forked from USC-Fall-2024-Math-587/introduction-to-cryptography-classroom-3689a9-caesarian-ciphers-homework1
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwritten.tex
124 lines (113 loc) · 4.47 KB
/
written.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
\documentclass[12pt]{amsart}
\usepackage{amsmath}
\usepackage{amsthm}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage[margin=1in]{geometry}
\usepackage{hyperref}
\hypersetup{
colorlinks=true,
linkcolor=blue
}
\theoremstyle{definition}
\newtheorem{theorem}{Theorem}[section]
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{definition}[theorem]{Definition}
\newtheorem{corollary}[theorem]{Corollary}
\newtheorem{proposition}[theorem]{Proposition}
\newtheorem{conjecture}[theorem]{Conjecture}
\newtheorem{remark}[theorem]{Remark}
\newtheorem{example}[theorem]{Example}
\newtheorem{problem}[theorem]{Problem}
\newtheorem{notation}[theorem]{Notation}
\newtheorem{question}[theorem]{Question}
\newtheorem{caution}[theorem]{Caution}
\begin{document}
\title{Homework 1}
\maketitle
For this week, please answer the following questions from the text.
I've copied the problem itself below and the question numbers for
your convenience.
\begin{enumerate}
\item (1.2) Decrypt each of the following Caesar encryptions by trying the various
possible shifts until you obtain readable text.
\begin{itemize}
\item \texttt{LWKLQNWKDWLVKDOOQHYHUVHHDELOOERDUGORYHOBDVDWUHH}
\item \texttt{UXENRBWXCUXENFQRLQJUCNABFQNWRCJUCNAJCRXWORWMB}
\item \texttt{BGUTBMBGZTFHNLXMKTIPBMAVAXXLXTEPTRLEXTOXKHHFYHKMAXFHNLX}
\end{itemize}
\item (1.3) Use the simple substitution table below
\begin{center}
\begin{tabular}{|c |c |c |c |c |c |c |c |c |c |c |c |c |c |c |c |c |c |c |c |c |c |c |c| c| c|}
\hline
a & b & c & d & e & f & g & h & i & j & k & l & m & n & o &
p & q & r & s & t & u & v & w & x & y & z \\
\hline
S & C & J & A & X & U & F & B & Q & K & T & P & R & W & E &
Z & H & V & L & I & G & Y & D & N & M & O \\
\hline
\end{tabular}
\end{center}
\begin{enumerate}
\item Encrypt the plaintext message
\begin{center}
\texttt{The gold is hidden in the garden.}
\end{center}
\item Make a decryption table, that is, make a table in which the ciphertext
alphabet is in order from A to Z and the plaintext alphabet is mixed up.
\item Use your decryption table from (b) to decrypt the following message.
\begin{center}
\texttt{IBXLX JVXIZ SLLDE VAQLL DEVAU QLB}
\end{center}
\end{enumerate}
\item (1.4.c) Each of the following messages has been encrypted using a simple
substitution cipher. Decrypt them. For your convenience, we have given
you a frequency table and a list of the most common bigrams that appear
in the ciphertext. (If you do not want to recopy the ciphertexts by
hand, they can be downloaded or printed from the web site listed in the
preface.) In order to make this one a bit more challenging, we have
removed all occurrences of the word “the” from the plaintext.
“A Brilliant Detective”
\begin{center}
\ttfamily
GSZES GNUBE SZGUG SNKGX CSUUE QNZOQ EOVJN VXKNG XGAHS AWSZZ
BOVUE SIXCQ NQESX NGEUG AHZQA QHNSP CIPQA OIDLV JXGAK CGJCG
SASUB FVQAV CIAWN VWOVP SNSXV JGPCV NODIX GJQAE VOOXC SXXCG
OGOVA XGNVU BAVKX QZVQD LVJXQ EXCQO VKCQG AMVAX VWXCG OOBOX
VZCSO SPPSN VAXUB DVVAX QJQAJ VSUXC SXXCV OVJCS NSJXV NOJQA
MVBSZ VOOSH VSAWX QHGMV GWVSX CSXXC VBSNV ZVNVN SAWQZ ORVXJ
CVOQE JCGUW NVA
\end{center}
The ciphertext contains $313$ letters. Here is a frequency table:
\begin{center}
\ttfamily
\begin{tabular}{|c||c |c |c |c |c |c |c |c |c |c |c |c |c |c |c |c |c |c |c |c |c |c |c| c| c|}
\hline
& V & S & X & G & A & O & Q & C & N & J & U & Z & E & W
& B & P & I & H & K & D & M & L & R & F \\
\hline
Freq & 39 & 29 & 29 & 22 & 21 & 21 & 20 & 20 & 19 & 13
& 11 & 11 & 10 & 8 & 8 & 6 & 5 & 5 & 5 & 4 & 3 &
2 & 1 & 1 \\
\hline
\end{tabular}
\end{center}
The most frequent bigrams are: \texttt{XC} (10 times), \texttt{NV} (7
times), and \texttt{CS}, \texttt{OV}, \texttt{QA}, and \texttt{SX} (6
times each).
\item (1.5) Suppose that you have an alphabet of 26 letters.
\begin{enumerate}
\item How many possible simple substitution ciphers are there?
\item A letter in the alphabet is said to be fixed if the encryption of the letter is the
letter itself. How many simple substitution ciphers are there that leave:
\begin{enumerate}
\item No letters fixed?
\item At least one letter fixed?
\item Exactly one letter fixed?
\item At least two letters fixed?
\end{enumerate}
(Part (b) is quite challenging! You might try doing the problem first with an alphabet
of four or five letters to get an idea of what is going on.)
\end{enumerate}
\end{enumerate}
\end{document}