bb z{>G43`f*WdwTC16eBS2=oXHPAp8zdffuFUYe|^itfBk>=k3lkgR#~Z%Mb-uAB?SWM N-!jpuy5aKp{{p8IO1uC7 diff --git a/docs/reference/ash1_wgt.html b/docs/reference/ash1_wgt.html index 995aab2..31f3cee 100644 --- a/docs/reference/ash1_wgt.html +++ b/docs/reference/ash1_wgt.html @@ -18,7 +18,7 @@ spsurvey - 5.4.1 + 5.5.0

@@ -74,14 +74,14 @@

Compute the average shifted histogram (ASH) for one-dimensional weighted dat
-
ash1_wgt(
-  x,
-  wgt = rep(1, length(x)),
-  m = 5,
-  nbin = 50,
-  ab = NULL,
-  support = "Continuous"
-)
+
ash1_wgt(
+  x,
+  wgt = rep(1, length(x)),
+  m = 5,
+  nbin = 50,
+  ab = NULL,
+  support = "Continuous"
+)
@@ -144,10 +144,10 @@

Author

Examples

-
x <- rnorm(100, 10, sqrt(10))
-wgt <- runif(100, 10, 100)
-rslt <- ash1_wgt(x, wgt)
-plot(rslt)
+    
x <- rnorm(100, 10, sqrt(10))
+wgt <- runif(100, 10, 100)
+rslt <- ash1_wgt(x, wgt)
+plot(rslt)
 
 
diff --git a/docs/reference/attrisk_analysis.html b/docs/reference/attrisk_analysis.html index 005a3bc..5640df3 100644 --- a/docs/reference/attrisk_analysis.html +++ b/docs/reference/attrisk_analysis.html @@ -23,7 +23,7 @@ spsurvey - 5.4.1 + 5.5.0
@@ -84,31 +84,31 @@

Attributable risk analysis

-
attrisk_analysis(
-  dframe,
-  vars_response,
-  vars_stressor,
-  response_levels = NULL,
-  stressor_levels = NULL,
-  subpops = NULL,
-  siteID = NULL,
-  weight = "weight",
-  xcoord = NULL,
-  ycoord = NULL,
-  stratumID = NULL,
-  clusterID = NULL,
-  weight1 = NULL,
-  xcoord1 = NULL,
-  ycoord1 = NULL,
-  sizeweight = FALSE,
-  sweight = NULL,
-  sweight1 = NULL,
-  fpc = NULL,
-  popsize = NULL,
-  vartype = "Local",
-  conf = 95,
-  All_Sites = FALSE
-)
+
attrisk_analysis(
+  dframe,
+  vars_response,
+  vars_stressor,
+  response_levels = NULL,
+  stressor_levels = NULL,
+  subpops = NULL,
+  siteID = NULL,
+  weight = "weight",
+  xcoord = NULL,
+  ycoord = NULL,
+  stratumID = NULL,
+  clusterID = NULL,
+  weight1 = NULL,
+  xcoord1 = NULL,
+  ycoord1 = NULL,
+  sizeweight = FALSE,
+  sweight = NULL,
+  sweight1 = NULL,
+  fpc = NULL,
+  popsize = NULL,
+  vartype = "Local",
+  conf = 95,
+  All_Sites = FALSE
+)
@@ -147,7 +147,9 @@

Arguments

contains the values "Poor" and "Good" for the first and second levels, respectively, of each element in the vars_response argument and that uses values in the vars_response argument as names -for the list. The default value is NULL.

+for the list. If response_levels is provided without names, +then the names of response_levels are set to vars_response. +The default value is NULL.

stressor_levels
@@ -161,7 +163,9 @@

Arguments

contains the values "Poor" and "Good" for the first and second levels, respectively, of each element in the vars_stressor argument and that uses values in the vars_stressor argument as names -for the list. The default value is NULL.

+for the list. If stressor_levels is provided without names, +then the names of stressor_levels are set to vars_stressor. +The default value is NULL.

subpops
@@ -500,62 +504,62 @@

Author

Examples

-
dframe <- data.frame(
-  siteID = paste0("Site", 1:100),
-  wgt = runif(100, 10, 100),
-  xcoord = runif(100),
-  ycoord = runif(100),
-  stratum = rep(c("Stratum1", "Stratum2"), 50),
-  RespVar1 = sample(c("Poor", "Good"), 100, replace = TRUE),
-  RespVar2 = sample(c("Poor", "Good"), 100, replace = TRUE),
-  StressVar = sample(c("Poor", "Good"), 100, replace = TRUE),
-  All_Sites = rep("All Sites", 100),
-  Resource_Class = rep(c("Agr", "Forest"), c(55, 45))
-)
-myresponse <- c("RespVar1", "RespVar2")
-mystressor <- c("StressVar")
-mysubpops <- c("All_Sites", "Resource_Class")
-attrisk_analysis(dframe,
-  vars_response = myresponse,
-  vars_stressor = mystressor, subpops = mysubpops, siteID = "siteID",
-  weight = "wgt", xcoord = "xcoord", ycoord = "ycoord",
-  stratumID = "stratum"
-)
+    
dframe <- data.frame(
+  siteID = paste0("Site", 1:100),
+  wgt = runif(100, 10, 100),
+  xcoord = runif(100),
+  ycoord = runif(100),
+  stratum = rep(c("Stratum1", "Stratum2"), 50),
+  RespVar1 = sample(c("Poor", "Good"), 100, replace = TRUE),
+  RespVar2 = sample(c("Poor", "Good"), 100, replace = TRUE),
+  StressVar = sample(c("Poor", "Good"), 100, replace = TRUE),
+  All_Sites = rep("All Sites", 100),
+  Resource_Class = rep(c("Agr", "Forest"), c(55, 45))
+)
+myresponse <- c("RespVar1", "RespVar2")
+mystressor <- c("StressVar")
+mysubpops <- c("All_Sites", "Resource_Class")
+attrisk_analysis(dframe,
+  vars_response = myresponse,
+  vars_stressor = mystressor, subpops = mysubpops, siteID = "siteID",
+  weight = "wgt", xcoord = "xcoord", ycoord = "ycoord",
+  stratumID = "stratum"
+)
 #>             Type Subpopulation Response  Stressor nResp     Estimate
-#> 1      All_Sites     All Sites RespVar1 StressVar   100 -0.008602746
-#> 2      All_Sites     All Sites RespVar2 StressVar   100 -0.051540581
-#> 3 Resource_Class           Agr RespVar1 StressVar    55 -0.098069000
-#> 4 Resource_Class        Forest RespVar1 StressVar    45  0.086235451
-#> 5 Resource_Class           Agr RespVar2 StressVar    55 -0.047914507
-#> 6 Resource_Class        Forest RespVar2 StressVar    45 -0.060099064
+#> 1      All_Sites     All Sites RespVar1 StressVar   100 -0.146822490
+#> 2      All_Sites     All Sites RespVar2 StressVar   100 -0.029705172
+#> 3 Resource_Class           Agr RespVar1 StressVar    55 -0.220942488
+#> 4 Resource_Class        Forest RespVar1 StressVar    45 -0.072784416
+#> 5 Resource_Class           Agr RespVar2 StressVar    55 -0.044451332
+#> 6 Resource_Class        Forest RespVar2 StressVar    45 -0.006427495
 #>   StdError_log MarginofError_log  LCB95Pct  UCB95Pct WeightTotal
-#> 1    0.3807913         0.7463373 -1.127406 0.5218216    5439.746
-#> 2    0.3550170         0.6958205 -1.108711 0.4756334    5439.746
-#> 3    0.5387972         1.0560232 -2.156855 0.6180517    3028.672
-#> 4    0.5973395         1.1707639 -1.946393 0.7166143    2411.074
-#> 5    0.4827913         0.9462536 -1.699470 0.5932073    3028.672
-#> 6    0.5531554         1.0841646 -2.134680 0.6414913    2411.074
+#> 1    0.3746480         0.7342965 -1.389996 0.4497054    5571.035
+#> 2    0.3825463         0.7497770 -1.179400 0.5134933    5571.035
+#> 3    0.5034165         0.9866781 -2.274945 0.5448167    2944.924
+#> 4    0.5775314         1.1319407 -2.327423 0.6541268    2626.110
+#> 5    0.5252535         1.0294780 -1.924050 0.6269289    2944.924
+#> 6    0.5317098         1.0421320 -1.853479 0.6450311    2626.110
 #>   Count_RespPoor_StressPoor Count_RespPoor_StressGood Count_RespGood_StressPoor
-#> 1                        23                        31                        19
-#> 2                        20                        28                        22
-#> 3                        11                        17                        12
-#> 4                        12                        14                         7
-#> 5                        12                        16                        11
-#> 6                         8                        12                        11
+#> 1                        23                        34                        25
+#> 2                        24                        25                        24
+#> 3                        11                        20                        14
+#> 4                        12                        14                        11
+#> 5                        14                        18                        11
+#> 6                        10                         7                        13
 #>   Count_RespGood_StressGood Prop_RespPoor_StressPoor Prop_RespPoor_StressGood
-#> 1                        27                0.2326256                0.2893811
-#> 2                        30                0.1867886                0.2557994
-#> 3                        15                0.2112064                0.2788079
-#> 4                        12                0.2595314                0.3026626
-#> 5                        16                0.2075605                0.2466110
-#> 6                        14                0.1606958                0.2673414
+#> 1                        18                0.2184026                0.3360798
+#> 2                        27                0.2182399                0.2605832
+#> 3                        10                0.1873002                0.3371157
+#> 4                         8                0.2532809                0.3349180
+#> 5                        12                0.2600568                0.3177389
+#> 6                        15                0.1713464                0.1964886
 #>   Prop_RespGood_StressPoor Prop_RespGood_StressGood
-#> 1                0.2177400                0.2602533
-#> 2                0.2635770                0.2938350
-#> 3                0.2706303                0.2393555
-#> 4                0.1513018                0.2865041
-#> 5                0.2742761                0.2715523
-#> 6                0.2501374                0.3218253
+#> 1                0.2530810                0.1924366
+#> 2                0.2532438                0.2679332
+#> 3                0.2861882                0.1893958
+#> 4                0.2159546                0.1958464
+#> 5                0.2134317                0.2087726
+#> 6                0.2978892                0.3342759
 
diff --git a/docs/reference/cat_analysis.html b/docs/reference/cat_analysis.html index a672af7..0ce0144 100644 --- a/docs/reference/cat_analysis.html +++ b/docs/reference/cat_analysis.html @@ -22,7 +22,7 @@ spsurvey - 5.4.1 + 5.5.0
@@ -82,29 +82,29 @@

Categorical variable analysis

-
cat_analysis(
-  dframe,
-  vars,
-  subpops = NULL,
-  siteID = NULL,
-  weight = "weight",
-  xcoord = NULL,
-  ycoord = NULL,
-  stratumID = NULL,
-  clusterID = NULL,
-  weight1 = NULL,
-  xcoord1 = NULL,
-  ycoord1 = NULL,
-  sizeweight = FALSE,
-  sweight = NULL,
-  sweight1 = NULL,
-  fpc = NULL,
-  popsize = NULL,
-  vartype = "Local",
-  jointprob = "overton",
-  conf = 95,
-  All_Sites = FALSE
-)
+
cat_analysis(
+  dframe,
+  vars,
+  subpops = NULL,
+  siteID = NULL,
+  weight = "weight",
+  xcoord = NULL,
+  ycoord = NULL,
+  stratumID = NULL,
+  clusterID = NULL,
+  weight1 = NULL,
+  xcoord1 = NULL,
+  ycoord1 = NULL,
+  sizeweight = FALSE,
+  sweight = NULL,
+  sweight1 = NULL,
+  fpc = NULL,
+  popsize = NULL,
+  vartype = "Local",
+  jointprob = "overton",
+  conf = 95,
+  All_Sites = FALSE
+)
@@ -423,74 +423,74 @@

Author

Examples

-
dframe <- data.frame(
-  siteID = paste0("Site", 1:100),
-  wgt = runif(100, 10, 100),
-  xcoord = runif(100),
-  ycoord = runif(100),
-  stratum = rep(c("Stratum1", "Stratum2"), 50),
-  CatVar = rep(c("north", "south", "east", "west"), 25),
-  All_Sites = rep("All Sites", 100),
-  Resource_Class = rep(c("Good", "Poor"), c(55, 45))
-)
-myvars <- c("CatVar")
-mysubpops <- c("All_Sites", "Resource_Class")
-mypopsize <- data.frame(
-  Resource_Class = c("Good", "Poor"),
-  Total = c(4000, 1500)
-)
-cat_analysis(dframe,
-  vars = myvars, subpops = mysubpops, siteID = "siteID",
-  weight = "wgt", xcoord = "xcoord", ycoord = "ycoord",
-  stratumID = "stratum", popsize = mypopsize
-)
+    
dframe <- data.frame(
+  siteID = paste0("Site", 1:100),
+  wgt = runif(100, 10, 100),
+  xcoord = runif(100),
+  ycoord = runif(100),
+  stratum = rep(c("Stratum1", "Stratum2"), 50),
+  CatVar = rep(c("north", "south", "east", "west"), 25),
+  All_Sites = rep("All Sites", 100),
+  Resource_Class = rep(c("Good", "Poor"), c(55, 45))
+)
+myvars <- c("CatVar")
+mysubpops <- c("All_Sites", "Resource_Class")
+mypopsize <- data.frame(
+  Resource_Class = c("Good", "Poor"),
+  Total = c(4000, 1500)
+)
+cat_analysis(dframe,
+  vars = myvars, subpops = mysubpops, siteID = "siteID",
+  weight = "wgt", xcoord = "xcoord", ycoord = "ycoord",
+  stratumID = "stratum", popsize = mypopsize
+)
 #>              Type Subpopulation Indicator Category nResp Estimate.P StdError.P
-#> 1       All_Sites     All Sites    CatVar     east    25   23.75497   3.403561
-#> 2       All_Sites     All Sites    CatVar    north    25   26.87107   3.403561
-#> 3       All_Sites     All Sites    CatVar    south    25   24.34974   3.582027
-#> 4       All_Sites     All Sites    CatVar     west    25   25.02422   3.582027
+#> 1       All_Sites     All Sites    CatVar     east    25   24.56407   3.655213
+#> 2       All_Sites     All Sites    CatVar    north    25   26.94039   3.655213
+#> 3       All_Sites     All Sites    CatVar    south    25   25.31730   3.360741
+#> 4       All_Sites     All Sites    CatVar     west    25   23.17824   3.360741
 #> 5       All_Sites     All Sites    CatVar    Total   100  100.00000   0.000000
-#> 6  Resource_Class          Good    CatVar     east    14   22.58904   4.130423
-#> 7  Resource_Class          Good    CatVar    north    14   28.11049   4.130423
-#> 8  Resource_Class          Good    CatVar    south    14   24.51464   4.657531
-#> 9  Resource_Class          Good    CatVar     west    13   24.78583   4.657531
+#> 6  Resource_Class          Good    CatVar     east    14   22.54320   4.807093
+#> 7  Resource_Class          Good    CatVar    north    14   28.93427   4.807093
+#> 8  Resource_Class          Good    CatVar    south    14   25.83591   4.439926
+#> 9  Resource_Class          Good    CatVar     west    13   22.68661   4.439926
 #> 10 Resource_Class          Good    CatVar    Total    55  100.00000   0.000000
-#> 11 Resource_Class          Poor    CatVar     east    11   26.86410   5.316598
-#> 12 Resource_Class          Poor    CatVar    north    11   23.56594   5.316598
-#> 13 Resource_Class          Poor    CatVar    south    11   23.91001   5.362600
-#> 14 Resource_Class          Poor    CatVar     west    12   25.65995   5.362600
+#> 11 Resource_Class          Poor    CatVar     east    11   29.95303   5.373134
+#> 12 Resource_Class          Poor    CatVar    north    11   21.62338   5.373134
+#> 13 Resource_Class          Poor    CatVar    south    11   23.93435   4.086409
+#> 14 Resource_Class          Poor    CatVar     west    12   24.48924   4.086409
 #> 15 Resource_Class          Poor    CatVar    Total    45  100.00000   0.000000
 #>    MarginofError.P LCB95Pct.P UCB95Pct.P Estimate.U StdError.U MarginofError.U
-#> 1         6.670856   17.08411   30.42582  1306.5231  195.87611        383.9101
-#> 2         6.670856   20.20021   33.54192  1477.9087  223.42108        437.8973
-#> 3         7.020643   17.32910   31.37039  1339.2359  223.42450        437.9040
-#> 4         7.020643   18.00358   32.04487  1376.3323  221.72897        434.5808
+#> 1         7.164087   17.39998   31.72815  1351.0237  202.58725        397.0637
+#> 2         7.164087   19.77630   34.10448  1481.7215  252.67329        495.2306
+#> 3         6.586931   18.73037   31.90424  1392.4518  208.32033        408.3003
+#> 4         6.586931   16.59131   29.76517  1274.8030  209.95998        411.5140
 #> 5         0.000000  100.00000  100.00000  5500.0000    0.00000          0.0000
-#> 6         8.095481   14.49356   30.68452   903.5616  163.77389        320.9909
-#> 7         8.095481   20.01501   36.20597  1124.4196  195.87130        383.9007
-#> 8         9.128593   15.38605   33.64324   980.5858  192.77179        377.8258
-#> 9         9.128593   15.65723   33.91442   991.4331  209.33332        410.2858
+#> 6         9.421730   13.12148   31.96493   901.7282  179.01008        350.8533
+#> 7         9.421730   19.51254   38.35600  1157.3708  245.47227        481.1168
+#> 8         8.702095   17.13382   34.53801  1033.4366  194.99544        382.1840
+#> 9         8.702095   13.98452   31.38871   907.4645  184.72902        362.0622
 #> 10        0.000000  100.00000  100.00000  4000.0000    0.00000          0.0000
-#> 11       10.420340   16.44376   37.28444   402.9615   88.26998        173.0060
-#> 12       10.420340   13.14560   33.98628   353.4891   78.55862        153.9721
-#> 13       10.510502   13.39950   34.42051   358.6501   86.64543        169.8219
-#> 14       10.510502   15.14945   36.17045   384.8992   84.80251        166.2099
+#> 11       10.531150   19.42188   40.48418   449.2955   97.12757        190.3665
+#> 12       10.531150   11.09223   32.15453   324.3508   78.92257        154.6854
+#> 13        8.009215   15.92513   31.94356   359.0152   69.13670        135.5054
+#> 14        8.009215   16.48002   32.49845   367.3386   65.75138        128.8703
 #> 15        0.000000  100.00000  100.00000  1500.0000    0.00000          0.0000
 #>    LCB95Pct.U UCB95Pct.U
-#> 1    922.6130  1690.4332
-#> 2   1040.0114  1915.8060
-#> 3    901.3319  1777.1398
-#> 4    941.7515  1810.9131
+#> 1    953.9600  1748.0874
+#> 2    986.4910  1976.9521
+#> 3    984.1514  1800.7521
+#> 4    863.2891  1686.3170
 #> 5   5500.0000  5500.0000
-#> 6    582.5707  1224.5525
-#> 7    740.5189  1508.3203
-#> 8    602.7600  1358.4115
-#> 9    581.1473  1401.7188
+#> 6    550.8749  1252.5815
+#> 7    676.2539  1638.4876
+#> 8    651.2525  1415.6206
+#> 9    545.4022  1269.5267
 #> 10  4000.0000  4000.0000
-#> 11   229.9555   575.9675
-#> 12   199.5171   507.4612
-#> 13   188.8282   528.4720
-#> 14   218.6894   551.1091
+#> 11   258.9289   639.6620
+#> 12   169.6654   479.0362
+#> 13   223.5098   494.5207
+#> 14   238.4682   496.2089
 #> 15  1500.0000  1500.0000
 
