-
Notifications
You must be signed in to change notification settings - Fork 1
/
example.m
82 lines (69 loc) · 2.79 KB
/
example.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
% Main script
% Example to solve different multi-modal registration problems
% with the method proposed in [1], and the previous approaches in [2,3]
%
% Related work:
% [1] Briales, J., & Gonzalez-Jimenez, J. "Convex Global 3D Registration with Lagrangian Duality." In CVPR 2017
% [2] Olsson, C., & Eriksson, A. "Solving quadratically constrained geometrical problems using lagrangian duality." In ICPR 2008.
% [3] Olsson, C., Kahl, F., & Oskarsson, M. "Branch-and-Bound Methods for Euclidean Registration Problems." In TPAMI 2009.
clear all
% choose the problem to solve
problemType = 'random';
% problemType = 'SpaceStation';
% problemType = 'RubikCube';
% Problem generation
% -------------------------------------------------------------------------
switch problemType
case 'random'
% create random problem
% number of correspondences: [nr points, nr lines, nr planes]
problem.m = [2 4 7];
% noise in the correspondences
problem.noise = 0.1;
% size of the random scene
scene_radius = 10;
[correspondences,gt_T] = rand_registration( problem.m, problem.noise, scene_radius );
case 'SpaceStation'
% registration data from Space Station [2,3]
[c_p,c_l,c_pl] = correspondences_SpaceStation( );
correspondences = [c_p,c_l,c_pl];
case 'RubikCube'
% registration data from Rubik cube [2,3]
[c_p,c_l,c_pl] = correspondences_RubikCube( );
correspondences = [c_p,c_l,c_pl];
otherwise
error('Unknown problem type')
end
% Model the problem as a compressed quadratic form in R only
% -------------------------------------------------------------------------
% Compute equivalent compressed quadratic form
q = compress_quadData( correspondences );
sv = svd(q.Q_);
% Sanity check: Sum of costs and compressed quad form must be equivalent
% abs( q.eval(vec(gt_T)) - sum(cost(correspondences,gt_T)) )
% Marginalize the quadratic function wrt translation using Schur complement
t_idxs = 10:12;
[q_margin, A] = marginalize(q,t_idxs);
% Solve the problem with our method
% ------------------------------------------------------------------------
[R,t,dstar,times] = method_RCQP( correspondences, 'header_all' );
T = Pose(t,R);
f = q.eval(vec(T));
gap = (f-dstar)/dstar;
fprintf('Optimality gap is f^star-d^star=%E\n',gap);
% Solution from Olsson
% -------------------------------------------------------------------------
[R,t,d,times] = method_Olsson( correspondences );
T = Pose(t,R);
f = q.eval(vec(T));
gap2 = (f-d)/d;
fprintf('Optimality gap is f^star-d^star=%E\n',gap2);
% Solution with BnB
% -------------------------------------------------------------------------
tic
[R_BnB,t_BnB] = BnB_solve(correspondences,1e-10);
time_BnB = toc;
T_BnB = Pose(t_BnB,R_BnB);
f_BnB = q.eval(vec(T_BnB));
gap3 = (f_BnB-dstar)/dstar;
fprintf('Optimality gap is f^star-d^star=%E\n',gap3);