-
Notifications
You must be signed in to change notification settings - Fork 11
/
train.py
452 lines (390 loc) · 19.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
# Copyright (c) Microsoft. All rights reserved.
# Modified Copyright by Ubiquitous Knowledge Processing (UKP) Lab, Technische Universität Darmstadt
import argparse
import json
import os
import shutil
import random
from datetime import datetime
from pprint import pprint
import numpy as np
import torch
from data_utils.glue_utils import submit, eval_model
from data_utils.label_map import DATA_META, GLOBAL_MAP, DATA_TYPE, DATA_SWAP, TASK_TYPE, generate_decoder_opt
from data_utils.log_wrapper import create_logger
from data_utils.utils import set_environment
from mt_dnn.batcher import BatchGen
from mt_dnn.model import MTDNNModel
def model_config(parser):
parser.add_argument('--update_bert_opt', default=0, type=int)
parser.add_argument('--multi_gpu_on', action='store_true')
parser.add_argument('--mem_cum_type', type=str, default='simple',
help='bilinear/simple/defualt')
parser.add_argument('--answer_num_turn', type=int, default=5)
parser.add_argument('--answer_mem_drop_p', type=float, default=0.1)
parser.add_argument('--answer_att_hidden_size', type=int, default=128)
parser.add_argument('--answer_att_type', type=str, default='bilinear',
help='bilinear/simple/defualt')
parser.add_argument('--answer_rnn_type', type=str, default='gru',
help='rnn/gru/lstm')
parser.add_argument('--answer_sum_att_type', type=str, default='bilinear',
help='bilinear/simple/defualt')
parser.add_argument('--answer_merge_opt', type=int, default=1)
parser.add_argument('--answer_mem_type', type=int, default=1)
parser.add_argument('--answer_dropout_p', type=float, default=0.1)
parser.add_argument('--answer_weight_norm_on', action='store_true')
parser.add_argument('--dump_state_on', action='store_true')
parser.add_argument('--answer_opt', type=int, default=0, help='0,1')
parser.add_argument('--label_size', type=str, default='3')
parser.add_argument('--mtl_opt', type=int, default=0)
parser.add_argument('--ratio', type=float, default=0)
parser.add_argument('--reduce_first_dataset_ratio', type=float, default=0)
parser.add_argument('--mix_opt', type=int, default=0)
parser.add_argument('--max_seq_len', type=int, default=512)
parser.add_argument('--init_ratio', type=float, default=1)
return parser
def data_config(parser):
parser.add_argument('--log_file', default='mt-dnn-train.log', help='path for log file.')
parser.add_argument("--init_checkpoint", default='mt_dnn/bert_model_base.pt', type=str)
parser.add_argument('--data_dir', default='data/mt_dnn')
parser.add_argument('--data_sort_on', action='store_true')
parser.add_argument('--name', default='farmer')
parser.add_argument('--train_datasets', default='mnli')
parser.add_argument('--test_datasets', default='mnli_mismatched,mnli_matched')
parser.add_argument('--pw_tasks', default='qnnli', type=str)
parser.add_argument('--train_data_ratio', default=100, type=int)
return parser
def train_config(parser):
parser.add_argument('--cuda', type=bool, default=torch.cuda.is_available(),
help='whether to use GPU acceleration.')
parser.add_argument('--log_per_updates', type=int, default=500)
parser.add_argument('--epochs', type=int, default=5)
parser.add_argument('--batch_size', type=int, default=8)
parser.add_argument('--batch_size_eval', type=int, default=8)
parser.add_argument('--optimizer', default='adamax',
help='supported optimizer: adamax, sgd, adadelta, adam')
parser.add_argument('--grad_clipping', type=float, default=0)
parser.add_argument('--global_grad_clipping', type=float, default=1.0)
parser.add_argument('--weight_decay', type=float, default=0)
parser.add_argument('--learning_rate', type=float, default=5e-5)
parser.add_argument('--momentum', type=float, default=0)
parser.add_argument('--warmup', type=float, default=0.1)
parser.add_argument('--warmup_schedule', type=str, default='warmup_linear')
parser.add_argument('--vb_dropout', action='store_false')
parser.add_argument('--dropout_p', type=float, default=0.1)
parser.add_argument('--dropout_w', type=float, default=0.000)
parser.add_argument('--bert_dropout_p', type=float, default=0.1)
# EMA
parser.add_argument('--ema_opt', type=int, default=0)
parser.add_argument('--ema_gamma', type=float, default=0.995)
# scheduler
parser.add_argument('--have_lr_scheduler', dest='have_lr_scheduler', action='store_false')
parser.add_argument('--multi_step_lr', type=str, default='10,20,30')
parser.add_argument('--freeze_layers', type=int, default=-1)
parser.add_argument('--embedding_opt', type=int, default=0)
parser.add_argument('--lr_gamma', type=float, default=0.5)
parser.add_argument('--bert_l2norm', type=float, default=0.0)
parser.add_argument('--scheduler_type', type=str, default='ms', help='ms/rop/exp')
parser.add_argument('--output_dir', default='checkpoint')
parser.add_argument('--seed', type=int, default=2018,
help='random seed for data shuffling, embedding init, etc.')