diff --git a/docs/reference/cdf_plot.html b/docs/reference/cdf_plot.html index 905b43b..9c18cee 100644 --- a/docs/reference/cdf_plot.html +++ b/docs/reference/cdf_plot.html @@ -19,7 +19,7 @@ spsurvey - 5.4.1 + 5.5.0
@@ -76,25 +76,25 @@

Plot a cumulative distribution function (CDF)

-
cdf_plot(
-  cdfest,
-  var = NULL,
-  subpop = NULL,
-  subpop_level = NULL,
-  units_cdf = "Percent",
-  type_cdf = "Continuous",
-  log = "",
-  xlab = NULL,
-  ylab = NULL,
-  ylab_r = NULL,
-  main = NULL,
-  legloc = NULL,
-  confcut = 0,
-  conflev = 95,
-  cex.main = 1.2,
-  cex.legend = 1,
-  ...
-)
+
cdf_plot(
+  cdfest,
+  var = NULL,
+  subpop = NULL,
+  subpop_level = NULL,
+  units_cdf = "Percent",
+  type_cdf = "Continuous",
+  log = "",
+  xlab = NULL,
+  ylab = NULL,
+  ylab_r = NULL,
+  main = NULL,
+  legloc = NULL,
+  confcut = 0,
+  conflev = 95,
+  cex.main = 1.2,
+  cex.legend = 1,
+  ...
+)
@@ -236,42 +236,42 @@

Author

Examples

-
if (FALSE) {
-dframe <- data.frame(
-  siteID = paste0("Site", 1:100),
-  wgt = runif(100, 10, 100),
-  xcoord = runif(100),
-  ycoord = runif(100),
-  stratum = rep(c("Stratum1", "Stratum2"), 50),
-  ContVar = rnorm(100, 10, 1),
-  All_Sites = rep("All Sites", 100),
-  Resource_Class = rep(c("Good", "Poor"), c(55, 45))
-)
-myvars <- c("ContVar")
-mysubpops <- c("All_Sites", "Resource_Class")
-mypopsize <- data.frame(
-  Resource_Class = c("Good", "Poor"),
-  Total = c(4000, 1500)
-)
-myanalysis <- cont_analysis(dframe,
-  vars = myvars, subpops = mysubpops,
-  siteID = "siteID", weight = "wgt", xcoord = "xcoord", ycoord = "ycoord",
-  stratumID = "stratum", popsize = mypopsize
-)
-keep <- with(myanalysis$CDF, Type == "Resource_Class" &
-  Subpopulation == "Good")
-par(mfrow = c(2, 1))
-cdf_plot(myanalysis$CDF[keep, ],
-  xlab = "ContVar",
-  ylab = "Percent of Stream Length", ylab_r = "Stream Length (km)",
-  main = "Estimates for Resource Class: Good"
-)
-cdf_plot(myanalysis$CDF[keep, ],
-  xlab = "ContVar",
-  ylab = "Percent of Stream Length", ylab_r = "Same",
-  main = "Estimates for Resource Class: Good"
-)
-}
+    
if (FALSE) {
+dframe <- data.frame(
+  siteID = paste0("Site", 1:100),
+  wgt = runif(100, 10, 100),
+  xcoord = runif(100),
+  ycoord = runif(100),
+  stratum = rep(c("Stratum1", "Stratum2"), 50),
+  ContVar = rnorm(100, 10, 1),
+  All_Sites = rep("All Sites", 100),
+  Resource_Class = rep(c("Good", "Poor"), c(55, 45))
+)
+myvars <- c("ContVar")
+mysubpops <- c("All_Sites", "Resource_Class")
+mypopsize <- data.frame(
+  Resource_Class = c("Good", "Poor"),
+  Total = c(4000, 1500)
+)
+myanalysis <- cont_analysis(dframe,
+  vars = myvars, subpops = mysubpops,
+  siteID = "siteID", weight = "wgt", xcoord = "xcoord", ycoord = "ycoord",
+  stratumID = "stratum", popsize = mypopsize
+)
+keep <- with(myanalysis$CDF, Type == "Resource_Class" &
+  Subpopulation == "Good")
+par(mfrow = c(2, 1))
+cdf_plot(myanalysis$CDF[keep, ],
+  xlab = "ContVar",
+  ylab = "Percent of Stream Length", ylab_r = "Stream Length (km)",
+  main = "Estimates for Resource Class: Good"
+)
+cdf_plot(myanalysis$CDF[keep, ],
+  xlab = "ContVar",
+  ylab = "Percent of Stream Length", ylab_r = "Same",
+  main = "Estimates for Resource Class: Good"
+)
+}
 
diff --git a/docs/reference/change_analysis.html b/docs/reference/change_analysis.html index e4a4ae9..685bedd 100644 --- a/docs/reference/change_analysis.html +++ b/docs/reference/change_analysis.html @@ -23,7 +23,7 @@ spsurvey - 5.4.1 + 5.5.0
@@ -84,34 +84,34 @@

Change analysis

-
change_analysis(
-  dframe,
-  vars_cat = NULL,
-  vars_cont = NULL,
-  test = "mean",
-  subpops = NULL,
-  surveyID = "surveyID",
-  survey_names = NULL,
-  siteID = "siteID",
-  weight = "weight",
-  revisitwgt = FALSE,
-  xcoord = NULL,
-  ycoord = NULL,
-  stratumID = NULL,
-  clusterID = NULL,
-  weight1 = NULL,
-  xcoord1 = NULL,
-  ycoord1 = NULL,
-  sizeweight = FALSE,
-  sweight = NULL,
-  sweight1 = NULL,
-  fpc = NULL,
-  popsize = NULL,
-  vartype = "Local",
-  jointprob = "overton",
-  conf = 95,
-  All_Sites = FALSE
-)
+
change_analysis(
+  dframe,
+  vars_cat = NULL,
+  vars_cont = NULL,
+  test = "mean",
+  subpops = NULL,
+  surveyID = "surveyID",
+  survey_names = NULL,
+  siteID = "siteID",
+  weight = "weight",
+  revisitwgt = FALSE,
+  xcoord = NULL,
+  ycoord = NULL,
+  stratumID = NULL,
+  clusterID = NULL,
+  weight1 = NULL,
+  xcoord1 = NULL,
+  ycoord1 = NULL,
+  sizeweight = FALSE,
+  sweight = NULL,
+  sweight1 = NULL,
+  fpc = NULL,
+  popsize = NULL,
+  vartype = "Local",
+  jointprob = "overton",
+  conf = 95,
+  All_Sites = FALSE
+)
@@ -816,89 +816,89 @@

Author

Examples

-
# Categorical variable example for three resource classes
-dframe <- data.frame(
-  surveyID = rep(c("Survey 1", "Survey 2"), c(100, 100)),
-  siteID = paste0("Site", 1:200),
-  wgt = runif(200, 10, 100),
-  xcoord = runif(200),
-  ycoord = runif(200),
-  stratum = rep(rep(c("Stratum 1", "Stratum 2"), c(2, 2)), 50),
-  CatVar = rep(c("North", "South"), 100),
-  All_Sites = rep("All Sites", 200),
-  Resource_Class = sample(c("Good", "Fair", "Poor"), 200, replace = TRUE)
-)
-myvars <- c("CatVar")
-mysubpops <- c("All_Sites", "Resource_Class")
-change_analysis(dframe,
-  vars_cat = myvars, subpops = mysubpops,
-  surveyID = "surveyID", siteID = "siteID", weight = "wgt",
-  xcoord = "xcoord", ycoord = "ycoord", stratumID = "stratum"
-)
+    
# Categorical variable example for three resource classes
+dframe <- data.frame(
+  surveyID = rep(c("Survey 1", "Survey 2"), c(100, 100)),
+  siteID = paste0("Site", 1:200),
+  wgt = runif(200, 10, 100),
+  xcoord = runif(200),
+  ycoord = runif(200),
+  stratum = rep(rep(c("Stratum 1", "Stratum 2"), c(2, 2)), 50),
+  CatVar = rep(c("North", "South"), 100),
+  All_Sites = rep("All Sites", 200),
+  Resource_Class = sample(c("Good", "Fair", "Poor"), 200, replace = TRUE)
+)
+myvars <- c("CatVar")
+mysubpops <- c("All_Sites", "Resource_Class")
+change_analysis(dframe,
+  vars_cat = myvars, subpops = mysubpops,
+  surveyID = "surveyID", siteID = "siteID", weight = "wgt",
+  xcoord = "xcoord", ycoord = "ycoord", stratumID = "stratum"
+)
 #> $catsum
-#>   Survey_1 Survey_2           Type Subpopulation Indicator Category  DiffEst.P
-#> 1 Survey 1 Survey 2      All_Sites     All Sites    CatVar    North   5.687334
-#> 2 Survey 1 Survey 2      All_Sites     All Sites    CatVar    South  -5.687334
-#> 3 Survey 1 Survey 2 Resource_Class          Fair    CatVar    North  10.931715
-#> 4 Survey 1 Survey 2 Resource_Class          Fair    CatVar    South -10.931715
-#> 5 Survey 1 Survey 2 Resource_Class          Good    CatVar    North  -2.184212
-#> 6 Survey 1 Survey 2 Resource_Class          Good    CatVar    South   2.184212
-#> 7 Survey 1 Survey 2 Resource_Class          Poor    CatVar    North  16.026542
-#> 8 Survey 1 Survey 2 Resource_Class          Poor    CatVar    South -16.026542
+#>   Survey_1 Survey_2           Type Subpopulation Indicator Category DiffEst.P
+#> 1 Survey 1 Survey 2      All_Sites     All Sites    CatVar    North -1.474844
+#> 2 Survey 1 Survey 2      All_Sites     All Sites    CatVar    South  1.474844
+#> 3 Survey 1 Survey 2 Resource_Class          Fair    CatVar    North -8.424944
+#> 4 Survey 1 Survey 2 Resource_Class          Fair    CatVar    South  8.424944
+#> 5 Survey 1 Survey 2 Resource_Class          Good    CatVar    North -2.700343
+#> 6 Survey 1 Survey 2 Resource_Class          Good    CatVar    South  2.700343
+#> 7 Survey 1 Survey 2 Resource_Class          Poor    CatVar    North  9.876690
+#> 8 Survey 1 Survey 2 Resource_Class          Poor    CatVar    South -9.876690
 #>   StdError.P MarginofError.P LCB95Pct.P UCB95Pct.P  DiffEst.U StdError.U
-#> 1   6.627503        12.98967  -7.302332  18.677001  366.93366   381.6858
-#> 2   6.627503        12.98967 -18.677001   7.302332 -247.42810   394.0168
-#> 3  11.254737        22.05888 -11.127165  32.990594  458.92014   199.0896
-#> 4  11.254737        22.05888 -32.990594  11.127165  213.47382   244.5832
-#> 5  10.921448        21.40564 -23.589857  19.221432  -28.97260   250.2994
-#> 6  10.921448        21.40564 -19.221432  23.589857   57.59736   238.7439
-#> 7  12.488324        24.47667  -8.450125  40.503208  -63.01389   220.2134
-#> 8  12.488324        24.47667 -40.503208   8.450125 -518.49928   199.6357
-#>   MarginofError.U  LCB95Pct.U UCB95Pct.U nResp_1 Estimate.P_1 StdError.P_1
-#> 1        748.0905  -381.15685  1115.0242      50     46.71029     4.768780
-#> 2        772.2587 -1019.68681   524.8306      50     53.28971     4.768780
-#> 3        390.2084    68.71174   849.1285      11     33.32169     8.441770
-#> 4        479.3743  -265.90044   692.8481      16     66.67831     8.441770
-#> 5        490.5778  -519.55043   461.6052      24     57.90903     7.929511
-#> 6        467.9294  -410.33207   525.5268      14     42.09097     7.929511
-#> 7        431.6103  -494.62420   368.5964      15     44.91151     8.380054
-#> 8        391.2789  -909.77815  -127.2204      20     55.08849     8.380054
+#> 1   6.588741        12.91369  -14.38854   11.43885 -276.59196   399.9584
+#> 2   6.588741        12.91369  -11.43885   14.38854 -110.79795   405.3858
+#> 3  11.629073        22.79256  -31.21751   14.36762 -135.23095   224.1637
+#> 4  11.629073        22.79256  -14.36762   31.21751  187.97610   248.9814
+#> 5  11.535577        22.60932  -25.30966   19.90897  -18.47734   242.7810
+#> 6  11.535577        22.60932  -19.90897   25.30966   91.80035   238.9779
+#> 7  10.718029        21.00695  -11.13026   30.88364 -122.88367   233.7347
+#> 8  10.718029        21.00695  -30.88364   11.13026 -390.57440   200.6060
+#>   MarginofError.U LCB95Pct.U UCB95Pct.U nResp_1 Estimate.P_1 StdError.P_1
+#> 1        783.9040 -1060.4959 507.312026      50     50.85132     4.735320
+#> 2        794.5416  -905.3396 683.743675      50     49.14868     4.735320
+#> 3        439.3527  -574.5837 304.121778      18     52.86449     8.718695
+#> 4        487.9946  -300.0185 675.970720      14     47.13551     8.718695
+#> 5        475.8419  -494.3193 457.364609      14     46.31958     8.760600
+#> 6        468.3881  -376.5877 560.188433      18     53.68042     8.760600
+#> 7        458.1116  -580.9953 335.227975      18     53.15233     7.543663
+#> 8        393.1805  -783.7549   2.606108      18     46.84767     7.543663
 #>   MarginofError.P_1 LCB95Pct.P_1 UCB95Pct.P_1 Estimate.U_1 StdError.U_1
-#> 1          9.346637     37.36366     56.05693    2499.3557     264.4515
-#> 2          9.346637     43.94307     62.63634    2851.4041     288.4971
-#> 3         16.545564     16.77613     49.86725     491.8611     117.6043
-#> 4         16.545564     50.13275     83.22387     984.2378     161.4159
-#> 5         15.541555     42.36747     73.45058    1191.0416     172.3842
-#> 6         15.541555     26.54942     57.63253     865.7043     179.8425
-#> 7         16.424604     28.48690     61.33611     816.4530     166.3135
-#> 8         16.424604     38.66389     71.51310    1001.4619     163.2339
+#> 1          9.281057     41.57026     60.13238    2941.4984     306.2000
+#> 2          9.281057     39.86762     58.42974    2843.0090     286.4790
+#> 3         17.088327     35.77616     69.95282     995.6200     167.0792
+#> 4         17.088327     30.04718     64.22384     887.7237     180.9941
+#> 5         17.170460     29.14912     63.49004     865.5563     186.1827
+#> 6         17.170460     36.50996     70.85088    1003.1055     165.3294
+#> 7         14.785308     38.36702     67.93764    1080.3222     185.9011
+#> 8         14.785308     32.06236     61.63298     952.1798     147.9496
 #>   MarginofError.U_1 LCB95Pct.U_1 UCB95Pct.U_1 nResp_2 Estimate.P_2 StdError.P_2
-#> 1          518.3154    1981.0402    3017.6711      50     52.39763     4.602448
-#> 2          565.4438    2285.9602    3416.8479      50     47.60237     4.602448
-#> 3          230.5002     261.3610     722.3613      17     44.25340     7.443496
-#> 4          316.3694     667.8684    1300.6073      21     55.74660     7.443496
-#> 5          337.8668     853.1748    1528.9084      18     55.72482     7.510052
-#> 6          352.4849     513.2194    1218.1892      17     44.27518     7.510052
-#> 7          325.9685     490.4845    1142.4215      15     60.93805     9.259208
-#> 8          319.9326     681.5293    1321.3946      12     39.06195     9.259208
+#> 1          600.1409    2341.3575     3541.639      50     49.37648     4.581293
+#> 2          561.4884    2281.5206     3404.497      50     50.62352     4.581293
+#> 3          327.4692     668.1508     1323.089      14     44.43954     7.695434
+#> 4          354.7419     532.9818     1242.466      18     55.56046     7.695434
+#> 5          364.9115     500.6448     1230.468      17     43.61924     7.504761
+#> 6          324.0397     679.0658     1327.145      22     56.38076     7.504761
+#> 7          364.3594     715.9628     1444.682      19     63.02902     7.613757
+#> 8          289.9759     662.2039     1242.156      10     36.97098     7.613757
 #>   MarginofError.P_2 LCB95Pct.P_2 UCB95Pct.P_2 Estimate.U_2 StdError.U_2
-#> 1          9.020633     43.37700     61.41826    2866.2893     275.2262
-#> 2          9.020633     38.58174     56.62300    2603.9760     268.3630
-#> 3         14.588984     29.66442     58.84239     950.7813     160.6421
-#> 4         14.588984     41.15761     70.33558    1197.7117     183.7548
-#> 5         14.719432     41.00538     70.44425    1162.0690     181.4759
-#> 6         14.719432     29.55575     58.99462     923.3017     157.0201
-#> 7         18.147715     42.79033     79.08576     753.4391     144.3390
-#> 8         18.147715     20.91424     57.20967     482.9627     114.9309
+#> 1          8.979169     40.39731     58.35565    2664.9065     257.3097
+#> 2          8.979169     41.64435     59.60269    2732.2111     286.8231
+#> 3         15.082774     29.35677     59.52232     860.3891     149.4453
+#> 4         15.082774     40.47768     70.64323    1075.6998     170.9763
+#> 5         14.709060     28.91018     58.32830     847.0789     155.8159
+#> 6         14.709060     41.67170     71.08982    1094.9058     172.5590
+#> 7         14.922689     48.10633     77.95171     957.4385     141.6782
+#> 8         14.922689     22.04829     51.89367     561.6054     135.4757
 #>   MarginofError.U_2 LCB95Pct.U_2 UCB95Pct.U_2
-#> 1          539.4335    2326.8558    3405.7228
-#> 2          525.9817    2077.9943    3129.9577
-#> 3          314.8528     635.9285    1265.6340
-#> 4          360.1528     837.5588    1557.8645
-#> 5          355.6861     806.3828    1517.7551
-#> 6          307.7537     615.5480    1231.0554
-#> 7          282.8993     470.5398    1036.3383
-#> 8          225.2605     257.7022     708.2231
+#> 1          504.3177    2160.5888     3169.224
+#> 2          562.1629    2170.0482     3294.374
+#> 3          292.9074     567.4816     1153.296
+#> 4          335.1073     740.5925     1410.807
+#> 5          305.3935     541.6855     1152.472
+#> 6          338.2095     756.6963     1433.115
+#> 7          277.6842     679.7543     1235.123
+#> 8          265.5276     296.0779      827.133
 #> 
 #> $contsum_mean
 #> NULL
diff --git a/docs/reference/cont_analysis.html b/docs/reference/cont_analysis.html
index 5b3b28e..0e0240d 100644
--- a/docs/reference/cont_analysis.html
+++ b/docs/reference/cont_analysis.html
@@ -23,7 +23,7 @@
       
