-
Notifications
You must be signed in to change notification settings - Fork 10
/
automatic_calibration_main.m
821 lines (735 loc) · 39.1 KB
/
automatic_calibration_main.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
%{
* Copyright (C) 2013-2020, The Regents of The University of Michigan.
* All rights reserved.
* This software was developed in the Biped Lab (https://www.biped.solutions/)
* under the direction of Jessy Grizzle, grizzle@umich.edu. This software may
* be available under alternative licensing terms; contact the address above.
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
* The views and conclusions contained in the software and documentation are those
* of the authors and should not be interpreted as representing official policies,
* either expressed or implied, of the Regents of The University of Michigan.
*
* AUTHOR: Bruce JK Huang (bjhuang[at]umich.edu)
* WEBSITE: https://www.brucerobot.com/
%}
clc, clear, close all
%%%%%%%%%%%%%%%%%%%%%
%%% camera parameters
%%%%%%%%%%%%%%%%%%%%%
intrinsic_matrix = [616.3681640625, 0.0, 319.93463134765625;
0.0, 616.7451171875, 243.6385955810547;
0.0, 0.0, 1.0];
opt.intrinsic_matrix = intrinsic_matrix;
distortion_param = [0.099769, -0.240277, 0.002463, 0.000497, 0.000000];
% Initial guess of LiDAR to camera transformation
opt.H_LC.rpy_init = [90 0 90];
% train data id from getBagData.m
trained_ids = [3 4 5]; %
skip_indices = []; %% skip non-standard
% validate the calibration result if one has validation dataset(s)
% (Yes:1; No: 0)
% Note: A validation dataset is the same as training set, i.e. it has to
% have calibration targets in the scene; However, a testing set does not
% need targets in the scene.
validation_flag = 1;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%% You usually do not need change setting below %%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% parameters of user setting
%%% optimizeAllCorners (0/1): optimize all lidar targets vertices for
% different datasets
% NOTE: this usually only needs to be done ONCE.
%%% skip (0/1/2):
% 0: optimize lidar target's corners
% and then calibrate
% 1: skip optimize lidar target's corners
% 2: just shown calibration results
%%% debug (0/1): print more stuff at the end to help debugging
%%% base_line_method (1/2):
% 1: ransac edges seperately and the intersect edges to
% estimate corners
% 2: apply geometry contrain to estimate the corners
% base_line.edge_method (1/2/3):
% 1: JWG's method
% 2: Manual pick edge points
% -- top-left, bottom-left, top-right, bottom-left
% 3: L1-cost to assign edge points
% base_line.more_tags (0/1): if use all tags in a scene for the baseline
%%% calibration_method:
% "4 points"
% "IoU"
%%% path.load_dir: directory of saved files
%%% load_all_vertices: pre-calculated vertices (pick the top-5 consistent)
%%% bag_file_path: bag files of images
%%% mat_file_path: mat files of extracted lidar target's point clouds
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
opts.optimizeAllCorners = 0;
opts.refineAllCorners = 0;
opts.use_top_consistent_vertices = 0;
opts.randperm_to_fine_vertices = 0;
skip = 0;
debug = 0;
opts.base_line.optimized_method = 1;
opts.base_line.edge_method = 3;
opts.base_line.more_tags = 1;
opts.base_line.show_results = 0;
opts.base_line.L1_cleanup = 0;
opts.base_line.num_scan = 5; % how many scans accumulated to optimize one LiDARTag pose (3)
opts.calibration_method = "4 points";
% opts.calibration_method = "IoU";
path.bag_file_path = 'all/';
path.event_name = '';
% save into results into folder
path.save_name = "IROS2020";
diary Debug % save terminal outputs
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% show figures
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
show_image_refinement = 0;
show_pnp_numerical_result = 0; % show numerical results
show_lidar_target = 0;
% show.lidar_target_optimization = 1;
show_camera_target = 0;
show_training_results = 0; % 1
show_validation_results = 0; %1
show_testing_results = 0; %1
show_baseline_results = 0;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% parameters for optimization of lidar targets
% num_refinement: how many rounds of refinement
% num_lidar_target_pose: how many lidar target poses to optimize H_LC
% num_scan: accumulate how many scans to optimize a lidar target's corners
% correspondance_per_pose (int): how many correspondance on a target
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
opts.num_refinement = 5 ; % 4 rounds of refinement
opts.num_lidar_target_pose = 1; % (5) how many LiDARTag poses to optimize H_LC (5) (2)
opts.num_scan = 5; % how many scans accumulated to optimize one LiDARTag pose (3)
opts.correspondance_per_pose = 4; % 4 correspondance on a target
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% We have tried several methods to recover the unobserable lidar target's
%%% corners, those will be added soon
% method:
% Constraint Customize: Using proposed method stated in the paper
% Customize: coming soon
% Coherent Point Drift: coming soon
% Iterative Closest Point (point): coming soon
% Iterative Closest Point (plane): coming soon
% Normal-distributions Transform: coming soon
% GICP-SE3: coming soon
% GICP-SE3 (plane): coming soon
% GICP-SE3-costimized: coming soon
% Two Hollow Strips: coming soon
% Project: coming soon
%%% optimization parameters
% H_TL: optimization for LiDAR target to ideal frame to get corners
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
opt.H_TL.rpy_init = [45 2 3];
opt.H_TL.T_init = [2, 0, 0];
opt.H_TL.H_init = eye(4);
opt.H_TL.method = "Constraint Customize";
opt.H_TL.UseCentroid = 1;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% training, validation and testing datasets
%%% random_select (0/1): randomly select training sets
%%% trained_ids: a list of ids of training sets
% training sets (targets included):
% -- used all of them to optimize a H_LC
% validation sets (targets included):
% -- used the optimized H_LC to validate the results
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
random_select = 0;
BagData = getSceneData(path.bag_file_path, '*.bag');
bag_with_tag_list = [BagData(:).bagfile];
bag_testing_list = [];
test_pc_mat_list = [];
opts.num_training = length(trained_ids);
opts.num_validation = length(bag_with_tag_list) - length(skip_indices) - opts.num_training;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% disp("Refining corners of camera targets ...")
% BagData = refineImageCorners(path.bag_file_path, BagData, skip_indices, show_image_refinement);
% create figure handles
training_img_fig_handles = createFigHandle(opts.num_training, "training_img");
training_pc_fig_handles = createFigHandle(opts.num_training, "training_pc");
validation_fig_handles = createFigHandle(opts.num_validation, "validation_img");
CoF_validation_fig_handles = createFigHandle(opts.num_validation + 1, "confidence_of_range (validation)"); % the +1 is for summary
CoF_training_fig_handles = createFigHandle(opts.num_training + 1, "confidence_of_range (training)"); % the +1 is for summary
validation_pc_fig_handles = createFigHandle(opts.num_validation, "validation_pc");
testing_fig_handles = createFigHandle(size(bag_testing_list, 2), "testing");
opts.base_line.img_hangles = createFigHandle(6, "base_line_vis"); %% don't change
if random_select
% get training indices
bag_training_indices = randi([1, length(bag_with_tag_list)], 1, opts.num_training);
% make sure they are not the same and not consists of undesire index
while length(unique(bag_training_indices)) ~= length(bag_training_indices) || ...
any(ismember(bag_training_indices, skip_indices))
bag_training_indices = randi([1, length(bag_with_tag_list)], 1, opts.num_training);
end
% get validation indices
bag_validation_indices = randi(length(bag_with_tag_list), 1, opts.num_validation);
% make sure they are not the same and not consists of undesire index
while length(unique(bag_validation_indices)) ~= length(bag_validation_indices) || ...`
any(ismember(bag_validation_indices, skip_indices)) || ...
any(ismember(bag_validation_indices, bag_training_indices))
bag_validation_indices = randi(length(bag_with_tag_list), 1, opts.num_validation);
end
else
% overwrite
bag_training_indices = trained_ids;
bag_validation_indices = linspace(1, length(bag_with_tag_list), length(bag_with_tag_list));
bag_validation_indices([trained_ids skip_indices]) = [];
end
bag_chosen_indices = [bag_training_indices, bag_validation_indices];
ans_error_big_matrix = [];
ans_counting_big_matrix = [];
if skip
load(path.load_dir + 'saved_chosen_indices.mat');
load(path.load_dir + 'saved_parameters.mat');
end
disp("********************************************")
disp(" Chosen dataset")
disp("********************************************")
disp("-- Skipped: ")
disp(bag_with_tag_list(skip_indices))
disp("-- Training set: ")
disp(bag_with_tag_list(bag_training_indices))
disp("-- Validation set: ")
disp([bag_with_tag_list(bag_validation_indices)])
disp("-- Chosen set: ")
disp(bag_with_tag_list(bag_chosen_indices))
disp("********************************************")
disp(" Chosen parameters")
disp("********************************************")
fprintf("-- validation flag: %i \n", validation_flag)
fprintf("-- number of training set: %i\n", size(bag_training_indices, 2))
fprintf("-- number of validation set: %i\n", size(bag_validation_indices, 2))
fprintf("-- number of refinement: %i\n", opts.num_refinement)
fprintf("-- number of LiDARTag's poses: %i\n", opts.num_lidar_target_pose)
fprintf("-- number of scan to optimize a LiDARTag pose: %i\n", opts.num_scan)
c = datestr(datetime);
path.save_dir = path.save_name + "/" + c + "/";
if ~skip
mkdir(path.save_dir);
save(path.save_dir + 'saved_parameters.mat', 'opts', 'validation_flag');
save(path.save_dir + 'saved_chosen_indices.mat', 'skip_indices', 'bag_training_indices', 'bag_validation_indices', 'bag_chosen_indices');
else
load(path.load_dir + "X_base_line.mat");
load(path.load_dir + "X_train.mat");
load(path.load_dir + "Y.mat")
load(path.load_dir + "save_validation.mat")
load(path.load_dir + "array.mat")
load(path.load_dir + "BagData.mat")
end
% loading training image
for k = 1:opts.num_training
current_index = bag_training_indices(k);
loadBagImg(training_img_fig_handles(k), [], BagData(current_index).scans(1).image, "not display", "not clean");
% if skip==1 || skip == 2
% for j = 1:BagData(current_index).num_tag
% for i = 1:size(BagData(current_index).lidar_target(j).scan(:))
% showLinedLiDARTag(training_pc_fig_handles(k), ...