       
         spsurvey
-        5.4.1
+        5.5.0
       
     
@@ -84,31 +84,31 @@

Continuous variable analysis

-
cont_analysis(
-  dframe,
-  vars,
-  subpops = NULL,
-  siteID = NULL,
-  weight = "weight",
-  xcoord = NULL,
-  ycoord = NULL,
-  stratumID = NULL,
-  clusterID = NULL,
-  weight1 = NULL,
-  xcoord1 = NULL,
-  ycoord1 = NULL,
-  sizeweight = FALSE,
-  sweight = NULL,
-  sweight1 = NULL,
-  fpc = NULL,
-  popsize = NULL,
-  vartype = "Local",
-  jointprob = "overton",
-  conf = 95,
-  pctval = c(5, 10, 25, 50, 75, 90, 95),
-  statistics = c("CDF", "Pct", "Mean", "Total"),
-  All_Sites = FALSE
-)
+
cont_analysis(
+  dframe,
+  vars,
+  subpops = NULL,
+  siteID = NULL,
+  weight = "weight",
+  xcoord = NULL,
+  ycoord = NULL,
+  stratumID = NULL,
+  clusterID = NULL,
+  weight1 = NULL,
+  xcoord1 = NULL,
+  ycoord1 = NULL,
+  sizeweight = FALSE,
+  sweight = NULL,
+  sweight1 = NULL,
+  fpc = NULL,
+  popsize = NULL,
+  vartype = "Local",
+  jointprob = "overton",
+  conf = 95,
+  pctval = c(5, 10, 25, 50, 75, 90, 95),
+  statistics = c("CDF", "Pct", "Mean", "Total"),
+  All_Sites = FALSE
+)
@@ -548,27 +548,27 @@

Author

Examples

-
dframe <- data.frame(
-  siteID = paste0("Site", 1:100),
-  wgt = runif(100, 10, 100),
-  xcoord = runif(100),
-  ycoord = runif(100),
-  stratum = rep(c("Stratum1", "Stratum2"), 50),
-  ContVar = rnorm(100, 10, 1),
-  All_Sites = rep("All Sites", 100),
-  Resource_Class = rep(c("Good", "Poor"), c(55, 45))
-)
-myvars <- c("ContVar")
-mysubpops <- c("All_Sites", "Resource_Class")
-mypopsize <- data.frame(
-  Resource_Class = c("Good", "Poor"),
-  Total = c(4000, 1500)
-)
-cont_analysis(dframe,
-  vars = myvars, subpops = mysubpops, siteID = "siteID",
-  weight = "wgt", xcoord = "xcoord", ycoord = "ycoord",
-  stratumID = "stratum", popsize = mypopsize, statistics = "Mean"
-)
+    
dframe <- data.frame(
+  siteID = paste0("Site", 1:100),
+  wgt = runif(100, 10, 100),
+  xcoord = runif(100),
+  ycoord = runif(100),
+  stratum = rep(c("Stratum1", "Stratum2"), 50),
+  ContVar = rnorm(100, 10, 1),
+  All_Sites = rep("All Sites", 100),
+  Resource_Class = rep(c("Good", "Poor"), c(55, 45))
+)
+myvars <- c("ContVar")
+mysubpops <- c("All_Sites", "Resource_Class")
+mypopsize <- data.frame(
+  Resource_Class = c("Good", "Poor"),
+  Total = c(4000, 1500)
+)
+cont_analysis(dframe,
+  vars = myvars, subpops = mysubpops, siteID = "siteID",
+  weight = "wgt", xcoord = "xcoord", ycoord = "ycoord",
+  stratumID = "stratum", popsize = mypopsize, statistics = "Mean"
+)
 #> $CDF
 #> NULL
 #> 
@@ -576,14 +576,14 @@ 

Examples

#> NULL #> #> $Mean -#> Type Subpopulation Indicator nResp Estimate StdError -#> 1 All_Sites All Sites ContVar 100 9.963611 0.1034540 -#> 2 Resource_Class Good ContVar 55 9.906697 0.1300741 -#> 3 Resource_Class Poor ContVar 45 10.115384 0.1581813 +#> Type Subpopulation Indicator nResp Estimate StdError +#> 1 All_Sites All Sites ContVar 100 10.09394 0.09919356 +#> 2 Resource_Class Good ContVar 55 10.15428 0.12675491 +#> 3 Resource_Class Poor ContVar 45 9.93302 0.14953279 #> MarginofError LCB95Pct UCB95Pct -#> 1 0.2027661 9.760845 10.16638 -#> 2 0.2549405 9.651756 10.16164 -#> 3 0.3100297 9.805354 10.42541 +#> 1 0.1944158 9.899522 10.28835 +#> 2 0.2484351 9.905846 10.40272 +#> 3 0.2930789 9.639941 10.22610 #> #> $Total #> NULL diff --git a/docs/reference/cont_cdfplot.html b/docs/reference/cont_cdfplot.html index 65a9d27..5e479ef 100644 --- a/docs/reference/cont_cdfplot.html +++ b/docs/reference/cont_cdfplot.html @@ -21,7 +21,7 @@ spsurvey - 5.4.1 + 5.5.0
@@ -80,24 +80,24 @@

Create a PDF file containing cumulative distribution functions (CDF) plots
-
cont_cdfplot(
-  pdffile = "cdf2x2.pdf",
-  cdfest,
-  units_cdf = "Percent",
-  ind_type = rep("Continuous", nind),
-  log = rep("", nind),
-  xlab = NULL,
-  ylab = NULL,
-  ylab_r = NULL,
-  legloc = NULL,
-  cdf_page = 4,
-  width = 10,
-  height = 8,
-  confcut = 0,
-  cex.main = 1.2,
-  cex.legend = 1,
-  ...
-)
+
cont_cdfplot(
+  pdffile = "cdf2x2.pdf",
+  cdfest,
+  units_cdf = "Percent",
+  ind_type = rep("Continuous", nind),
+  log = rep("", nind),
+  xlab = NULL,
+  ylab = NULL,
+  ylab_r = NULL,
+  legloc = NULL,
+  cdf_page = 4,
+  width = 10,
+  height = 8,
+  confcut = 0,
+  cex.main = 1.2,
+  cex.legend = 1,
+  ...
+)
@@ -225,31 +225,31 @@

Author

Examples

-
if (FALSE) {
-dframe <- data.frame(
-  siteID = paste0("Site", 1:100),
-  wgt = runif(100, 10, 100),
-  xcoord = runif(100),
-  ycoord = runif(100),
-  stratum = rep(c("Stratum1", "Stratum2"), 50),
-  ContVar = rnorm(100, 10, 1),
-  All_Sites = rep("All Sites", 100),
-  Resource_Class = rep(c("Good", "Poor"), c(55, 45))
-)
-myvars <- c("ContVar")
-mysubpops <- c("All_Sites", "Resource_Class")
-mypopsize <- data.frame(
-  Resource_Class = c("Good", "Poor"),
-  Total = c(4000, 1500)
-)
-myanalysis <- cont_analysis(dframe,
-  vars = myvars, subpops = mysubpops,
-  siteID = "siteID", weight = "wgt", xcoord = "xcoord", ycoord = "ycoord",
-  stratumID = "stratum", popsize = mypopsize
-)
-cont_cdfplot("myanalysis.pdf", myanalysis$CDF, ylab_r = "Stream Length (km)")
-}
-
+    
if (FALSE) {
+dframe <- data.frame(
+  siteID = paste0("Site", 1:100),
+  wgt = runif(100, 10, 100),
+  xcoord = runif(100),
+  ycoord = runif(100),
+  stratum = rep(c("Stratum1", "Stratum2"), 50),
+  ContVar = rnorm(100, 10, 1),
+  All_Sites = rep("All Sites", 100),
+  Resource_Class = rep(c("Good", "Poor"), c(55, 45))
+)
+myvars <- c("ContVar")
+mysubpops <- c("All_Sites", "Resource_Class")
+mypopsize <- data.frame(
+  Resource_Class = c("Good", "Poor"),
+  Total = c(4000, 1500)
+)
+myanalysis <- cont_analysis(dframe,
+  vars = myvars, subpops = mysubpops,
+  siteID = "siteID", weight = "wgt", xcoord = "xcoord", ycoord = "ycoord",
+  stratumID = "stratum", popsize = mypopsize
+)
+cont_cdfplot("myanalysis.pdf", myanalysis$CDF, ylab_r = "Stream Length (km)")
+}
+
 
diff --git a/docs/reference/cont_cdftest.html b/docs/reference/cont_cdftest.html index 185fc95..b1fbfba 100644 --- a/docs/reference/cont_cdftest.html +++ b/docs/reference/cont_cdftest.html @@ -34,7 +34,7 @@ spsurvey - 5.4.1 + 5.5.0
@@ -106,30 +106,30 @@

Cumulative distribution function (CDF) inference for a probability survey
-
cont_cdftest(
-  dframe,
-  vars,
-  subpops = NULL,
-  surveyID = NULL,
-  siteID = "siteID",
-  weight = "weight",
-  xcoord = NULL,
-  ycoord = NULL,
-  stratumID = NULL,
-  clusterID = NULL,
-  weight1 = NULL,
-  xcoord1 = NULL,
-  ycoord1 = NULL,
-  sizeweight = FALSE,
-  sweight = NULL,
-  sweight1 = NULL,
-  fpc = NULL,
-  popsize = NULL,
-  vartype = "Local",
-  jointprob = "overton",
-  testname = "adjWald",
-  nclass = 3
-)
+
cont_cdftest(
+  dframe,
+  vars,
+  subpops = NULL,
+  surveyID = NULL,
+  siteID = "siteID",
+  weight = "weight",
+  xcoord = NULL,
+  ycoord = NULL,
+  stratumID = NULL,
+  clusterID = NULL,
+  weight1 = NULL,
+  xcoord1 = NULL,
+  ycoord1 = NULL,
+  sizeweight = FALSE,
+  sweight = NULL,
+  sweight1 = NULL,
+  fpc = NULL,
+  popsize = NULL,
+  vartype = "Local",
+  jointprob = "overton",
+  testname = "adjWald",
+  nclass = 3
+)
@@ -402,44 +402,44 @@

Author

Examples

-
n <- 200
-mysiteID <- paste("Site", 1:n, sep = "")
-dframe <- data.frame(
-  siteID = mysiteID,
-  wgt = runif(n, 10, 100),
-  xcoord = runif(n),
-  ycoord = runif(n),
-  stratum = rep(c("Stratum1", "Stratum2"), n / 2),
-  Resource_Class = sample(c("Agr", "Forest", "Urban"), n, replace = TRUE)
-)
-ContVar <- numeric(n)
-tst <- dframe$Resource_Class == "Agr"
-ContVar[tst] <- rnorm(sum(tst), 10, 1)
-tst <- dframe$Resource_Class == "Forest"
-ContVar[tst] <- rnorm(sum(tst), 10.1, 1)
-tst <- dframe$Resource_Class == "Urban"
-ContVar[tst] <- rnorm(sum(tst), 10.5, 1)
-dframe$ContVar <- ContVar
-myvars <- c("ContVar")
-mysubpops <- c("Resource_Class")
-mypopsize <- data.frame(
-  Resource_Class = rep(c("Agr", "Forest", "Urban"), rep(2, 3)),
-  stratum = rep(c("Stratum1", "Stratum2"), 3),
-  Total = c(2500, 1500, 1000, 500, 600, 450)
-)
-cont_cdftest(dframe,
-  vars = myvars, subpops = mysubpops, siteID = "siteID",
-  weight = "wgt", xcoord = "xcoord", ycoord = "ycoord",
-  stratumID = "stratum", popsize = mypopsize, testname = "RaoScott_First"
-)
+    
n <- 200
+mysiteID <- paste("Site", 1:n, sep = "")
+dframe <- data.frame(
+  siteID = mysiteID,
+  wgt = runif(n, 10, 100),
+  xcoord = runif(n),
+  ycoord = runif(n),
+  stratum = rep(c("Stratum1", "Stratum2"), n / 2),
+  Resource_Class = sample(c("Agr", "Forest", "Urban"), n, replace = TRUE)
+)
+ContVar <- numeric(n)
+tst <- dframe$Resource_Class == "Agr"
+ContVar[tst] <- rnorm(sum(tst), 10, 1)
+tst <- dframe$Resource_Class == "Forest"
+ContVar[tst] <- rnorm(sum(tst), 10.1, 1)
+tst <- dframe$Resource_Class == "Urban"
+ContVar[tst] <- rnorm(sum(tst), 10.5, 1)
+dframe$ContVar <- ContVar
+myvars <- c("ContVar")
+mysubpops <- c("Resource_Class")
+mypopsize <- data.frame(
+  Resource_Class = rep(c("Agr", "Forest", "Urban"), rep(2, 3)),
+  stratum = rep(c("Stratum1", "Stratum2"), 3),
+  Total = c(2500, 1500, 1000, 500, 600, 450)
+)
+cont_cdftest(dframe,
+  vars = myvars, subpops = mysubpops, siteID = "siteID",
+  weight = "wgt", xcoord = "xcoord", ycoord = "ycoord",
+  stratumID = "stratum", popsize = mypopsize, testname = "RaoScott_First"
+)
 #>             Type Subpopulation_1 Subpopulation_2 Indicator
 #> 1 Resource_Class             Agr          Forest   ContVar
 #> 2 Resource_Class             Agr           Urban   ContVar
 #> 3 Resource_Class          Forest           Urban   ContVar
-#>   Rao-Scott First Order Statistic Degrees_of_Freedom      p_Value
-#> 1                        2.178944                  2 0.3708324911
-#> 2                        7.020577                  2 0.0180998017
-#> 3                       20.586927                  2 0.0001627683
+#>   Rao-Scott First Order Statistic Degrees_of_Freedom     p_Value
+#> 1                        0.512239                  2 0.822142193
+#> 2                        8.691382                  2 0.009796616
+#> 3                       14.275884                  2 0.005918207
 
diff --git a/docs/reference/cov_panel_dsgn.html b/docs/reference/cov_panel_dsgn.html index 1b6ba17..a608f6c 100644 --- a/docs/reference/cov_panel_dsgn.html +++ b/docs/reference/cov_panel_dsgn.html @@ -21,7 +21,7 @@ spsurvey - 5.4.1 + 5.5.0
@@ -80,16 +80,16 @@