% BagData(current_index).bagfile, ...
% BagData(current_index).lidar_target(j).scan(i), show_lidar_target);
% showLinedAprilTag(training_img_fig_handles(k), ...
% BagData(current_index).camera_target(j), show_camera_target);
% end
% end
% end
end
if validation_flag
for k = 1:opts.num_validation
current_index = bag_validation_indices(k);
loadBagImg(validation_fig_handles(k), [], BagData(current_index).scans(1).image, "no display", "not clean");
% if skip==1 || skip == 2
% for j = 1:BagData(current_index).num_tag
% for i = 1:size(BagData(current_index).lidar_target(j).scan(:))
% showLinedLiDARTag(validation_pc_fig_handles(k), ...
% BagData(current_index).bagfile, ...
% BagData(current_index).lidar_target(j).scan(i), show_lidar_target);
% showLinedAprilTag(validation_fig_handles(k), ...
% BagData(current_index).camera_target(j), show_camera_target);
% end
% end
% end
end
end
disp("All data loaded!")
%%
if skip == 0
disp("********************************************")
disp(" Optimizing LiDAR Target Corners")
disp("********************************************")
X_train = []; % training corners of lidar targets in 3D
Y_train = []; % training corners of image targets in 2D
train_num_tag_array = []; % number of tag in each training data (need to be used later)
train_tag_size_array = []; % size of tag in each training data (need to be used later)
H_LT_big = [];
X_base_line_edge_points = [];
X_base_line = [];
Y_base_line = [];
X_validation = []; % validation corners of lidar targets in 3D
Y_validation = []; % validation corners of image targets in 2D
X_base_line_edge_points_validation = [];
X_base_line_validation = [];
Y_base_line_validation = [];
for k = 1:length(bag_chosen_indices)
current_index = bag_chosen_indices(k);
fprintf("Working on %s -->\n", bag_with_tag_list(current_index))
BagData(current_index) = get4CornersFromAllScans(opt, opts, BagData(current_index));
% skip undesire index
if any(ismember(current_index, skip_indices))
continue
end
% if don't want to get validation set, skip
% everything else but the traing set
if ~validation_flag
if ~any(ismember(bag_training_indices, current_index))
continue;
end
end
if any(ismember(bag_training_indices, current_index))
%% training set
% 4 x M*i, M is correspondance per scan, i is scan
X_train = [X_train, BagData(current_index).array.L1_inspired.training_x];
% 3 x M*i, M is correspondance per image, i is image
Y_train = [Y_train, BagData(current_index).array.L1_inspired.training_y];
H_LT_big = [H_LT_big, BagData(current_index).array.L1_inspired.target_H_LT];
train_tag_size_array = [train_tag_size_array, BagData(current_index).array.L1_inspired.tag_size];
train_num_tag_array = [train_num_tag_array, BagData(current_index).array.L1_inspired.num_tag];
fprintf("--- Got training set: %s\n\n", bag_with_tag_list(current_index))
if isfield(BagData(current_index).array, 'ransac_normal')
X_base_line = [X_base_line, BagData(current_index).array.ransac_normal.training_x];
Y_base_line = [Y_base_line, BagData(current_index).array.ransac_normal.training_y];
X_base_line_edge_points = [X_base_line_edge_points, BagData(current_index).array.ransac_normal.edges];
end
else
%% validation set
% 4 x M*i, M is correspondance per scan, i is scan
X_validation = [X_validation, BagData(current_index).array.L1_inspired.training_x];
% 3 x M*i, M is correspondance per image, i is image
Y_validation = [Y_validation, BagData(current_index).array.L1_inspired.training_y];
if isfield(BagData(current_index).array, 'ransac_normal')
X_base_line_validation = [X_base_line_validation, BagData(current_index).array.ransac_normal.training_x];
Y_base_line_validation = [Y_base_line_validation, BagData(current_index).array.ransac_normal.training_y];
X_base_line_edge_points_validation = [X_base_line_edge_points_validation, BagData(current_index).array.ransac_normal.edges];
end
fprintf("--- Got validation set: %s\n\n", bag_with_tag_list(current_index))
end
end
drawnow
save(path.save_dir + 'X_base_line.mat', 'X_base_line');
save(path.save_dir + 'X_train.mat', 'X_train', 'H_LT_big', 'X_base_line_edge_points');
save(path.save_dir + 'array.mat', 'train_num_tag_array', 'train_tag_size_array');
save(path.save_dir + 'Y.mat', 'Y_train', 'Y_base_line');
save(path.save_dir + 'BagData.mat', 'BagData');
save(path.save_dir + 'save_validation.mat', 'X_validation', 'Y_validation', 'X_base_line_validation', ...
'Y_base_line_validation', 'X_base_line_edge_points_validation');
end
disp("Vertices optimized!")
%%
if ~(skip == 2)
X_square_no_refinement = X_train;
X_not_square_refinement = X_base_line;
disp("********************************************")
disp(" Calibrating...")
disp("********************************************")
switch opts.calibration_method
case "4 points"
%%% one shot calibration (*-NR)
% square withOUT refinement
disp('---------------------')
disp('SNR ...')
disp('---------------------')
% [SNR_H_LC, SNR_P, SNR_opt_total_cost] = optimize4Points(opt.H_LC.rpy_init,...
% X_square_no_refinement, Y_train, ...
% intrinsic_matrix, display);
[SNR_H_LC, SNR_P, SNR_opt_total_cost, SNR_final, SNR_All] = optimize4Points(opt.H_LC.rpy_init,...
X_square_no_refinement, Y_train, ...
intrinsic_matrix, show_pnp_numerical_result);
calibration(1).H_SNR = SNR_H_LC;
calibration(1).P_SNR = SNR_P;
calibration(1).RMSE.SNR = SNR_opt_total_cost;
calibration(1).All.SNR = SNR_All;
% NOT square withOUT refinement
if ~isempty(X_base_line)
disp('---------------------')
disp('NSNR ...')
disp('---------------------')
[NSNR_H_LC, NSNR_P, NSNR_opt_total_cost, NSNR_final, NSNR_All] = optimize4Points(opt.H_LC.rpy_init, ...
X_base_line, Y_base_line, ...
intrinsic_matrix, show_pnp_numerical_result);
else
[NSNR_H_LC, NSNR_P, NSNR_opt_total_cost, NSNR_final, NSNR_All] = deal(zeros(4,4), zeros(3,4), 0, 0, 0);
end
calibration(1).H_NSNR = NSNR_H_LC;
calibration(1).P_NSNR = NSNR_P;
calibration(1).RMSE_NSNR = NSNR_opt_total_cost;
calibration(1).All.NSNR = NSNR_All;
for scene = 0: opts.num_refinement-1
disp('---------------------')
disp(' Optimizing H_LC ...')
disp('---------------------')
disp('---------------------')
disp('--- SR_H_LC ...')
disp('---------------------')
% square with refinement
[SR_H_LC, SR_P, SR_opt_total_cost, SR_final, SR_All] = optimize4Points(opt.H_LC.rpy_init, ...
X_train, Y_train, ...
intrinsic_matrix, show_pnp_numerical_result);
calibration(1).H_SR = SR_H_LC;
calibration(1).P_SR = SR_P;
calibration(1).RMSE_SR = SR_opt_total_cost;
calibration(1).All.SR = SR_All;
% NOT square with refinement
if ~isempty(X_not_square_refinement)
[NSR_H_LC, NSR_P, NSR_opt_total_cost, NSR_final, NSR_All] = optimize4Points(opt.H_LC.rpy_init, ...
X_not_square_refinement, Y_base_line, ...
intrinsic_matrix, show_pnp_numerical_result);
else
[NSR_H_LC, NSR_P, NSR_opt_total_cost, NSR_final, NSR_All] = deal(zeros(4,4), zeros(3,4), 0, 0, 0);
end
calibration(1).H_NSR = NSR_H_LC;
calibration(1).P_NSR = NSR_P;
calibration(1).RMSE_NSR = NSR_opt_total_cost;
calibration(1).All.NSR = NSR_All;
if scene == opts.num_refinement-1
break;
else
disp('------------------')
disp(' Refining SR_H_LC ...')
disp('------------------')
X_train = regulizedFineTuneLiDARTagPose(train_tag_size_array, ...