Create a covariance matrix for a panel design

-
cov_panel_dsgn(
-  paneldsgn = matrix(50, 1, 10),
-  nrepeats = 1,
-  unit_var = NULL,
-  period_var = NULL,
-  unitperiod_var = NULL,
-  index_var = NULL,
-  unit_rho = 1,
-  period_rho = 0
-)
+
cov_panel_dsgn(
+  paneldsgn = matrix(50, 1, 10),
+  nrepeats = 1,
+  unit_var = NULL,
+  period_var = NULL,
+  unitperiod_var = NULL,
+  index_var = NULL,
+  unit_rho = 1,
+  period_rho = 0
+)
diff --git a/docs/reference/diffrisk_analysis.html b/docs/reference/diffrisk_analysis.html index da783f8..403dafe 100644 --- a/docs/reference/diffrisk_analysis.html +++ b/docs/reference/diffrisk_analysis.html @@ -23,7 +23,7 @@ spsurvey - 5.4.1 + 5.5.0
@@ -84,31 +84,31 @@

Risk difference analysis

-
diffrisk_analysis(
-  dframe,
-  vars_response,
-  vars_stressor,
-  response_levels = NULL,
-  stressor_levels = NULL,
-  subpops = NULL,
-  siteID = NULL,
-  weight = "weight",
-  xcoord = NULL,
-  ycoord = NULL,
-  stratumID = NULL,
-  clusterID = NULL,
-  weight1 = NULL,
-  xcoord1 = NULL,
-  ycoord1 = NULL,
-  sizeweight = FALSE,
-  sweight = NULL,
-  sweight1 = NULL,
-  fpc = NULL,
-  popsize = NULL,
-  vartype = "Local",
-  conf = 95,
-  All_Sites = FALSE
-)
+
diffrisk_analysis(
+  dframe,
+  vars_response,
+  vars_stressor,
+  response_levels = NULL,
+  stressor_levels = NULL,
+  subpops = NULL,
+  siteID = NULL,
+  weight = "weight",
+  xcoord = NULL,
+  ycoord = NULL,
+  stratumID = NULL,
+  clusterID = NULL,
+  weight1 = NULL,
+  xcoord1 = NULL,
+  ycoord1 = NULL,
+  sizeweight = FALSE,
+  sweight = NULL,
+  sweight1 = NULL,
+  fpc = NULL,
+  popsize = NULL,
+  vartype = "Local",
+  conf = 95,
+  All_Sites = FALSE
+)
@@ -147,7 +147,9 @@

Arguments

contains the values "Poor" and "Good" for the first and second levels, respectively, of each element in the vars_response argument and that uses values in the vars_response argument as names -for the list. The default value is NULL.

+for the list. If response_levels is provided without names, +then the names of response_levels are set to vars_response. +The default value is NULL.

stressor_levels
@@ -161,7 +163,9 @@

Arguments

contains the values "Poor" and "Good" for the first and second levels, respectively, of each element in the vars_stressor argument and that uses values in the vars_stressor argument as names -for the list. The default value is NULL.

+for the list. If stressor_levels is provided without names, +then the names of stressor_levels are set to vars_stressor. +The default value is NULL.

subpops
@@ -500,62 +504,62 @@

Author

Examples

-
dframe <- data.frame(
-  siteID = paste0("Site", 1:100),
-  wgt = runif(100, 10, 100),
-  xcoord = runif(100),
-  ycoord = runif(100),
-  stratum = rep(c("Stratum1", "Stratum2"), 50),
-  RespVar1 = sample(c("Poor", "Good"), 100, replace = TRUE),
-  RespVar2 = sample(c("Poor", "Good"), 100, replace = TRUE),
-  StressVar = sample(c("Poor", "Good"), 100, replace = TRUE),
-  All_Sites = rep("All Sites", 100),
-  Resource_Class = rep(c("Agr", "Forest"), c(55, 45))
-)
-myresponse <- c("RespVar1", "RespVar2")
-mystressor <- c("StressVar")
-mysubpops <- c("All_Sites", "Resource_Class")
-diffrisk_analysis(dframe,
-  vars_response = myresponse,
-  vars_stressor = mystressor, subpops = mysubpops, siteID = "siteID",
-  weight = "wgt", xcoord = "xcoord", ycoord = "ycoord",
-  stratumID = "stratum"
-)
+    
dframe <- data.frame(
+  siteID = paste0("Site", 1:100),
+  wgt = runif(100, 10, 100),
+  xcoord = runif(100),
+  ycoord = runif(100),
+  stratum = rep(c("Stratum1", "Stratum2"), 50),
+  RespVar1 = sample(c("Poor", "Good"), 100, replace = TRUE),
+  RespVar2 = sample(c("Poor", "Good"), 100, replace = TRUE),
+  StressVar = sample(c("Poor", "Good"), 100, replace = TRUE),
+  All_Sites = rep("All Sites", 100),
+  Resource_Class = rep(c("Agr", "Forest"), c(55, 45))
+)
+myresponse <- c("RespVar1", "RespVar2")
+mystressor <- c("StressVar")
+mysubpops <- c("All_Sites", "Resource_Class")
+diffrisk_analysis(dframe,
+  vars_response = myresponse,
+  vars_stressor = mystressor, subpops = mysubpops, siteID = "siteID",
+  weight = "wgt", xcoord = "xcoord", ycoord = "ycoord",
+  stratumID = "stratum"
+)
 #>             Type Subpopulation Response  Stressor nResp     Estimate
-#> 1      All_Sites     All Sites RespVar1 StressVar   100  0.018690392
-#> 2      All_Sites     All Sites RespVar2 StressVar   100  0.021324043
-#> 3 Resource_Class           Agr RespVar1 StressVar    55 -0.002991139
-#> 4 Resource_Class        Forest RespVar1 StressVar    45  0.044662377
-#> 5 Resource_Class           Agr RespVar2 StressVar    55  0.050662698
-#> 6 Resource_Class        Forest RespVar2 StressVar    45 -0.027243258
+#> 1      All_Sites     All Sites RespVar1 StressVar   100 -0.037973184
+#> 2      All_Sites     All Sites RespVar2 StressVar   100  0.080765266
+#> 3 Resource_Class           Agr RespVar1 StressVar    55  0.077373530
+#> 4 Resource_Class        Forest RespVar1 StressVar    45 -0.160101785
+#> 5 Resource_Class           Agr RespVar2 StressVar    55 -0.002120854
+#> 6 Resource_Class        Forest RespVar2 StressVar    45  0.220818943
 #>   Estimate_StressPoor Estimate_StressGood   StdError MarginofError   LCB95Pct
-#> 1           0.4773413           0.4586509 0.09473713     0.1856814 -0.1669910
-#> 2           0.5245306           0.5032066 0.09773530     0.1915577 -0.1702336
-#> 3           0.4779974           0.4809885 0.13677727     0.2680785 -0.2710697
-#> 4           0.4763957           0.4317333 0.13537327     0.2653267 -0.2206643
-#> 5           0.5804472           0.5297845 0.13583216     0.2662261 -0.2155634
-#> 6           0.4439360           0.4711793 0.14921609     0.2924582 -0.3197014
+#> 1           0.4277709           0.4657441 0.09165693     0.1796443 -0.2176175
+#> 2           0.5730444           0.4922791 0.09514689     0.1864845 -0.1057192
+#> 3           0.4477905           0.3704169 0.12564736     0.2462643 -0.1688908
+#> 4           0.3925336           0.5526354 0.14062332     0.2756167 -0.4357184
+#> 5           0.4970375           0.4991584 0.13590982     0.2663783 -0.2684992
+#> 6           0.7068276           0.4860086 0.13624365     0.2670326 -0.0462137
 #>    UCB95Pct WeightTotal Count_RespPoor_StressPoor Count_RespPoor_StressGood
-#> 1 0.2043718    5527.073                        29                        21
-#> 2 0.2128817    5527.073                        30                        24
-#> 3 0.2650874    3155.809                        17                        11
-#> 4 0.3099891    2371.264                        12                        10
-#> 5 0.3168888    3155.809                        19                        12
-#> 6 0.2652149    2371.264                        11                        12
+#> 1 0.1416711    5404.906                        23                        23
+#> 2 0.2672497    5404.906                        26                        22
+#> 3 0.3236378    2997.766                        15                         9
+#> 4 0.1155149    2407.140                         8                        14
+#> 5 0.2642575    2997.766                        15                        10
+#> 6 0.4878516    2407.140                        11                        12
 #>   Count_RespGood_StressPoor Count_RespGood_StressGood Prop_RespPoor_StressPoor
-#> 1                        26                        24                0.2662085
-#> 2                        25                        21                0.2925256
-#> 3                        14                        13                0.2756391
-#> 4                        12                        11                0.2536578
-#> 5                        12                        12                0.3347172
-#> 6                        13                         9                0.2363746
+#> 1                        26                        28                0.2068686
+#> 2                        23                        29                0.2771224
+#> 3                        16                        15                0.2489805
+#> 4                        10                        13                0.1544240
+#> 5                        16                        14                0.2763628
+#> 6                         7                        15                0.2780682
 #>   Prop_RespPoor_StressGood Prop_RespGood_StressPoor Prop_RespGood_StressGood
-#> 1                0.2028658                0.2914816                0.2394440
-#> 2                0.2225732                0.2651646                0.2197366
-#> 3                0.2036245                0.3010149                0.2197214
-#> 4                0.2018560                0.2787942                0.2656920
-#> 5                0.2242821                0.2419368                0.1990638
-#> 6                0.2202989                0.2960774                0.2472491
+#> 1                0.2405118                0.2767281                0.2758915
+#> 2                0.2542146                0.2064743                0.2621887
+#> 3                0.1644577                0.3070396                0.2795222
+#> 4                0.3352269                0.2389792                0.2713699
+#> 5                0.2216163                0.2796572                0.2223636
+#> 6                0.2948113                0.1153350                0.3117855
 
diff --git a/docs/reference/errorprnt.html b/docs/reference/errorprnt.html index b4465da..bfd74c9 100644 --- a/docs/reference/errorprnt.html +++ b/docs/reference/errorprnt.html @@ -17,7 +17,7 @@ spsurvey - 5.4.1 + 5.5.0
@@ -72,7 +72,7 @@

Print errors from analysis functions

-
errorprnt(error_vec = get("error_vec", envir = .GlobalEnv))
+
errorprnt(error_vec = get("error_vec", envir = .GlobalEnv))
diff --git a/docs/reference/grts.html b/docs/reference/grts.html index b37356d..8c78413 100644 --- a/docs/reference/grts.html +++ b/docs/reference/grts.html @@ -25,7 +25,7 @@ spsurvey - 5.4.1 + 5.5.0
@@ -88,30 +88,30 @@

Select a generalized random tessellation stratified (GRTS) sample

-
grts(
-  sframe,
-  n_base,
-  stratum_var = NULL,
-  seltype = NULL,
-  caty_var = NULL,
-  caty_n = NULL,
-  aux_var = NULL,
-  legacy_var = NULL,
-  legacy_sites = NULL,
-  legacy_stratum_var = NULL,
-  legacy_caty_var = NULL,
-  legacy_aux_var = NULL,
-  mindis = NULL,
-  maxtry = 10,
-  n_over = NULL,
-  n_near = NULL,
-  wgt_units = NULL,
-  pt_density = NULL,
-  DesignID = "Site",
-  SiteBegin = 1,
-  sep = "-",
-  projcrs_check = TRUE
-)
+
grts(
+  sframe,
+  n_base,
+  stratum_var = NULL,
+  seltype = NULL,
+  caty_var = NULL,
+  caty_n = NULL,
+  aux_var = NULL,
+  legacy_var = NULL,
+  legacy_sites = NULL,
+  legacy_stratum_var = NULL,
+  legacy_caty_var = NULL,
+  legacy_aux_var = NULL,
+  mindis = NULL,
+  maxtry = 10,
+  n_over = NULL,
+  n_near = NULL,
+  wgt_units = NULL,
+  pt_density = NULL,
+  DesignID = "Site",
+  SiteBegin = 1,
+  sep = "-",
+  projcrs_check = TRUE
+)
@@ -279,7 +279,9 @@

Arguments

If replacement sites are not desired for a particular stratum, then the corresponding value in n_over should be 0 or NULL (which is equivalent to 0). If the sampling design is stratified but the number of n_over sites is the same in each - stratum, n_over can be a vector which is used for each stratum. Note that if the + stratum, n_over can be a vector which is used for each stratum. + If n_over is an unnamed, length-one vector, it's value is recycled + and used for each stratum. Note that if the sampling design has unequal selection probabilities (seltype = "unequal"), then n_over sites are given the same proportion of caty_n values as n_base.

@@ -479,15 +481,15 @@

Author

Examples

-
if (FALSE) {
-samp <- grts(NE_Lakes, n_base = 100)
-print(samp)
-strata_n <- c(low = 25, high = 30)
-samp_strat <- grts(NE_Lakes, n_base = strata_n, stratum_var = "ELEV_CAT")
-print(samp_strat)
-samp_over <- grts(NE_Lakes, n_base = 30, n_over = 5)
-print(samp_over)
-}
+    
if (FALSE) {
+samp <- grts(NE_Lakes, n_base = 100)
+print(samp)
+strata_n <- c(low = 25, high = 30)
+samp_strat <- grts(NE_Lakes, n_base = strata_n, stratum_var = "ELEV_CAT")
+print(samp_strat)
+samp_over <- grts(NE_Lakes, n_base = 30, n_over = 5)
+print(samp_over)
+}
 
diff --git a/docs/reference/index.html b/docs/reference/index.html index c3277dc..d3dc8c9 100644 --- a/docs/reference/index.html +++ b/docs/reference/index.html @@ -17,7 +17,7 @@ spsurvey - 5.4.1 + 5.5.0
@@ -73,6 +73,10 @@

All functions adjwgt()

Adjust survey design weights by categories

+ +

adjwgtNR()

+ +

Adjust survey design weights for non-response by categories

ash1_wgt()

diff --git a/docs/reference/irs.html b/docs/reference/irs.html index 79e685b..0952113 100644 --- a/docs/reference/irs.html +++ b/docs/reference/irs.html @@ -24,7 +24,7 @@ spsurvey - 5.4.1 + 5.5.0

@@ -86,30 +86,30 @@

Select an independent random sample (IRS)

-
irs(
-  sframe,
-  n_base,
-  stratum_var = NULL,
-  seltype = NULL,
-  caty_var = NULL,
-  caty_n = NULL,
-  aux_var = NULL,
-  legacy_var = NULL,
-  legacy_sites = NULL,
-  legacy_stratum_var = NULL,
-  legacy_caty_var = NULL,
-  legacy_aux_var = NULL,
-  mindis = NULL,
-  maxtry = 10,
-  n_over = NULL,
-  n_near = NULL,
-  wgt_units = NULL,
-  pt_density = NULL,
-  DesignID = "Site",
-  SiteBegin = 1,
-  sep = "-",
-  projcrs_check = TRUE
-)
+
irs(
+  sframe,
+  n_base,
+  stratum_var = NULL,
+  seltype = NULL,
+  caty_var = NULL,
+  caty_n = NULL,
+  aux_var = NULL,
+  legacy_var = NULL,
+  legacy_sites = NULL,
+  legacy_stratum_var = NULL,
+  legacy_caty_var = NULL,
+  legacy_aux_var = NULL,
+  mindis = NULL,
+  maxtry = 10,
+  n_over = NULL,
+  n_near = NULL,
+  wgt_units = NULL,
+  pt_density = NULL,
+  DesignID = "Site",
+  SiteBegin = 1,
+  sep = "-",
+  projcrs_check = TRUE
+)
@@ -277,7 +277,9 @@

Arguments

If replacement sites are not desired for a particular stratum, then the corresponding value in n_over should be 0 or NULL (which is equivalent to 0). If the sampling design is stratified but the number of n_over sites is the same in each - stratum, n_over can be a vector which is used for each stratum. Note that if the + stratum, n_over can be a vector which is used for each stratum. + If n_over is an unnamed, length-one vector, it's value is recycled + and used for each stratum. Note that if the sampling design has unequal selection probabilities (seltype = "unequal"), then n_over sites are given the same proportion of caty_n values as n_base.