X_train, Y_train, H_LT_big, SR_P, ...
opts.correspondance_per_pose, show_pnp_numerical_result);
if ~isempty(X_not_square_refinement)
X_not_square_refinement = regulizedFineTuneKaessCorners(X_not_square_refinement, Y_base_line,...
X_base_line_edge_points, NSR_P, ...
opts.correspondance_per_pose, show_pnp_numerical_result);
end
end
end
case "IoU"
% one shot calibration (*-NR)
[SNR_H_LC, SNR_P, SNR_opt_total_cost, ~, SNR_All] = optimizeIoU(opt.H_LC.rpy_init, ...
X_square_no_refinement, Y_train, ...
intrinsic_matrix, show_pnp_numerical_result); % square withOUT refinement
calibration(1).H_SNR = SNR_H_LC;
calibration(1).P_SNR = SNR_P;
calibration(1).RMSE.SNR = SNR_opt_total_cost;
calibration(1).All.SNR = SNR_All;
if ~isempty(X_base_line)
[NSNR_H_LC, NSNR_P, NSNR_opt_total_cost, ~, NSNR_All] = optimizeIoU(opt.H_LC.rpy_init, ...
X_base_line, Y_base_line, ...
intrinsic_matrix, show_pnp_numerical_result); % NOT square withOUT refinement
else
[NSNR_H_LC, NSNR_P, NSNR_opt_total_cost, ~, NSNR_All] = deal(zeros(4,4), zeros(3,4), 0, 0, 0);
end
calibration(1).H_NSNR = NSNR_H_LC;
calibration(1).P_NSNR = NSNR_P;
calibration(1).RMSE_NSNR = NSNR_opt_total_cost;
calibration(1).All.NSNR = NSNR_All;
for scene = 1: opts.num_refinement
disp('---------------------')
disp(' Optimizing H_LC ...')
disp('---------------------')
[SR_H_LC, SR_P, SR_opt_total_cost, ~, SR_All] = optimizeIoU(opt.H_LC.rpy_init, ...
X_train, Y_train, ...
intrinsic_matrix, show_pnp_numerical_result); % square with refinement
calibration(1).H_SR = SR_H_LC;
calibration(1).P_SR = SR_P;
calibration(1).RMSE_SR = SR_opt_total_cost;
calibration(1).All.SR = SR_All;
if ~isempty(X_not_square_refinement)
[NSR_H_LC, NSR_P, NSR_opt_total_cost, ~, NSR_All] = optimizeIoU(opt.H_LC.rpy_init, ...
X_not_square_refinement, Y_base_line, ...
intrinsic_matrix, show_pnp_numerical_result); % NOT square with refinement
else
[NSR_H_LC, NSR_P, NSR_opt_total_cost, ~, NSR_All] = deal(zeros(4,4), zeros(3,4), 0, 0, 0);
end
calibration(1).H_NSR = NSR_H_LC;
calibration(1).P_NSR = NSR_P;
calibration(1).RMSE_NSR = NSR_opt_total_cost;
calibration(1).All.NSR = NSR_All;
if scene == opts.num_refinement
break;
else
disp('------------------')
disp(' Refining H_LT ...')
disp('------------------')
X_train = regulizedFineTuneLiDARTagPose(train_tag_size_array, ...
X_train, Y_train, H_LT_big, SR_P, ...
opts.correspondance_per_pose, show_pnp_numerical_result);
if ~isempty(X_not_square_refinement)
X_not_square_refinement = regulizedFineTuneKaessCorners(X_not_square_refinement, ...
Y_base_line, X_base_line_edge_points, NSR_P, ...
opts.correspondance_per_pose, show_pnp_numerical_result);
end
end
end
end
if skip == 0
save(path.save_dir + 'calibration.mat', 'calibration');
save(path.save_dir + 'save_validation.mat', 'X_validation', 'Y_validation');
save(path.save_dir + 'NSNR.mat', 'NSNR_H_LC', 'NSNR_P', 'NSNR_opt_total_cost');
save(path.save_dir + 'SNR.mat', 'SNR_H_LC', 'SNR_P', 'SNR_opt_total_cost');
save(path.save_dir + 'NSR.mat', 'NSR_H_LC', 'NSR_P', 'NSR_opt_total_cost');
save(path.save_dir + 'SR.mat', 'SR_H_LC', 'SR_P', 'SR_opt_total_cost');
elseif skip == 1
save(path.load_dir + 'calibration.mat', 'calibration');
save(path.load_dir + 'save_validation.mat', 'X_validation', 'Y_validation');
save(path.load_dir + 'NSNR.mat', 'NSNR_H_LC', 'NSNR_P', 'NSNR_opt_total_cost');
save(path.load_dir + 'SNR.mat', 'SNR_H_LC', 'SNR_P', 'SNR_opt_total_cost');
save(path.load_dir + 'NSR.mat', 'NSR_H_LC', 'NSR_P', 'NSR_opt_total_cost');
save(path.load_dir + 'SR.mat', 'SR_H_LC', 'SR_P', 'SR_opt_total_cost');
end
else
% load saved data
load(path.load_dir + 'calibration.mat');
load(path.load_dir + "NSNR.mat");
load(path.load_dir + "SNR.mat");
load(path.load_dir + "NSR.mat");
load(path.load_dir + "SR.mat");
load(path.load_dir + "save_validation.mat")
end
disp("Done calibrating!")
%%
disp("****************** NSNR-training ******************")
disp('NSNR_H_LC: ')
disp(' R:')
disp(NSNR_H_LC(1:3, 1:3))
disp(' RPY (XYZ):')
disp(rad2deg(rotm2eul(NSNR_H_LC(1:3, 1:3), "XYZ")))
disp(' T:')
disp(-inv(NSNR_H_LC(1:3, 1:3))*NSNR_H_LC(1:3, 4))
disp("========= Error =========")
disp(' Training Total Error (pixel)')
disp(sqrt(NSNR_opt_total_cost))
disp(' Training Error Per Corner (pixel)')
disp(sqrt(NSNR_opt_total_cost/size(Y_base_line, 2)))
calibration(1).error_struc.training_results.id = [bag_training_indices(:)]';
calibration(1).error_struc.training_results.name = [BagData(bag_training_indices(:)).bagfile];
calibration(1).error_struc.training_results.NSNR_RMSE = [sqrt(NSNR_opt_total_cost/size(Y_base_line, 2))];
disp("****************** NSR-training ******************")
disp('NSR_H_LC: ')
disp(' R:')
disp(NSR_H_LC(1:3, 1:3))
disp(' RPY (XYZ):')
disp(rad2deg(rotm2eul(NSR_H_LC(1:3, 1:3), "XYZ")))
disp(' T:')
disp(-inv(NSR_H_LC(1:3, 1:3))*NSR_H_LC(1:3, 4))
disp("========= Error =========")
disp(' Training Total Error (pixel)')
disp(sqrt(NSR_opt_total_cost))
disp(' Training Error Per Corner (pixel)')
disp(sqrt(NSR_opt_total_cost/size(Y_base_line, 2)))
calibration(1).error_struc.training_results.NSR_RMSE = [sqrt(NSR_opt_total_cost/size(Y_base_line, 2))];
disp("****************** SNR-training ******************")
disp('SNR_H_LC: ')
disp(' R:')
disp(SNR_H_LC(1:3, 1:3))
disp(' RPY (XYZ):')
disp(rad2deg(rotm2eul(SNR_H_LC(1:3, 1:3), "XYZ")))
disp(' T:')
disp(-inv(SNR_H_LC(1:3, 1:3))*SNR_H_LC(1:3, 4))
disp("========= Error =========")
disp(' Training Total Error (pixel)')
disp(sqrt(SNR_opt_total_cost))
disp(' Training Error Per Corner (pixel)')
disp(sqrt(SNR_opt_total_cost/size(Y_train, 2)))
calibration(1).error_struc.training_results.SNR_RMSE = [sqrt(SNR_opt_total_cost/size(Y_train, 2))];
disp("****************** SR-training ******************")
disp('H_LC: ')
disp(' R:')
disp(SR_H_LC(1:3, 1:3))
disp(' RPY (XYZ):')
disp(rad2deg(rotm2eul(SR_H_LC(1:3, 1:3), "XYZ")))
disp(' T:')
disp(-inv(SR_H_LC(1:3, 1:3))*SR_H_LC(1:3, 4))
disp("========= Error =========")
disp(' Training Total Error (pixel)')
disp(sqrt(SR_opt_total_cost))
disp(' Training Error Per Corner (pixel)')
disp(sqrt(SR_opt_total_cost/size(Y_train, 2)))
calibration(1).error_struc.training_results.SR_RMSE = [sqrt(SR_opt_total_cost/size(Y_train, 2))];
% with refinement and without refinement (inandout comparision and RMSE)
%%%%% training
%%%% 1) L1-inspired
%%% inandout
[t_SNR_count, t_SR_count] = inAndOutBeforeAndAfter_v02(bag_training_indices, BagData, SNR_P, SR_P, 'L1_inspired');
%%% RMSE
SR_training_cost = verifyCornerAccuracyWRTDataset_v02(bag_training_indices, BagData, SR_P, 'L1_inspired', 'refinement');
SNR_training_cost = verifyCornerAccuracyWRTDataset_v02(bag_training_indices, BagData, SNR_P, 'L1_inspired', 'no_refinement');
%%%% 2) baseline
if ~isempty(X_not_square_refinement) || ~isempty(X_base_line)
%%% InandOut
[t_NSNR_count, t_NSR_count] = inAndOutBeforeAndAfter_v02(bag_training_indices, BagData, NSNR_P, NSR_P, 'ransac_normal');
%%% RMSE
zeroCells = num2cell(zeros(opts.num_training, 1));
NSR_training_cost = struct('RMSE', zeroCells);
% NSR_training_cost = verifyCornerAccuracyWRTDataset_v02(bag_training_indices, BagData, NSR_P, 'ransac_normal', 'refinement');
NSNR_training_cost = verifyCornerAccuracyWRTDataset_v02(bag_training_indices, BagData, NSNR_P, 'ransac_normal', 'no_refinement');
else
[t_NSNR_count, t_NSR_count] = deal(-1);
zeroCells = num2cell(zeros(opts.num_training,1));
NSR_training_cost = struct('RMSE', zeroCells);
NSNR_training_cost = struct('RMSE', zeroCells);