@@ -472,15 +474,15 @@

Author

Examples

-
if (FALSE) {
-samp <- irs(NE_Lakes, n_base = 100)
-print(samp)
-strata_n <- c(low = 25, high = 30)
-samp_strat <- irs(NE_Lakes, n_base = strata_n, stratum_var = "ELEV_CAT")
-print(samp_strat)
-samp_over <- irs(NE_Lakes, n_base = 30, n_over = 5)
-print(samp_over)
-}
+    
if (FALSE) {
+samp <- irs(NE_Lakes, n_base = 100)
+print(samp)
+strata_n <- c(low = 25, high = 30)
+samp_strat <- irs(NE_Lakes, n_base = strata_n, stratum_var = "ELEV_CAT")
+print(samp_strat)
+samp_over <- irs(NE_Lakes, n_base = 30, n_over = 5)
+print(samp_over)
+}
 
diff --git a/docs/reference/localmean_cov.html b/docs/reference/localmean_cov.html index 89ef0cd..d2c2862 100644 --- a/docs/reference/localmean_cov.html +++ b/docs/reference/localmean_cov.html @@ -18,7 +18,7 @@ spsurvey - 5.4.1 + 5.5.0
@@ -74,7 +74,7 @@

Internal Function: Variance-Covariance Matrix Based on Local Mean Estimator<
-
localmean_cov(zmat, weight_1st)
+
localmean_cov(zmat, weight_1st)
diff --git a/docs/reference/localmean_var.html b/docs/reference/localmean_var.html index 01b17aa..339f6a0 100644 --- a/docs/reference/localmean_var.html +++ b/docs/reference/localmean_var.html @@ -17,7 +17,7 @@ spsurvey - 5.4.1 + 5.5.0
@@ -72,7 +72,7 @@

Internal Function: Local Mean Variance Estimator

-
localmean_var(z, weight_1st)
+
localmean_var(z, weight_1st)
diff --git a/docs/reference/localmean_weight.html b/docs/reference/localmean_weight.html index 9a2f472..bebc451 100644 --- a/docs/reference/localmean_weight.html +++ b/docs/reference/localmean_weight.html @@ -18,7 +18,7 @@ spsurvey - 5.4.1 + 5.5.0
@@ -74,7 +74,7 @@

Internal Function: Local Mean Variance Neighbors and Weights

-
localmean_weight(x, y, prb, nbh = 4)
+
localmean_weight(x, y, prb, nbh = 4)
diff --git a/docs/reference/pd_summary.html b/docs/reference/pd_summary.html index 44945ee..fa9db6b 100644 --- a/docs/reference/pd_summary.html +++ b/docs/reference/pd_summary.html @@ -21,7 +21,7 @@ spsurvey - 5.4.1 + 5.5.0
@@ -80,7 +80,7 @@

Summary characteristics of a panel revisit design

-
pd_summary(object, visitdsgn = NULL, ...)
+
pd_summary(object, visitdsgn = NULL, ...)
@@ -151,12 +151,12 @@

Author

Examples

-
# Serially alternating panel revisit design summary
-sa_dsgn <- revisit_dsgn(20, panels = list(SA60N = list(
-  n = 60, pnl_dsgn = c(1, 4),
-  pnl_n = NA, start_option = "None"
-)), begin = 1)
-pd_summary(sa_dsgn)
+    
# Serially alternating panel revisit design summary
+sa_dsgn <- revisit_dsgn(20, panels = list(SA60N = list(
+  n = 60, pnl_dsgn = c(1, 4),
+  pnl_n = NA, start_option = "None"
+)), begin = 1)
+pd_summary(sa_dsgn)
 #> $n_panel
 #> [1] 5
 #> 
@@ -182,11 +182,11 @@ 

Examples

#> 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 #> 60 120 180 240 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 #> -# Add visit design where first panel is sampled twice at every time period -sa_visit <- sa_dsgn -sa_visit[sa_visit > 0] <- 1 -sa_visit[1, sa_visit[1, ] > 0] <- 2 -pd_summary(sa_dsgn, sa_visit) +# Add visit design where first panel is sampled twice at every time period +sa_visit <- sa_dsgn +sa_visit[sa_visit > 0] <- 1 +sa_visit[1, sa_visit[1, ] > 0] <- 2 +pd_summary(sa_dsgn, sa_visit) #> $n_panel #> [1] 5 #> diff --git a/docs/reference/plot.html b/docs/reference/plot.html index 2825878..e4a8568 100644 --- a/docs/reference/plot.html +++ b/docs/reference/plot.html @@ -25,7 +25,7 @@ spsurvey - 5.4.1 + 5.5.0
@@ -81,41 +81,41 @@

Plot sampling frames, design sites, and analysis data.

are of the distributions of the right-hand side variables. If the left-hand side of the variable contains a variable, plots are of the left-hand size variable for each level of each right-hand side variable. -This function is largely built on plot.sf(), and all spsurvey plotting -methods can supply additional arguments to plot.sf(). For more information on +This function is largely built on plot.sf(), and all spsurvey plotting +methods can supply additional arguments to plot.sf(). For more information on plotting in sf, run ?sf::plot.sf(). Equivalent to sp_plot(); both are currently maintained for backwards compatibility.

-
# S3 method for sp_frame
-plot(
-  x,
-  formula = ~1,
-  xcoord,
-  ycoord,
-  crs,
-  var_args = NULL,
-  varlevel_args = NULL,
-  geom = FALSE,
-  onlyshow = NULL,
-  fix_bbox = TRUE,
-  ...
-)
-
-# S3 method for sp_design
-plot(
-  x,
-  sframe = NULL,
-  formula = ~siteuse,
-  siteuse = NULL,
-  var_args = NULL,
-  varlevel_args = NULL,
-  geom = FALSE,
-  onlyshow = NULL,
-  fix_bbox = TRUE,
-  ...
-)
+
# S3 method for sp_frame
+plot(
+  x,
+  formula = ~1,
+  xcoord,
+  ycoord,
+  crs,
+  var_args = NULL,
+  varlevel_args = NULL,
+  geom = FALSE,
+  onlyshow = NULL,
+  fix_bbox = TRUE,
+  ...
+)
+
+# S3 method for sp_design
+plot(
+  x,
+  sframe = NULL,
+  formula = ~siteuse,
+  siteuse = NULL,
+  var_args = NULL,
+  varlevel_args = NULL,
+  geom = FALSE,
+  onlyshow = NULL,
+  fix_bbox = TRUE,
+  ...
+)
@@ -198,7 +198,7 @@

Arguments

...
-

Additional arguments to pass to plot.sf().

+

Additional arguments to pass to plot.sf().

sframe
@@ -225,13 +225,13 @@

Author

Examples

-
if (FALSE) {
-data("NE_Lakes")
-NE_Lakes <- sp_frame(NE_Lakes)
-plot(NE_Lakes, formula = ~ELEV_CAT)
-sample <- grts(NE_Lakes, 30)
-plot(sample, NE_Lakes)
-}
+    
if (FALSE) {
+data("NE_Lakes")
+NE_Lakes <- sp_frame(NE_Lakes)
+plot(NE_Lakes, formula = ~ELEV_CAT)
+sample <- grts(NE_Lakes, 30)
+plot(sample, NE_Lakes)
+}
 
diff --git a/docs/reference/plot.sp_CDF.html b/docs/reference/plot.sp_CDF.html index b26f9c5..224d42c 100644 --- a/docs/reference/plot.sp_CDF.html +++ b/docs/reference/plot.sp_CDF.html @@ -20,7 +20,7 @@ spsurvey - 5.4.1 + 5.5.0
@@ -78,26 +78,26 @@

Plot a cumulative distribution function (CDF)

-
# S3 method for sp_CDF
-plot(
-  x,
-  var = NULL,
-  subpop = NULL,
-  subpop_level = NULL,
-  units_cdf = "Percent",
-  type_cdf = "Continuous",
-  log = "",
-  xlab = NULL,
-  ylab = NULL,
-  ylab_r = NULL,
-  main = NULL,
-  legloc = NULL,
-  confcut = 0,
-  conflev = 95,
-  cex.main = 1.2,
-  cex.legend = 1,
-  ...
-)
+
# S3 method for sp_CDF
+plot(
+  x,
+  var = NULL,
+  subpop = NULL,
+  subpop_level = NULL,
+  units_cdf = "Percent",
+  type_cdf = "Continuous",
+  log = "",
+  xlab = NULL,
+  ylab = NULL,
+  ylab_r = NULL,
+  main = NULL,
+  legloc = NULL,
+  confcut = 0,
+  conflev = 95,
+  cex.main = 1.2,
+  cex.legend = 1,
+  ...
+)
@@ -239,42 +239,42 @@

Author

Examples

-
if (FALSE) {
-dframe <- data.frame(
-  siteID = paste0("Site", 1:100),
-  wgt = runif(100, 10, 100),
-  xcoord = runif(100),
-  ycoord = runif(100),
-  stratum = rep(c("Stratum1", "Stratum2"), 50),
-  ContVar = rnorm(100, 10, 1),
-  All_Sites = rep("All Sites", 100),
-  Resource_Class = rep(c("Good", "Poor"), c(55, 45))
-)
-myvars <- c("ContVar")
-mysubpops <- c("All_Sites", "Resource_Class")
-mypopsize <- data.frame(
-  Resource_Class = c("Good", "Poor"),
-  Total = c(4000, 1500)
-)
-myanalysis <- cont_analysis(dframe,
-  vars = myvars, subpops = mysubpops,
-  siteID = "siteID", weight = "wgt", xcoord = "xcoord", ycoord = "ycoord",
-  stratumID = "stratum", popsize = mypopsize
-)
-keep <- with(myanalysis$CDF, Type == "Resource_Class" &
-  Subpopulation == "Good")
-par(mfrow = c(2, 1))
-plot(myanalysis$CDF[keep, ],
-  xlab = "ContVar",
-  ylab = "Percent of Stream Length", ylab_r = "Stream Length (km)",
-  main = "Estimates for Resource Class: Good"
-)
-plot(myanalysis$CDF[keep, ],
-  xlab = "ContVar",
-  ylab = "Percent of Stream Length", ylab_r = "Same",
-  main = "Estimates for Resource Class: Good"
-)
-}
+    
if (FALSE) {
+dframe <- data.frame(
+  siteID = paste0("Site", 1:100),
+  wgt = runif(100, 10, 100),
+  xcoord = runif(100),
+  ycoord = runif(100),
+  stratum = rep(c("Stratum1", "Stratum2"), 50),
+  ContVar = rnorm(100, 10, 1),
+  All_Sites = rep("All Sites", 100),
+  Resource_Class = rep(c("Good", "Poor"), c(55, 45))
+)
+myvars <- c("ContVar")
+mysubpops <- c("All_Sites", "Resource_Class")
+mypopsize <- data.frame(
+  Resource_Class = c("Good", "Poor"),
+  Total = c(4000, 1500)
+)
+myanalysis <- cont_analysis(dframe,
+  vars = myvars, subpops = mysubpops,
+  siteID = "siteID", weight = "wgt", xcoord = "xcoord", ycoord = "ycoord",
+  stratumID = "stratum", popsize = mypopsize
+)
+keep <- with(myanalysis$CDF, Type == "Resource_Class" &
+  Subpopulation == "Good")
+par(mfrow = c(2, 1))
+plot(myanalysis$CDF[keep, ],
+  xlab = "ContVar",
+  ylab = "Percent of Stream Length", ylab_r = "Stream Length (km)",
+  main = "Estimates for Resource Class: Good"
+)
+plot(myanalysis$CDF[keep, ],
+  xlab = "ContVar",
+  ylab = "Percent of Stream Length", ylab_r = "Same",
+  main = "Estimates for Resource Class: Good"
+)
+}
 
diff --git a/docs/reference/power_dsgn.html b/docs/reference/power_dsgn.html index 363f10c..77df7ab 100644 --- a/docs/reference/power_dsgn.html +++ b/docs/reference/power_dsgn.html @@ -21,7 +21,7 @@ spsurvey - 5.4.1 + 5.5.0
@@ -80,23 +80,23 @@

Power calculation for multiple panel designs

-
power_dsgn(
-  ind_names,
-  ind_values,
-  unit_var,
-  period_var,
-  unitperiod_var,
-  index_var,
-  unit_rho = 1,
-  period_rho = 0,
-  paneldsgn,
-  nrepeats = NULL,
-  trend_type = "mean",
-  ind_pct = NULL,
-  ind_tail = NULL,
-  trend = 2,
-  alpha = 0.05
-)
+
power_dsgn(
+  ind_names,
+  ind_values,
+  unit_var,
+  period_var,
+  unitperiod_var,
+  index_var,
+  unit_rho = 1,
+  period_rho = 0,
+  paneldsgn,
+  nrepeats = NULL,
+  trend_type = "mean",
+  ind_pct = NULL,
+  ind_tail = NULL,
+  trend = 2,
+  alpha = 0.05
+)
@@ -237,18 +237,18 @@

Author

Examples

-
# Power for rotating panel with sample size 60
-power_dsgn("Variable_Name",
-  ind_values = 43, unit_var = 280, period_var = 4,
-  unitperiod_var = 40, index_var = 90, unit_rho = 1, period_rho = 0,
-  paneldsgn = list(NoR60 = revisit_dsgn(20,
-    panels = list(NoR60 = list(
-      n = 60, pnl_dsgn = c(1, NA),
-      pnl_n = NA, start_option = "None"
-    )), begin = 1
-  )),
-  nrepeats = NULL, trend_type = "mean", trend = 1.0, alpha = 0.05
-)
+    
# Power for rotating panel with sample size 60
+power_dsgn("Variable_Name",
+  ind_values = 43, unit_var = 280, period_var = 4,
+  unitperiod_var = 40, index_var = 90, unit_rho = 1, period_rho = 0,
+  paneldsgn = list(NoR60 = revisit_dsgn(20,
+    panels = list(NoR60 = list(
+      n = 60, pnl_dsgn = c(1, NA),
+      pnl_n = NA, start_option = "None"
+    )), begin = 1
+  )),
+  nrepeats = NULL, trend_type = "mean", trend = 1.0, alpha = 0.05
+)
 #> $design
 #> [1] "NoR60"
 #> 
diff --git a/docs/reference/ppd_plot.html b/docs/reference/ppd_plot.html
index d71a13b..464e403 100644
--- a/docs/reference/ppd_plot.html
+++ b/docs/reference/ppd_plot.html
@@ -23,7 +23,7 @@
       
       
         spsurvey
-        5.4.1
+        5.5.0
       
     
@@ -84,19 +84,19 @@

Plot power curves for panel designs

-
ppd_plot(
-  object,
-  plot_type = "standard",
-  trend_type = "mean",
-  xaxis_type = "period",
-  comp_type = "design",
-  dsgns = NULL,
-  indicator = NULL,
-  trend = NULL,
-  period = NULL,
-  alpha = NULL,
-  ...
-)
+
ppd_plot(
+  object,
+  plot_type = "standard",
+  trend_type = "mean",
+  xaxis_type = "period",
+  comp_type = "design",
+  dsgns = NULL,
+  indicator = NULL,
+  trend = NULL,
+  period = NULL,
+  alpha = NULL,
+  ...
+)
@@ -224,37 +224,37 @@

Author

Examples

-
if (FALSE) {
-# Construct a rotating panel design with sample size of 60
-R60N <- revisit_dsgn(20, panels = list(R60N = list(
-  n = 60, pnl_dsgn = c(1, NA),
-  pnl_n = NA, start_option = "None"
-)), begin = 1)
-
-# Construct a fixed panel design with sample size of 60
-F60 <- revisit_dsgn(20, panels = list(F60 = list(
-  n = 60, pnl_dsgn = c(1, 0),
-  pnl_n = NA, start_option = "None"
-)), begin = 1)
-
-# Power for rotating panel with sample size 60
-Power_tst <- power_dsgn("Variable_Name",
-  ind_values = 43, unit_var = 280,
-  period_var = 4, unitperiod_var = 40, index_var = 90,
-  unit_rho = 1, period_rho = 0, paneldsgn = list(
-    R60N = R60N, F60 = F60
-  ), nrepeats = NULL,
-  trend_type = "mean", trend = c(1.0, 2.0), alpha = 0.05
-)
-ppd_plot(Power_tst)
-ppd_plot(Power_tst, dsgns = c("F60", "R60N"))
-ppd_plot(Power_tst, dsgns = c("F60", "R60N"), trend = 1.0)
-ppd_plot(Power_tst,
-  plot_type = "relative", comp_type = "design",
-  trend_type = "mean", trend = c(1, 2), dsgns = c("R60N", "F60"),
-  indicator = "Variable_Name"
-)
-}
+    
if (FALSE) {
+# Construct a rotating panel design with sample size of 60
+R60N <- revisit_dsgn(20, panels = list(R60N = list(
+  n = 60, pnl_dsgn = c(1, NA),
+  pnl_n = NA, start_option = "None"
+)), begin = 1)
+
+# Construct a fixed panel design with sample size of 60
+F60 <- revisit_dsgn(20, panels = list(F60 = list(
+  n = 60, pnl_dsgn = c(1, 0),
+  pnl_n = NA, start_option = "None"
+)), begin = 1)
+
+# Power for rotating panel with sample size 60
+Power_tst <- power_dsgn("Variable_Name",
+  ind_values = 43, unit_var = 280,
+  period_var = 4, unitperiod_var = 40, index_var = 90,
+  unit_rho = 1, period_rho = 0, paneldsgn = list(
+    R60N = R60N, F60 = F60
+  ), nrepeats = NULL,
+  trend_type = "mean", trend = c(1.0, 2.0), alpha = 0.05
+)
+ppd_plot(Power_tst)
+ppd_plot(Power_tst, dsgns = c("F60", "R60N"))
+ppd_plot(Power_tst, dsgns = c("F60", "R60N"), trend = 1.0)
+ppd_plot(Power_tst,
+  plot_type = "relative", comp_type = "design",
+  trend_type = "mean", trend = c(1, 2), dsgns = c("R60N", "F60"),
+  indicator = "Variable_Name"
+)
+}
 
diff --git a/docs/reference/relrisk_analysis.html b/docs/reference/relrisk_analysis.html index f05a385..3584a52 100644 --- a/docs/reference/relrisk_analysis.html +++ b/docs/reference/relrisk_analysis.html @@ -23,7 +23,7 @@ spsurvey - 5.4.1 + 5.5.0
@@ -84,31 +84,31 @@

Relative risk analysis

-
relrisk_analysis(
-  dframe,
-  vars_response,
-  vars_stressor,
-  response_levels = NULL,
-  stressor_levels = NULL,
-  subpops = NULL,
-  siteID = NULL,
-  weight = "weight",
-  xcoord = NULL,
-  ycoord = NULL,
-  stratumID = NULL,
-  clusterID = NULL,
-  weight1 = NULL,
-  xcoord1 = NULL,
-  ycoord1 = NULL,
-  sizeweight = FALSE,
-  sweight = NULL,
-  sweight1 = NULL,
-  fpc = NULL,
-  popsize = NULL,
-  vartype = "Local",
-  conf = 95,
-  All_Sites = FALSE
-)
+
relrisk_analysis(
+  dframe,
+  vars_response,
+  vars_stressor,
+  response_levels = NULL,
+  stressor_levels = NULL,
+  subpops = NULL,
+  siteID = NULL,
+  weight = "weight",
+  xcoord = NULL,
+  ycoord = NULL,
+  stratumID = NULL,
+  clusterID = NULL,
+  weight1 = NULL,
+  xcoord1 = NULL,
+  ycoord1 = NULL,
+  sizeweight = FALSE,
+  sweight = NULL,
+  sweight1 = NULL,
+  fpc = NULL,
+  popsize = NULL,
+  vartype = "Local",
+  conf = 95,
+  All_Sites = FALSE
+)
@@ -147,7 +147,9 @@

Arguments

contains the values "Poor" and "Good" for the first and second levels, respectively, of each element in the vars_response argument and that uses values in the vars_response argument as names -for the list. The default value is NULL.