end
% validation
% L1-inspired
%%% verify corner accuracy
if validation_flag
% inandout
[SNR_count, SR_count] = inAndOutBeforeAndAfter_v02(bag_validation_indices, BagData, SNR_P, SR_P, 'L1_inspired');
% RMSE
SR_validation_cost = verifyCornerAccuracyWRTDataset_v02(bag_validation_indices, BagData, SR_P, 'L1_inspired', 'refinement');
SNR_validation_cost = verifyCornerAccuracyWRTDataset_v02(bag_validation_indices, BagData, SNR_P, 'L1_inspired', 'no_refinement');
if ~isempty(X_not_square_refinement) || ~isempty(X_base_line)
[NSNR_count, NSR_count] = inAndOutBeforeAndAfter_v02(bag_validation_indices, BagData, NSNR_P, NSR_P, 'ransac_normal');
zeroCells = num2cell(zeros(opts.num_validation, 1));
NSR_validation_cost = struct('RMSE', zeroCells);
% NSR_validation_cost = verifyCornerAccuracyWRTDataset_v02(bag_validation_indices, BagData, NSR_P, 'ransac_normal', 'refinement');
NSNR_validation_cost = verifyCornerAccuracyWRTDataset_v02(bag_validation_indices, BagData, NSNR_P, 'ransac_normal', 'no_refinement');
else
% mat2cell(zeros(3,1), ones(1,3), [1])
zeroCells = num2cell(zeros(opts.num_validation, 1));
NSR_validation_cost = struct('RMSE', zeroCells);
NSNR_validation_cost = struct('RMSE', zeroCells);
[NSNR_count, NSR_count] = deal(-1);
end
for scene = 1:opts.num_validation
calibration(1).error_struc.validation(scene).id = bag_validation_indices(scene);
calibration(1).error_struc.validation(scene).name = extractBetween(BagData(bag_validation_indices(scene)).bagfile,"",".bag");
calibration(1).error_struc.validation(scene).NSNR_RMSE = [NSNR_validation_cost(scene).RMSE];
calibration(1).error_struc.validation(scene).NSR_RMSE = [NSR_validation_cost(scene).RMSE];
calibration(1).error_struc.validation(scene).SNR_RMSE = [SNR_validation_cost(scene).RMSE];
calibration(1).error_struc.validation(scene).SR_RMSE = [SR_validation_cost(scene).RMSE];
end
end
calibration(1).count.training.SNR = t_SNR_count;
calibration(1).count.training.SR = t_SR_count;
calibration(1).count.training.NSR = t_NSR_count;
calibration(1).count.training.NSNR = t_NSNR_count;
calibration(1).count.validation.SNR = SNR_count;
calibration(1).count.validation.SR = SR_count;
calibration(1).count.validation.NSR = NSR_count;
calibration(1).count.validation.NSNR = NSNR_count;
for scene = 1:opts.num_training
disp('------')
current_index = bag_training_indices(scene);
fprintf("---dataset: %s\n", bag_with_tag_list(current_index))
calibration(1).error_struc.training(scene).id = bag_training_indices(scene);
calibration(1).error_struc.training(scene).name = extractBetween(BagData(bag_training_indices(scene)).bagfile,"",".bag");
disp("-- RMS Error Per Corner (pixel)")
disp(' NSNR training RMS Error Per Corner (pixel)')
disp(NSNR_training_cost(scene).RMSE)
calibration(1).error_struc.training(scene).NSNR_RMSE = [NSNR_training_cost(scene).RMSE];
disp(' NSR training RMS Error Per Corner (pixel)')
disp(NSR_training_cost(scene).RMSE)
calibration(1).error_struc.training(scene).NSR_RMSE = [NSR_training_cost(scene).RMSE];
disp(' SNR training RMS Error Per Corner (pixel)')
disp(SNR_training_cost(scene).RMSE)
calibration(1).error_struc.training(scene).SNR_RMSE = [SNR_training_cost(scene).RMSE];
disp(' SR training RMS Error Per Corner (pixel)')
disp(SR_training_cost(scene).RMSE)
calibration(1).error_struc.training(scene).SR_RMSE = [SR_training_cost(scene).RMSE];
end
%
disp("***************************************************************************************")
disp("***************************************************************************************")
% disp("------------------")
disp(" training results")
% disp("------------------")
disp(struct2table(calibration(1).error_struc.training_results))
[calibration(1).error_struc.training_results.NSNR_RMSE; calibration(1).error_struc.training_results.NSR_RMSE; calibration(1).error_struc.training_results.SNR_RMSE; calibration(1).error_struc.training_results.SR_RMSE]
% disp("------------------")
% disp(" training error")
% disp("------------------")
% disp(struct2table(calibration(1).error_struc.training))
%
if validation_flag
% disp("------------------")
disp(" validation error")
% disp("------------------")
disp(struct2table(calibration(1).error_struc.validation))
% disp("NSNR_RMSE--validata on its own method")
% [calibration(1).error_struc.validation.baseline.NSNR_RMSE]
disp("NSR_RMSE")
[calibration(1).error_struc.validation.NSR_RMSE]
disp("SNR_RMSE")
[calibration(1).error_struc.validation.SNR_RMSE]
disp("SR_RMSE")
[calibration(1).error_struc.validation.SR_RMSE]
disp("------ALL info-------")
[calibration(1).error_struc.validation.NSNR_RMSE;
calibration(1).error_struc.validation.NSR_RMSE;
calibration(1).error_struc.validation.SNR_RMSE;
calibration(1).error_struc.validation.SR_RMSE]
disp("------paper info-------")
disp("-- training")
training_res = [calibration(1).error_struc.training_results.NSNR_RMSE;
calibration(1).error_struc.training_results.SNR_RMSE]
disp("-- validating")
validating_res = [calibration(1).error_struc.validation.NSNR_RMSE;
calibration(1).error_struc.validation.SNR_RMSE]
disp('summary')
validating_mean = mean(validating_res')'
validating_std = std(validating_res')'
end
%% Draw results (by projecting points back to an image)
% SNR with L1-inspired (training)
pause_each_scan = 1;
start_scan = 1;
plotProjectedPointOnImage(SNR_P, BagData, bag_training_indices, training_img_fig_handles, ...
"L1_inspired", "training_{SR}", show_training_results, ...
pause_each_scan, start_scan)
if validation_flag
plotProjectedPointOnImage(SNR_P, BagData, bag_validation_indices, validation_fig_handles, ...
"L1_inspired", "validation_{SR}", 1, ...
pause_each_scan, start_scan)
end
disp("********************************************")
disp("---- Projected using:")
disp(SR_P)
disp('--- H_LC: ')
disp('-- R:')
disp(SR_H_LC(1:3, 1:3))
disp('-- RPY (XYZ):')
disp(rad2deg(rotm2eul(SR_H_LC(1:3, 1:3), "XYZ")))
disp('-- T:')
disp(-inv(SR_H_LC(1:3, 1:3))*SR_H_LC(1:3, 4))
disp("********************************************")
if skip == 0
save(path.save_dir + 'calibration.mat', 'calibration');
elseif skip == 1
save(path.load_dir + 'calibration.mat', 'calibration');
end
%% plot CoR
confidence_of_range = computeConfidenceOfRange(SR_P, BagData, bag_validation_indices, "L1_inspired", "no_refinement");
confidence_of_range_training = computeConfidenceOfRange(SR_P, BagData, bag_training_indices, "L1_inspired", "no_refinement");
plotConfidenceOfRange(CoF_validation_fig_handles, confidence_of_range, "CoR of validation sets")
plotConfidenceOfRange(CoF_training_fig_handles, confidence_of_range_training, "CoR of training set")
% training_targets_statistics = summarizeTargets(BagData, bag_training_indices);
% validation_targets_statistics = summarizeTargets(BagData, bag_validation_indices);
%% project testing results
% load testing images and testing pc mat
% testing_set_pc = loadTestingMatFiles(path.mat_file_path, test_pc_mat_list);
% for scene = 1: size(bag_testing_list, 2)
% loadBagImg(testing_fig_handles(scene), path.bag_file_path, bag_testing_list(scene), "not display", "Not clean");
% projectBackToImage(testing_fig_handles(scene), SR_P, testing_set_pc(scene).mat_pc, 3, 'g.', "testing", show_testing_results, "Not-Clean");
% end