+for the list. If response_levels is provided without names, +then the names of response_levels are set to vars_response. +The default value is NULL.

stressor_levels
@@ -161,7 +163,9 @@

Arguments

contains the values "Poor" and "Good" for the first and second levels, respectively, of each element in the vars_stressor argument and that uses values in the vars_stressor argument as names -for the list. The default value is NULL.

+for the list. If stressor_levels is provided without names, +then the names of stressor_levels are set to vars_stressor. +The default value is NULL.

subpops
@@ -499,62 +503,62 @@

Author

Examples

-
dframe <- data.frame(
-  siteID = paste0("Site", 1:100),
-  wgt = runif(100, 10, 100),
-  xcoord = runif(100),
-  ycoord = runif(100),
-  stratum = rep(c("Stratum1", "Stratum2"), 50),
-  RespVar1 = sample(c("Poor", "Good"), 100, replace = TRUE),
-  RespVar2 = sample(c("Poor", "Good"), 100, replace = TRUE),
-  StressVar = sample(c("Poor", "Good"), 100, replace = TRUE),
-  All_Sites = rep("All Sites", 100),
-  Resource_Class = rep(c("Agr", "Forest"), c(55, 45))
-)
-myresponse <- c("RespVar1", "RespVar2")
-mystressor <- c("StressVar")
-mysubpops <- c("All_Sites", "Resource_Class")
-relrisk_analysis(dframe,
-  vars_response = myresponse,
-  vars_stressor = mystressor, subpops = mysubpops, siteID = "siteID",
-  weight = "wgt", xcoord = "xcoord", ycoord = "ycoord",
-  stratumID = "stratum"
-)
+    
dframe <- data.frame(
+  siteID = paste0("Site", 1:100),
+  wgt = runif(100, 10, 100),
+  xcoord = runif(100),
+  ycoord = runif(100),
+  stratum = rep(c("Stratum1", "Stratum2"), 50),
+  RespVar1 = sample(c("Poor", "Good"), 100, replace = TRUE),
+  RespVar2 = sample(c("Poor", "Good"), 100, replace = TRUE),
+  StressVar = sample(c("Poor", "Good"), 100, replace = TRUE),
+  All_Sites = rep("All Sites", 100),
+  Resource_Class = rep(c("Agr", "Forest"), c(55, 45))
+)
+myresponse <- c("RespVar1", "RespVar2")
+mystressor <- c("StressVar")
+mysubpops <- c("All_Sites", "Resource_Class")
+relrisk_analysis(dframe,
+  vars_response = myresponse,
+  vars_stressor = mystressor, subpops = mysubpops, siteID = "siteID",
+  weight = "wgt", xcoord = "xcoord", ycoord = "ycoord",
+  stratumID = "stratum"
+)
 #>             Type Subpopulation Response  Stressor nResp  Estimate Estimate_num
-#> 1      All_Sites     All Sites RespVar1 StressVar   100 1.0343622    0.4978175
-#> 2      All_Sites     All Sites RespVar2 StressVar   100 0.9579892    0.4873652
-#> 3 Resource_Class           Agr RespVar1 StressVar    55 0.6719372    0.3791104
-#> 4 Resource_Class        Forest RespVar1 StressVar    45 1.7657859    0.6670747
-#> 5 Resource_Class           Agr RespVar2 StressVar    55 1.1234606    0.4540808
-#> 6 Resource_Class        Forest RespVar2 StressVar    45 0.8366566    0.5348233
-#>   Estimate_denom StdError_log MarginofError_log  LCB95Pct UCB95Pct WeightTotal
-#> 1      0.4812797    0.1926776         0.3776412 0.7090309 1.508968    5341.368
-#> 2      0.5087377    0.1903992         0.3731756 0.6596180 1.391325    5341.368
-#> 3      0.5642051    0.2750361         0.5390608 0.3919381 1.151966    3052.033
-#> 4      0.3777778    0.3068663         0.6014469 0.9676827 3.222130    2289.335
-#> 5      0.4041804    0.2937975         0.5758326 0.6316506 1.998199    3052.033
-#> 6      0.6392388    0.2527632         0.4954068 0.5097941 1.373092    2289.335
+#> 1      All_Sites     All Sites RespVar1 StressVar   100 0.7052158    0.4270103
+#> 2      All_Sites     All Sites RespVar2 StressVar   100 0.7917668    0.4033665
+#> 3 Resource_Class           Agr RespVar1 StressVar    55 0.6514748    0.3697156
+#> 4 Resource_Class        Forest RespVar1 StressVar    45 0.7623695    0.4959350
+#> 5 Resource_Class           Agr RespVar2 StressVar    55 0.6760754    0.3183989
+#> 6 Resource_Class        Forest RespVar2 StressVar    45 0.9108577    0.5055812
+#>   Estimate_denom StdError_log MarginofError_log  LCB95Pct  UCB95Pct WeightTotal
+#> 1      0.6055031    0.1666798         0.3266864 0.5086791 0.9776877    5562.359
+#> 2      0.5094512    0.2053415         0.4024620 0.5294321 1.1840889    5562.359
+#> 3      0.5675056    0.2917605         0.5718401 0.3677482 1.1541031    3026.685
+#> 4      0.6505179    0.2201228         0.4314328 0.4952182 1.1736386    2535.673
+#> 5      0.4709518    0.3317126         0.6501447 0.3528912 1.2952374    3026.685
+#> 6      0.5550606    0.2651067         0.5195997 0.5417404 1.5314746    2535.673
 #>   Count_RespPoor_StressPoor Count_RespPoor_StressGood Count_RespGood_StressPoor
-#> 1                        25                        25                        24
-#> 2                        25                        28                        24
-#> 3                        12                        15                        15
-#> 4                        13                        10                         9
-#> 5                        13                        12                        14
-#> 6                        12                        16                        10
+#> 1                        23                        29                        27
+#> 2                        21                        25                        29
+#> 3                        10                        17                        15
+#> 4                        13                        12                        12
+#> 5                         9                        15                        16
+#> 6                        12                        10                        13
 #>   Count_RespGood_StressGood Prop_RespPoor_StressPoor Prop_RespPoor_StressGood
-#> 1                        26                0.2476353                0.2418710
-#> 2                        23                0.2424358                0.2556702
-#> 3                        13                0.1939902                0.2755022
-#> 4                        13                0.3191524                0.1970354
-#> 5                        16                0.2323524                0.1973619
-#> 6                         7                0.2558786                0.3334041
+#> 1                        21                0.2099824                0.3077469
+#> 2                        25                0.1983555                0.2589285
+#> 3                        13                0.1824536                0.2874433
+#> 4                         8                0.2428419                0.3319822
+#> 5                        15                0.1571289                0.2385385
+#> 6                        10                0.2475653                0.2832670
 #>   Prop_RespGood_StressPoor Prop_RespGood_StressGood
-#> 1                0.2498066                0.2606871
-#> 2                0.2550060                0.2468879
-#> 3                0.3177083                0.2127993
-#> 4                0.1592833                0.3245289
-#> 5                0.2793460                0.2909396
-#> 6                0.2225571                0.1881602
+#> 1                0.2817677                0.2005030
+#> 2                0.2933945                0.2493214
+#> 3                0.3110435                0.2190597
+#> 4                0.2468229                0.1783530
+#> 5                0.3363681                0.2679645
+#> 6                0.2420995                0.2270683
 
diff --git a/docs/reference/revisit_bibd.html b/docs/reference/revisit_bibd.html index 82cd7d1..bd44b99 100644 --- a/docs/reference/revisit_bibd.html +++ b/docs/reference/revisit_bibd.html @@ -22,7 +22,7 @@ spsurvey - 5.4.1 + 5.5.0
@@ -82,16 +82,16 @@

Create a balanced incomplete block panel revisit design

-
revisit_bibd(
-  n_period,
-  n_pnl,
-  n_visit,
-  nsamp,
-  panel_name = "BIB",
-  begin = 1,
-  skip = 1,
-  iter = 30
-)
+
revisit_bibd(
+  n_period,
+  n_pnl,
+  n_visit,
+  nsamp,
+  panel_name = "BIB",
+  begin = 1,
+  skip = 1,
+  iter = 30
+)
@@ -177,30 +177,30 @@

Author

Examples

-
# Balanced incomplete block design with 20 sample occasions, 20 panels,
-# 3 visits to each unit, and 20 units in each panel.
-revisit_bibd(n_period = 20, n_pnl = 20, n_visit = 3, nsamp = 20)
+    
# Balanced incomplete block design with 20 sample occasions, 20 panels,
+# 3 visits to each unit, and 20 units in each panel.
+revisit_bibd(n_period = 20, n_pnl = 20, n_visit = 3, nsamp = 20)
 #>         1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20
-#> BIB_01  0 20  0  0  0  0  0 20  0  0  0  0  0  0 20  0  0  0  0  0
-#> BIB_02  0  0 20  0  0  0  0  0  0  0 20  0  0  0  0  0 20  0  0  0
-#> BIB_03  0  0  0  0  0 20  0 20  0  0  0  0  0  0  0  0  0 20  0  0
-#> BIB_04  0  0  0  0 20  0  0  0 20  0  0  0  0  0  0 20  0  0  0  0
-#> BIB_05  0 20  0 20  0  0  0  0  0  0  0  0  0  0  0  0 20  0  0  0
-#> BIB_06 20  0  0  0  0  0 20  0  0  0  0  0 20  0  0  0  0  0  0  0
-#> BIB_07  0  0  0  0  0  0  0  0  0 20  0 20  0  0  0  0 20  0  0  0
-#> BIB_08  0 20  0  0 20  0 20  0  0  0  0  0  0  0  0  0  0  0  0  0
-#> BIB_09 20  0  0 20  0  0  0  0  0  0  0  0  0  0  0  0  0 20  0  0
-#> BIB_10  0  0  0  0  0  0  0 20  0  0 20  0 20  0  0  0  0  0  0  0
-#> BIB_11  0  0  0 20  0  0  0  0  0  0  0  0  0 20  0  0  0  0  0 20
-#> BIB_12  0  0  0  0  0 20  0  0  0  0  0  0  0  0  0  0  0  0 20 20
-#> BIB_13  0  0  0  0 20 20  0  0  0 20  0  0  0  0  0  0  0  0  0  0
-#> BIB_14  0  0  0  0  0  0  0  0  0 20  0  0 20 20  0  0  0  0  0  0
-#> BIB_15  0  0 20  0  0  0  0  0  0  0  0  0  0 20  0 20  0  0  0  0
-#> BIB_16  0  0  0  0  0  0  0  0  0  0  0 20  0  0  0 20  0 20  0  0
-#> BIB_17 20  0  0  0  0  0  0  0 20  0  0  0  0  0 20  0  0  0  0  0
-#> BIB_18  0  0 20  0  0  0 20  0  0  0  0  0  0  0  0  0  0  0 20  0
-#> BIB_19  0  0  0  0  0  0  0  0 20  0 20  0  0  0  0  0  0  0  0 20
-#> BIB_20  0  0  0  0  0  0  0  0  0  0  0 20  0  0 20  0  0  0 20  0
+#> BIB_01  0  0  0  0  0 20  0  0 20  0  0 20  0  0  0  0  0  0  0  0
+#> BIB_02 20  0  0  0  0  0 20 20  0  0  0  0  0  0  0  0  0  0  0  0
+#> BIB_03  0  0  0  0  0  0  0  0  0 20  0  0  0  0  0 20  0  0  0 20
+#> BIB_04  0  0  0  0  0  0  0 20  0  0  0  0 20  0  0 20  0  0  0  0
+#> BIB_05  0  0 20  0  0  0 20  0 20  0  0  0  0  0  0  0  0  0  0  0
+#> BIB_06  0  0  0 20  0 20  0  0  0  0  0  0  0  0  0  0  0 20  0  0
+#> BIB_07  0  0  0  0  0 20  0  0  0  0  0  0  0  0  0  0 20  0  0 20
+#> BIB_08  0  0  0  0  0  0  0  0  0  0 20  0 20  0  0  0 20  0  0  0
+#> BIB_09  0 20 20  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 20  0
+#> BIB_10  0  0  0  0  0  0  0  0  0  0 20  0  0 20 20  0  0  0  0  0
+#> BIB_11 20  0  0 20  0  0  0  0  0  0  0  0  0  0 20  0  0  0  0  0
+#> BIB_12 20  0  0  0  0  0  0  0  0 20  0 20  0  0  0  0  0  0  0  0
+#> BIB_13  0 20  0  0  0  0  0 20  0  0  0  0  0  0  0  0  0 20  0  0
+#> BIB_14  0  0  0  0 20  0 20  0  0  0  0  0  0  0  0  0 20  0  0  0
+#> BIB_15  0  0  0  0 20  0  0  0  0 20  0  0  0  0  0  0  0  0 20  0
+#> BIB_16  0  0 20  0  0  0  0  0  0  0  0  0  0  0 20  0  0  0  0 20
+#> BIB_17  0  0  0  0  0  0  0  0 20  0  0  0  0 20  0 20  0  0  0  0
+#> BIB_18  0 20  0  0  0  0  0  0  0  0 20 20  0  0  0  0  0  0  0  0
+#> BIB_19  0  0  0  0 20  0  0  0  0  0  0  0  0 20  0  0  0 20  0  0
+#> BIB_20  0  0  0 20  0  0  0  0  0  0  0  0 20  0  0  0  0  0 20  0
 #> attr(,"class")
 #> [1] "paneldesign"
 
diff --git a/docs/reference/revisit_dsgn.html b/docs/reference/revisit_dsgn.html index 5b5d131..cfddfcf 100644 --- a/docs/reference/revisit_dsgn.html +++ b/docs/reference/revisit_dsgn.html @@ -20,7 +20,7 @@ spsurvey - 5.4.1 + 5.5.0
@@ -78,7 +78,7 @@

Create a panel revisit design

-
revisit_dsgn(n_period, panels, begin = 1, skip = 1)
+
revisit_dsgn(n_period, panels, begin = 1, skip = 1)
@@ -226,26 +226,26 @@

Author

Examples

-
# One panel of  60 sample units sampled at every time period: [1-0]
-revisit_dsgn(20, panels = list(
-  Annual = list(
-    n = 60, pnl_dsgn = c(1, 0), pnl.n = NA,
-    start_option = "None"
-  )
-), begin = 1)
+    
# One panel of  60 sample units sampled at every time period: [1-0]
+revisit_dsgn(20, panels = list(
+  Annual = list(
+    n = 60, pnl_dsgn = c(1, 0), pnl.n = NA,
+    start_option = "None"
+  )
+), begin = 1)
 #>         1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20
 #> Annual 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60
 #> attr(,"class")
 #> [1] "paneldesign"
-
-# Rotating panels of 60 units sampled once and never again: [1-n].  Number
-# of panels equal n_period.
-revisit_dsgn(20,
-  panels = list(
-    R60N = list(n = 60, pnl_dsgn = c(1, NA), pnl_n = NA, start_option = "None")
-  ),
-  begin = 1
-)
+
+# Rotating panels of 60 units sampled once and never again: [1-n].  Number
+# of panels equal n_period.
+revisit_dsgn(20,
+  panels = list(
+    R60N = list(n = 60, pnl_dsgn = c(1, NA), pnl_n = NA, start_option = "None")
+  ),
+  begin = 1
+)
 #>          1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20
 #> R60N_01 60  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
 #> R60N_02  0 60  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
@@ -269,15 +269,15 @@ 

Examples

#> R60N_20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 60 #> attr(,"class") #> [1] "paneldesign" - -# Serially alternating panel with three visits to sample unit then skip -# next two time periods: [3-2] -revisit_dsgn(20, panels = list( - SA60PE = list( - n = 20, pnl_dsgn = c(3, 2), pnl_n = NA, - start_option = "Partial_End" - ) -), begin = 1) + +# Serially alternating panel with three visits to sample unit then skip +# next two time periods: [3-2] +revisit_dsgn(20, panels = list( + SA60PE = list( + n = 20, pnl_dsgn = c(3, 2), pnl_n = NA, + start_option = "Partial_End" + ) +), begin = 1) #> 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 #> SA60PE_1 20 20 20 0 0 20 20 20 0 0 20 20 20 0 0 20 20 20 0 0 #> SA60PE_2 0 20 20 20 0 0 20 20 20 0 0 20 20 20 0 0 20 20 20 0 @@ -286,15 +286,15 @@

Examples

#> SA60PE_5 20 20 0 0 20 20 20 0 0 20 20 20 0 0 20 20 20 0 0 20 #> attr(,"class") #> [1] "paneldesign" - -# Split panel of sample units combining above two panel designs: [1-0, 1-n] -revisit_dsgn(n_period = 20, begin = 2017, panels = list( - Annual = list( - n = 60, pnl_dsgn = c(1, 0), pnl.n = NA, - start_option = "None" - ), - R60N = list(n = 60, pnl_dsgn = c(1, NA), pnl_n = NA, start_option = "None") -)) + +# Split panel of sample units combining above two panel designs: [1-0, 1-n] +revisit_dsgn(n_period = 20, begin = 2017, panels = list( + Annual = list( + n = 60, pnl_dsgn = c(1, 0), pnl.n = NA, + start_option = "None" + ), + R60N = list(n = 60, pnl_dsgn = c(1, NA), pnl_n = NA, start_option = "None") +)) #> 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 #> R60N_01 60 0 0 0 0 0 0 0 0 0 0 0 0 0 #> R60N_02 0 60 0 0 0 0 0 0 0 0 0 0 0 0 diff --git a/docs/reference/revisit_rand.html b/docs/reference/revisit_rand.html index 66f5bbb..9c189ed 100644 --- a/docs/reference/revisit_rand.html +++ b/docs/reference/revisit_rand.html @@ -22,7 +22,7 @@ spsurvey - 5.4.1 + 5.5.0
@@ -82,16 +82,16 @@

Create a revisit design with random assignment to panels and time periods
-
revisit_rand(
-  n_period,
-  n_pnl,
-  rand_control = "period",
-  n_visit,
-  nsamp,
-  panel_name = "Random",
-  begin = 1,
-  skip = 1
-)
+
revisit_rand(
+  n_period,
+  n_pnl,
+  rand_control = "period",
+  n_visit,
+  nsamp,
+  panel_name = "Random",
+  begin = 1,
+  skip = 1
+)
@@ -176,55 +176,55 @@

Author

Examples

-
revisit_rand(
-  n_period = 20, n_pnl = 10, rand_control = "none", n_visit = 50,
-  nsamp = 20
-)
-#>           1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20
-#> Random_01 0  0  0  0  0  0  0  0  0  0  0  0 20  0  0  0 20 20  0 20
-#> Random_02 0  0  0  0 20  0  0  0  0 20  0 20  0  0  0  0 20 20 20 20
-#> Random_03 0 20  0  0  0  0  0 20  0 20  0 20  0  0  0  0  0  0 20  0
-#> Random_04 0  0  0 20 20  0 20 20 20 20  0 20  0  0  0  0  0 20 20  0
-#> Random_05 0  0  0  0  0  0  0 20  0  0 20  0  0  0  0 20 20  0  0  0
-#> Random_06 0  0 20  0  0  0  0 20  0  0 20 20  0  0  0  0 20  0  0 20
-#> Random_07 0  0 20  0  0 20  0 20  0  0  0  0 20 20  0  0 20  0  0  0
-#> Random_08 0  0  0 20  0  0 20  0  0  0  0  0  0 20  0  0  0  0  0 20
-#> Random_09 0  0  0  0  0  0  0  0  0  0  0  0 20  0  0  0  0  0  0 20
-#> Random_10 0  0  0  0  0  0  0 20 20  0  0  0  0  0  0  0  0  0 20  0
+    
revisit_rand(
+  n_period = 20, n_pnl = 10, rand_control = "none", n_visit = 50,
+  nsamp = 20
+)
+#>            1  2  3  4  5  6 7  8  9 10 11 12 13 14 15 16 17 18 19 20
+#> Random_01  0  0  0 20 20  0 0  0  0  0  0  0  0 20  0 20  0 20  0  0
+#> Random_02  0  0  0  0  0 20 0  0  0  0  0 20  0  0  0  0 20  0  0  0
+#> Random_03  0 20  0 20 20  0 0  0  0 20 20  0  0  0  0 20 20  0  0  0
+#> Random_04  0 20  0  0 20  0 0  0 20  0 20  0  0  0  0  0  0 20  0  0
+#> Random_05 20 20  0  0  0 20 0  0  0 20  0 20  0  0  0 20 20 20  0  0
+#> Random_06  0  0 20  0  0  0 0 20  0  0  0  0  0 20  0  0  0 20  0  0
+#> Random_07 20  0 20  0  0  0 0  0  0  0  0 20  0  0  0  0  0 20  0  0
+#> Random_08 20  0  0 20  0 20 0  0  0  0  0  0  0  0  0 20  0 20  0 20
+#> Random_09  0  0  0 20  0  0 0  0  0  0  0  0  0 20  0  0  0  0  0  0
+#> Random_10  0  0 20  0  0  0 0  0  0 20  0 20  0 20  0 20  0 20  0  0
 #> attr(,"class")
 #> [1] "paneldesign"
-revisit_rand(
-  n_period = 20, n_pnl = 10, rand_control = "panel", n_visit = 5,
-  nsamp = 10
-)
+revisit_rand(
+  n_period = 20, n_pnl = 10, rand_control = "panel", n_visit = 5,
+  nsamp = 10
+)
 #>            1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20
-#> Random_01  0  0  0  0  0  0  0  0  0  0  0 10 10 10 10 10  0  0  0  0
-#> Random_02 10 10  0  0  0  0  0 10  0  0  0  0  0  0  0  0 10  0 10  0
-#> Random_03  0  0  0  0  0 10 10  0  0  0  0 10 10 10  0  0  0  0  0  0
-#> Random_04  0  0  0  0 10  0  0  0  0 10  0  0 10 10  0  0 10  0  0  0
-#> Random_05  0 10  0  0  0  0  0 10 10  0  0 10  0  0  0  0  0 10  0  0
-#> Random_06  0  0  0  0 10 10  0  0  0 10  0  0  0  0 10 10  0  0  0  0
-#> Random_07 10  0 10  0  0  0  0  0  0  0  0 10 10  0  0  0  0  0 10  0
-#> Random_08  0  0 10 10  0  0  0 10 10  0  0  0  0  0  0  0  0  0 10  0
-#> Random_09  0  0 10  0 10 10  0  0  0 10  0  0  0  0  0  0  0  0 10  0
-#> Random_10  0  0  0  0  0  0  0 10  0  0  0 10  0 10  0 10  0  0 10  0
+#> Random_01 10  0 10  0  0  0 10  0 10  0  0 10  0  0  0  0  0  0  0  0
+#> Random_02  0  0  0  0  0  0  0 10  0 10  0  0 10 10 10  0  0  0  0  0
+#> Random_03  0 10 10  0  0 10  0  0  0  0  0  0  0  0 10  0  0  0  0 10
+#> Random_04  0 10  0  0  0 10  0 10 10  0  0 10  0  0  0  0  0  0  0  0
+#> Random_05 10 10  0  0  0  0  0  0  0  0  0  0 10 10  0  0  0  0  0 10
+#> Random_06  0 10  0 10  0  0  0 10  0  0 10 10  0  0  0  0  0  0  0  0
+#> Random_07  0  0 10 10  0 10  0  0  0  0 10 10  0  0  0  0  0  0  0  0
+#> Random_08  0  0  0  0 10 10 10 10  0  0  0  0  0  0  0  0  0  0 10  0
+#> Random_09  0 10  0  0 10  0 10  0 10  0  0  0  0 10  0  0  0  0  0  0
+#> Random_10  0  0  0  0  0  0  0 10  0 10  0  0  0 10  0  0  0  0 10 10
 #> attr(,"class")
 #> [1] "paneldesign"
-revisit_rand(
-  n_period = 20, n_pnl = 10, rand_control = "period",
-  n_visit = 5, nsamp = 10
-)
+revisit_rand(
+  n_period = 20, n_pnl = 10, rand_control = "period",
+  n_visit = 5, nsamp = 10
+)
 #>            1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20
-#> Random_01  0  0 10 10 10  0 10 10 10 10  0 10 10  0 10 10  0 10 10 10
-#> Random_02 10 10  0 10  0 10 10  0  0  0  0 10  0 10 10  0 10  0 10  0
-#> Random_03  0  0  0 10  0 10  0  0 10 10 10  0  0 10 10 10 10 10  0 10
-#> Random_04  0 10  0 10 10 10  0 10  0  0  0  0 10  0  0 10  0  0 10 10
-#> Random_05 10 10  0 10 10  0  0 10 10  0  0  0  0 10  0  0  0  0  0  0
-#> Random_06 10  0 10  0  0  0 10  0 10  0 10  0 10  0  0 10 10 10 10  0
-#> Random_07  0 10  0  0  0 10 10  0  0 10 10 10 10  0  0  0 10 10  0 10
-#> Random_08 10  0 10  0  0  0 10 10  0 10 10 10 10  0 10  0  0  0 10  0
-#> Random_09 10  0 10  0 10 10  0 10 10  0  0  0  0 10  0  0 10  0  0  0
-#> Random_10  0 10 10  0 10  0  0  0  0 10 10 10  0 10 10 10  0 10  0 10
+#> Random_01  0 10  0 10  0  0 10 10 10  0  0 10 10 10 10 10 10 10  0 10
+#> Random_02  0 10  0  0  0 10  0  0  0 10 10  0 10 10 10  0  0  0 10  0
+#> Random_03 10 10  0  0  0 10 10 10  0  0 10 10 10  0  0 10  0 10  0 10
+#> Random_04 10  0 10 10 10 10 10  0 10 10  0 10  0 10  0  0 10  0 10 10
+#> Random_05 10  0  0 10 10 10 10 10  0  0  0  0 10  0 10 10  0  0  0 10
+#> Random_06 10  0 10 10 10  0 10 10 10  0 10  0  0  0 10  0 10 10  0  0
+#> Random_07  0  0  0  0 10  0  0  0  0 10 10  0  0 10  0  0  0 10 10  0
+#> Random_08  0  0 10  0 10 10  0  0  0 10  0  0  0  0  0 10 10  0 10 10
+#> Random_09 10 10 10 10  0  0  0 10 10  0  0 10 10  0  0  0  0  0 10  0
+#> Random_10  0 10 10  0  0  0  0  0 10 10 10 10  0 10 10 10 10 10  0  0
 #> attr(,"class")
 #> [1] "paneldesign"
 
diff --git a/docs/reference/sp_balance.html b/docs/reference/sp_balance.html index 19cd5ef..2dba24a 100644 --- a/docs/reference/sp_balance.html +++ b/docs/reference/sp_balance.html @@ -19,7 +19,7 @@ spsurvey - 5.4.1 + 5.5.0
@@ -76,14 +76,14 @@

Calculate spatial balance metrics

-
sp_balance(
-  object,
-  sframe,
-  stratum_var = NULL,
-  ip = NULL,
-  metrics = "pielou",
-  extents = FALSE
-)
+
sp_balance(
+  object,
+  sframe,
+  stratum_var = NULL,
+  ip = NULL,
+  metrics = "pielou",
+  extents = FALSE
+)
@@ -167,13 +167,13 @@

Author

Examples

-
if (FALSE) {
-sample <- grts(NE_Lakes, 30)
-sp_balance(sample$sites_base, NE_Lakes)
-strata_n <- c(low = 25, high = 30)
-sample_strat <- grts(NE_Lakes, n_base = strata_n, stratum_var = "ELEV_CAT")
-sp_balance(sample_strat$sites_base, NE_Lakes, stratum_var = "ELEV_CAT", metric = "rmse")
-}
+    
if (FALSE) {
+sample <- grts(NE_Lakes, 30)
+sp_balance(sample$sites_base, NE_Lakes)
+strata_n <- c(low = 25, high = 30)
+sample_strat <- grts(NE_Lakes, n_base = strata_n, stratum_var = "ELEV_CAT")
+sp_balance(sample_strat$sites_base, NE_Lakes, stratum_var = "ELEV_CAT", metric = "rmse")
+}
 
diff --git a/docs/reference/sp_frame.html b/docs/reference/sp_frame.html index 84ddfea..9db45bd 100644 --- a/docs/reference/sp_frame.html +++ b/docs/reference/sp_frame.html @@ -18,7 +18,7 @@ spsurvey - 5.4.1 + 5.5.0
@@ -74,9 +74,9 @@

sp_frame objects

-
sp_frame(frame)
-
-sp_unframe(sp_frame)
+
sp_frame(frame)
+
+sp_unframe(sp_frame)
@@ -105,11 +105,11 @@

Details

Examples

-
NE_Lakes <- sp_frame(NE_Lakes)
-class(NE_Lakes)
+    
NE_Lakes <- sp_frame(NE_Lakes)
+class(NE_Lakes)
 #> [1] "sp_frame"   "sf"         "data.frame"
-NE_Lakes <- sp_unframe(NE_Lakes)
-class(NE_Lakes)
+NE_Lakes <- sp_unframe(NE_Lakes)
+class(NE_Lakes)
 #> [1] "sf"         "data.frame"
 
diff --git a/docs/reference/sp_plot.html b/docs/reference/sp_plot.html index 411a693..3b1ce31 100644 --- a/docs/reference/sp_plot.html +++ b/docs/reference/sp_plot.html @@ -25,7 +25,7 @@ spsurvey - 5.4.1 + 5.5.0
@@ -81,43 +81,43 @@

Plot sampling frames, design sites, and analysis data.

are of the distributions of the right-hand side variables. If the left-hand side of the variable contains a variable, plots are of the left-hand size variable for each level of each right-hand side variable. -This function is largely built on plot.sf(), and all spsurvey plotting -methods can supply additional arguments to plot.sf(). For more information on +This function is largely built on plot.sf(), and all spsurvey plotting +methods can supply additional arguments to plot.sf(). For more information on plotting in sf, run ?sf::plot.sf(). Equivalent to spsurvey::plot(); both are currently maintained for backwards compatibility.

-
sp_plot(object, ...)
-
-# S3 method for default
-sp_plot(
-  object,
-  formula = ~1,
-  xcoord,
-  ycoord,
-  crs,
-  var_args = NULL,
-  varlevel_args = NULL,
-  geom = FALSE,
-  onlyshow = NULL,
-  fix_bbox = TRUE,
-  ...
-)
-
-# S3 method for sp_design
-sp_plot(
-  object,
-  sframe = NULL,
-  formula = ~siteuse,
-  siteuse = NULL,
-  var_args = NULL,
-  varlevel_args = NULL,
-  geom = FALSE,
-  onlyshow = NULL,
-  fix_bbox = TRUE,
-  ...
-)
+
sp_plot(object, ...)
+
+# S3 method for default
+sp_plot(
+  object,
+  formula = ~1,
+  xcoord,
+  ycoord,
+  crs,
+  var_args = NULL,
+  varlevel_args = NULL,
+  geom = FALSE,
+  onlyshow = NULL,
+  fix_bbox = TRUE,
+  ...
+)
+
+# S3 method for sp_design
+sp_plot(
+  object,
+  sframe = NULL,
+  formula = ~siteuse,
+  siteuse = NULL,
+  var_args = NULL,
+  varlevel_args = NULL,
+  geom = FALSE,
+  onlyshow = NULL,
+  fix_bbox = TRUE,
+  ...
+)
@@ -129,7 +129,7 @@

Arguments

...
-

Additional arguments to pass to plot.sf().

+

Additional arguments to pass to plot.sf().

formula
@@ -225,14 +225,14 @@

Author

Examples

-
if (FALSE) {
-data("NE_Lakes")
-sp_plot(NE_Lakes, formula = ~ELEV_CAT)
-sample <- grts(NE_Lakes, 30)
-sp_plot(sample, NE_Lakes)
-data("NLA_PNW")
-sp_plot(NLA_PNW, formula = ~BMMI)
-}
+    
if (FALSE) {
+data("NE_Lakes")
+sp_plot(NE_Lakes, formula = ~ELEV_CAT)
+sample <- grts(NE_Lakes, 30)
+sp_plot(sample, NE_Lakes)
+data("NLA_PNW")
+sp_plot(NLA_PNW, formula = ~BMMI)
+}
 
diff --git a/docs/reference/sp_rbind.html b/docs/reference/sp_rbind.html index d0d9553..e5a2b21 100644 --- a/docs/reference/sp_rbind.html +++ b/docs/reference/sp_rbind.html @@ -21,7 +21,7 @@ spsurvey - 5.4.1 + 5.5.0
@@ -80,7 +80,7 @@

Combine rows from GRTS or IRS samples.

-
sp_rbind(object, siteuse = NULL)
+
sp_rbind(object, siteuse = NULL)
@@ -111,11 +111,11 @@

Author

Examples

-
if (FALSE) {
-sample <- grts(NE_Lakes, 50, n_over = 10)
-sample <- sp_rbind(sample)
-write_sf(sample, "mypath/sample.shp")
-}
+    
if (FALSE) {
+sample <- grts(NE_Lakes, 50, n_over = 10)
+sample <- sp_rbind(sample)
+write_sf(sample, "mypath/sample.shp")
+}
 
diff --git a/docs/reference/sp_summary.html b/docs/reference/sp_summary.html index d42bf90..6f4f2ca 100644 --- a/docs/reference/sp_summary.html +++ b/docs/reference/sp_summary.html @@ -23,7 +23,7 @@ spsurvey - 5.4.1 + 5.5.0
@@ -84,13 +84,13 @@

Summarize sampling frames, design sites, and analysis data.

-
sp_summary(object, ...)
-
-# S3 method for default
-sp_summary(object, formula = ~1, onlyshow = NULL, ...)
-
-# S3 method for sp_design
-sp_summary(object, formula = ~siteuse, siteuse = NULL, onlyshow = NULL, ...)
+
sp_summary(object, ...)
+
+# S3 method for default
+sp_summary(object, formula = ~1, onlyshow = NULL, ...)
+
+# S3 method for sp_design
+sp_summary(object, formula = ~siteuse, siteuse = NULL, onlyshow = NULL, ...)
@@ -156,13 +156,13 @@

Author

Examples

-
if (FALSE) {
-data("NE_Lakes")
-sp_summary(NE_Lakes, ELEV ~ 1)
-sp_summary(NE_Lakes, ~ ELEV_CAT * AREA_CAT)
-sample <- grts(NE_Lakes, 100)
-sp_summary(sample, ~ ELEV_CAT * AREA_CAT)
-}
+    
if (FALSE) {
+data("NE_Lakes")
+sp_summary(NE_Lakes, ELEV ~ 1)
+sp_summary(NE_Lakes, ~ ELEV_CAT * AREA_CAT)
+sample <- grts(NE_Lakes, 100)
+sp_summary(sample, ~ ELEV_CAT * AREA_CAT)
+}
 
diff --git a/docs/reference/spsurvey-package.html b/docs/reference/spsurvey-package.html index a03d4eb..70b8be5 100644 --- a/docs/reference/spsurvey-package.html +++ b/docs/reference/spsurvey-package.html @@ -37,7 +37,7 @@ spsurvey - 5.4.1 + 5.5.0
diff --git a/docs/reference/stopprnt.html b/docs/reference/stopprnt.html index e1a6946..48d8143 100644 --- a/docs/reference/stopprnt.html +++ b/docs/reference/stopprnt.html @@ -18,7 +18,7 @@ spsurvey - 5.4.1 + 5.5.0
@@ -74,7 +74,7 @@

Print grts() and irs() errors.

-
stopprnt(stop_df = get("stop_df", envir = .GlobalEnv), m = 1:nrow(stop_df))
+
stopprnt(stop_df = get("stop_df", envir = .GlobalEnv), m = 1:nrow(stop_df))
diff --git a/docs/reference/summary.html b/docs/reference/summary.html index 4acc172..6593700 100644 --- a/docs/reference/summary.html +++ b/docs/reference/summary.html @@ -23,7 +23,7 @@ spsurvey - 5.4.1 + 5.5.0
@@ -84,11 +84,11 @@

Summarize sampling frames, design sites, and analysis data.

-
# S3 method for sp_frame
-summary(object, formula = ~1, onlyshow = NULL, ...)
-
-# S3 method for sp_design
-summary(object, formula = ~siteuse, siteuse = NULL, onlyshow = NULL, ...)
+
# S3 method for sp_frame
+summary(object, formula = ~1, onlyshow = NULL, ...)
+
+# S3 method for sp_design
+summary(object, formula = ~siteuse, siteuse = NULL, onlyshow = NULL, ...)
@@ -155,13 +155,13 @@

Author

Examples

-
if (FALSE) {
-data("NE_Lakes")
-summary(NE_Lakes, ELEV ~ 1)
-summary(NE_Lakes, ~ ELEV_CAT * AREA_CAT)
-sample <- grts(NE_Lakes, 100)
-summary(sample, ~ ELEV_CAT * AREA_CAT)
-}
+    
if (FALSE) {
+data("NE_Lakes")
+summary(NE_Lakes, ELEV ~ 1)
+summary(NE_Lakes, ~ ELEV_CAT * AREA_CAT)
+sample <- grts(NE_Lakes, 100)
+summary(sample, ~ ELEV_CAT * AREA_CAT)
+}
 
diff --git a/docs/reference/trend_analysis.html b/docs/reference/trend_analysis.html index 58c29eb..0d1a2e6 100644 --- a/docs/reference/trend_analysis.html +++ b/docs/reference/trend_analysis.html @@ -29,7 +29,7 @@ spsurvey - 5.4.1 + 5.5.0
@@ -96,37 +96,37 @@

Trend analysis

-
trend_analysis(
-  dframe,
-  vars_cat = NULL,
-  vars_cont = NULL,
-  subpops = NULL,
-  model_cat = "SLR",
-  cat_rhs = NULL,
-  model_cont = "LMM",
-  cont_rhs = NULL,
-  siteID = "siteID",
-  yearID = "year",
-  weight = "weight",
-  xcoord = NULL,
-  ycoord = NULL,
-  stratumID = NULL,
-  clusterID = NULL,
-  weight1 = NULL,
-  xcoord1 = NULL,
-  ycoord1 = NULL,
-  sizeweight = FALSE,
-  sweight = NULL,
-  sweight1 = NULL,
-  fpc = NULL,
-  popsize = NULL,
-  invprboot = TRUE,
-  nboot = 1000,
-  vartype = "Local",
-  jointprob = "overton",
-  conf = 95,
-  All_Sites = FALSE
-)
+
trend_analysis(
+  dframe,
+  vars_cat = NULL,
+  vars_cont = NULL,
+  subpops = NULL,
+  model_cat = "SLR",
+  cat_rhs = NULL,
+  model_cont = "LMM",
+  cont_rhs = NULL,
+  siteID = "siteID",
+  yearID = "year",
+  weight = "weight",
+  xcoord = NULL,
+  ycoord = NULL,
+  stratumID = NULL,
+  clusterID = NULL,
+  weight1 = NULL,
+  xcoord1 = NULL,
+  ycoord1 = NULL,
+  sizeweight = FALSE,
+  sweight = NULL,
+  sweight1 = NULL,
+  fpc = NULL,
+  popsize = NULL,
+  invprboot = TRUE,
+  nboot = 1000,
+  vartype = "Local",
+  jointprob = "overton",
+  conf = 95,
+  All_Sites = FALSE
+)
@@ -637,94 +637,94 @@

Author

Examples

-
# Example using a categorical variable with three resource classes and a
-# continuous variable
-mydframe <- data.frame(
-  siteID = rep(paste0("Site", 1:40), rep(5, 40)),
-  yearID = rep(seq(2000, 2020, by = 5), 40),
-  wgt = rep(runif(40, 10, 100), rep(5, 40)),
-  xcoord = rep(runif(40), rep(5, 40)),
-  ycoord = rep(runif(40), rep(5, 40)),
-  All_Sites = rep("All Sites", 200),
-  Region = sample(c("North", "South"), 200, replace = TRUE),
-  Resource_Class = sample(c("Good", "Fair", "Poor"), 200, replace = TRUE),
-  ContVar = rnorm(200, 10, 1)
-)
-myvars_cat <- c("Resource_Class")
-myvars_cont <- c("ContVar")
-mysubpops <- c("All_Sites", "Region")
-trend_analysis(
-  dframe = mydframe,
-  vars_cat = myvars_cat,
-  vars_cont = myvars_cont,
-  subpops = mysubpops,
-  model_cat = "WLR",
-  model_cont = "SLR",
-  siteID = "siteID",
-  yearID = "yearID",
-  weight = "wgt",
-  xcoord = "xcoord",
-  ycoord = "ycoord"
-)
+    
# Example using a categorical variable with three resource classes and a
+# continuous variable
+mydframe <- data.frame(
+  siteID = rep(paste0("Site", 1:40), rep(5, 40)),
+  yearID = rep(seq(2000, 2020, by = 5), 40),
+  wgt = rep(runif(40, 10, 100), rep(5, 40)),
+  xcoord = rep(runif(40), rep(5, 40)),
+  ycoord = rep(runif(40), rep(5, 40)),
+  All_Sites = rep("All Sites", 200),
+  Region = sample(c("North", "South"), 200, replace = TRUE),
+  Resource_Class = sample(c("Good", "Fair", "Poor"), 200, replace = TRUE),
+  ContVar = rnorm(200, 10, 1)
+)
+myvars_cat <- c("Resource_Class")
+myvars_cont <- c("ContVar")
+mysubpops <- c("All_Sites", "Region")
+trend_analysis(
+  dframe = mydframe,
+  vars_cat = myvars_cat,
+  vars_cont = myvars_cont,
+  subpops = mysubpops,
+  model_cat = "WLR",
+  model_cont = "SLR",
+  siteID = "siteID",
+  yearID = "yearID",
+  weight = "wgt",
+  xcoord = "xcoord",
+  ycoord = "ycoord"
+)
 #> $catsum
 #>        Type Subpopulation      Indicator Category Trend_Estimate
-#> 1 All_Sites     All Sites Resource_Class     Fair      1.1727221
-#> 2 All_Sites     All Sites Resource_Class     Good     -0.5558858
-#> 3 All_Sites     All Sites Resource_Class     Poor     -0.6716191
-#> 4    Region         North Resource_Class     Fair      1.5434959
-#> 5    Region         North Resource_Class     Good     -0.7465316
-#> 6    Region         North Resource_Class     Poor     -0.4799649
-#> 7    Region         South Resource_Class     Fair      0.9671572
-#> 8    Region         South Resource_Class     Good     -0.2454305
-#> 9    Region         South Resource_Class     Poor     -0.9889771
+#> 1 All_Sites     All Sites Resource_Class     Fair     0.04523685
+#> 2 All_Sites     All Sites Resource_Class     Good    -0.40839357
+#> 3 All_Sites     All Sites Resource_Class     Poor     0.38870400
+#> 4    Region         North Resource_Class     Fair     0.61223475
+#> 5    Region         North Resource_Class     Good    -1.22616241
+#> 6    Region         North Resource_Class     Poor     0.66950061
+#> 7    Region         South Resource_Class     Fair    -1.41616234
+#> 8    Region         South Resource_Class     Good     0.68421557
+#> 9    Region         South Resource_Class     Poor    -0.10773624
 #>   Trend_Std_Error Trend_LCB95Pct Trend_UCB95Pct Trend_p_Value
-#> 1       0.6594097     -0.9258139      3.2712582    0.17338878
-#> 2       0.5133497     -2.1895937      1.0778220    0.35813863
-#> 3       0.3966571     -1.9339590      0.5907208    0.18899286
-#> 4       1.0513476     -1.8023613      4.8893530    0.23837914
-#> 5       0.7654575     -3.1825589      1.6894958    0.40135282
-#> 6       0.5353186     -2.1835877      1.2236579    0.43600464
-#> 7       0.3538078     -0.1588171      2.0931315    0.07172515
-#> 8       0.3104826     -1.2335248      0.7426638    0.48697219
-#> 9       0.3450930     -2.0872172      0.1092629    0.06426940
+#> 1       0.3660183     -1.1195967      1.2100704     0.9094540
+#> 2       0.3384541     -1.4855054      0.6687183     0.3140403
+#> 3       0.3990614     -0.8812874      1.6586954     0.4018741
+#> 4       0.6544452     -1.4705021      2.6949716     0.4185408
+#> 5       0.9024478     -4.0981542      1.6458293     0.2673743
+#> 6       0.3746057     -0.5226620      1.8616632     0.1718685
+#> 7       0.9588723     -4.4677220      1.6353973     0.2362015
+#> 8       0.4157430     -0.6388643      2.0072955     0.1983640
+#> 9       0.8545475     -2.8272879      2.6118154     0.9076481
 #>   Intercept_Estimate Intercept_Std_Error Intercept_LCB95Pct Intercept_UCB95Pct
-#> 1           25.21329            7.535505           1.231948           49.19463
-#> 2           40.51672            6.082999          21.157905           59.87554
-#> 3           32.76657            5.390329          15.612133           49.92100
-#> 4           17.25723           12.159497         -21.439711           55.95418
-#> 5           40.78678            9.883249           9.333868           72.23968
-#> 6           32.61545            7.446874           8.916170           56.31472
-#> 7           29.46509            3.737211          17.571611           41.35856
-#> 8           39.13325            3.265790          28.740050           49.52645
-#> 9           32.43999            4.555849          17.941247           46.93874
-#>   Intercept_p_Value R_Squared Adj_R_Squared
-#> 1       0.044192162 0.5132128    0.35095038
-#> 2       0.006898524 0.2810214    0.04136183
-#> 3       0.008938233 0.4886585    0.31821132
-#> 4       0.250889296 0.4180805    0.22410738
-#> 5       0.025802595 0.2407296   -0.01236059
-#> 6       0.022033324 0.2113328   -0.05155632
-#> 7       0.004252007 0.7135323    0.61804313
-#> 8       0.001250302 0.1723817   -0.10349103
-#> 9       0.005700706 0.7324526    0.64327017
+#> 1           34.17562            4.458670         19.9861447           48.36510
+#> 2           37.36444            4.169962         24.0937551           50.63512
+#> 3           27.66571            4.923735         11.9961868           43.33523
+#> 4           29.25989            7.928626          4.0274576           54.49231
+#> 5           50.01256           10.936958         15.2062788           84.81884
+#> 6           18.52645            4.481118          4.2655363           32.78737
+#> 7           43.46842           13.852895         -0.6176701           87.55452
+#> 8           21.01016            4.830891          5.6361042           36.38421
+#> 9           38.66653           10.060016          6.6510671           70.68199
+#>   Intercept_p_Value   R_Squared Adj_R_Squared
+#> 1       0.004612606 0.005065849   -0.32657887
+#> 2       0.002933281 0.326748926    0.10233190
+#> 3       0.011145479 0.240268774   -0.01297497
+#> 4       0.034506712 0.225839176   -0.03221443
+#> 5       0.019623920 0.380943639    0.17459152
+#> 6       0.025679670 0.515670797    0.35422773
+#> 7       0.051749281 0.420988626    0.22798484
+#> 8       0.022450110 0.474471974    0.29929597
+#> 9       0.031074264 0.005270296   -0.32630627
 #> 
 #> $contsum
 #>        Type Subpopulation Indicator Trend_Estimate Trend_Std_Error
-#> 1 All_Sites     All Sites   ContVar   -0.012484552     0.003006216
-#> 2    Region         North   ContVar    0.002436174     0.006329977
-#> 3    Region         South   ContVar   -0.030487781     0.013240318
+#> 1 All_Sites     All Sites   ContVar   -0.004842711      0.01030439
+#> 2    Region         North   ContVar   -0.013031361      0.02167446
+#> 3    Region         South   ContVar    0.015256704      0.01759278
 #>   Trend_LCB95Pct Trend_UCB95Pct Trend_p_Value Intercept_Estimate
-#> 1    -0.02205167   -0.002917431    0.02537758          10.041141
-#> 2    -0.01770864    0.022580986    0.72600223           9.849657
-#> 3    -0.07262438    0.011648819    0.10473389          10.253830
+#> 1    -0.03763588     0.02795046     0.6704321          10.118495
+#> 2    -0.08200918     0.05594645     0.5900801          10.279755
+#> 3    -0.04073137     0.07124478     0.4496260           9.849746
 #>   Intercept_Std_Error Intercept_LCB95Pct Intercept_UCB95Pct Intercept_p_Value
-#> 1          0.03681848           9.923969           10.15831      1.087171e-07
-#> 2          0.07752607           9.602934           10.09638      1.075112e-06
-#> 3          0.16216011           9.737764           10.76990      8.714724e-06
+#> 1           0.1262025           9.716862           10.52013      4.276453e-06
+#> 2           0.2654569           9.434953           11.12456      3.788461e-05
+#> 3           0.2154667           9.164035           10.53546      2.304561e-05
 #>    R_Squared Adj_R_Squared
-#> 1 0.85182757     0.8024368
-#> 2 0.04705017    -0.2705998
-#> 3 0.63864931     0.5181991
+#> 1 0.06857402   -0.24190130
+#> 2 0.10753566   -0.18995246
+#> 3 0.20043923   -0.06608102
 #> 
 
diff --git a/docs/reference/warnprnt.html b/docs/reference/warnprnt.html index 1e57725..dcca243 100644 --- a/docs/reference/warnprnt.html +++ b/docs/reference/warnprnt.html @@ -18,7 +18,7 @@ spsurvey - 5.4.1 + 5.5.0
@@ -74,7 +74,7 @@

Print grts(), irs()), and analysis function warnings

-
warnprnt(warn_df = get("warn_df", envir = .GlobalEnv), m = 1:nrow(warn_df))
+
warnprnt(warn_df = get("warn_df", envir = .GlobalEnv), m = 1:nrow(warn_df))
diff --git a/docs/sitemap.xml b/docs/sitemap.xml index a86f916..88d7dd0 100644 --- a/docs/sitemap.xml +++ b/docs/sitemap.xml @@ -33,6 +33,9 @@ /reference/adjwgt.html + + /reference/adjwgtNR.html + /reference/ash1_wgt.html