parser.add_argument('--task_config_path', type=str, default='configs/tasks_config.json')
return parser
parser = argparse.ArgumentParser()
parser = data_config(parser)
parser = model_config(parser)
parser = train_config(parser)
args = parser.parse_args()
output_dir = args.output_dir
data_dir = args.data_dir
args.train_datasets = args.train_datasets.split(',')
args.test_datasets = args.test_datasets.split(',')
args.pw_tasks = list(set([pw for pw in args.pw_tasks.split(',') if len(pw.strip()) > 0]))
pprint(args)
os.makedirs(output_dir, exist_ok=True)
output_dir = os.path.abspath(output_dir)
set_environment(args.seed, args.cuda)
log_path = args.log_file
logger = create_logger(__name__, to_disk=True, log_file=log_path)
logger.info(args.answer_opt)
tasks_config = {}
if os.path.exists(args.task_config_path):
with open(args.task_config_path, 'r') as reader:
tasks_config = json.loads(reader.read())
def dump(path, data):
with open(path ,'w') as f:
json.dump(data, f, indent=4, sort_keys=True)
def dump_general(output_dir, epoch, metrics, predictions, golds, set, tasks_config, dataset):
result_dir = "../results/"+output_dir.rsplit("/",1)[1].rsplit("_", 1)[0].replace("_seed"+str(args.seed), "") \
+ "_maxlen" + str(tasks_config['max_seq_len']) + "/"
file_name = "results_"+dataset+".json"
if not os.path.exists(result_dir):
os.makedirs(result_dir)
if os.path.isfile(result_dir + file_name):
with open(result_dir + file_name, "r") as f_in:
results_dict = json.load(f_in)
else:
results_dict = {}
if str(args.seed) not in results_dict.keys():
results_dict[str(args.seed)] = {}
results_dict[str(args.seed)][set] = {
'metrics': metrics,
'predictions': predictions,
'golds': golds
}
results_dict[str(args.seed)]["best_dev_epoch"] = epoch
results_dict['config'] = tasks_config
with open(result_dir + file_name, "w") as f_out:
json.dump(results_dict, f_out, indent=4, sort_keys=True)
print("Write results to " + result_dir + file_name)
def dump_result_files(dataset):
return {
'argmin': dump_general,
'semeval2016t6': dump_general,
'snopes': dump_general,
'fnc1': dump_general,
'arc': dump_general,
'iac1': dump_general,
'ibmcs': dump_general,
'scd': dump_general,
'perspectrum': dump_general,
'semeval2019t7': dump_general,
}[dataset.split("_")[0]]
def main():
logger.info('Launching the MT-DNN training')
opt = vars(args)
# update data dir
opt['data_dir'] = data_dir
batch_size = args.batch_size
train_data_list = []
tasks = {}
tasks_class = {}
nclass_list = []
decoder_opts = []
dropout_list = []
for dataset in args.train_datasets:
prefix = dataset.split('_')[0]
if prefix in tasks: continue
assert prefix in DATA_META
assert prefix in DATA_TYPE
data_type = DATA_TYPE[prefix]
nclass = DATA_META[prefix]
task_id = len(tasks)
if args.mtl_opt > 0:
task_id = tasks_class[nclass] if nclass in tasks_class else len(tasks_class)
task_type = TASK_TYPE[prefix]
pw_task = False
if prefix in opt['pw_tasks']:
pw_task = True
dopt = generate_decoder_opt(prefix, opt['answer_opt'])
if task_id < len(decoder_opts):
decoder_opts[task_id] = min(decoder_opts[task_id], dopt)
else:
decoder_opts.append(dopt)
if prefix not in tasks:
tasks[prefix] = len(tasks)
if args.mtl_opt < 1: nclass_list.append(nclass)
if (nclass not in tasks_class):
tasks_class[nclass] = len(tasks_class)
if args.mtl_opt > 0: nclass_list.append(nclass)
dropout_p = args.dropout_p
if tasks_config and prefix in tasks_config:
dropout_p = tasks_config[prefix]
dropout_list.append(dropout_p)
train_data_ratio_string = str(args.train_data_ratio)+"p" if args.train_data_ratio < 100 else ""
train_path = os.path.join(data_dir, '{0}_train{1}.json'.format(dataset, train_data_ratio_string))
logger.info('Loading {} as task {}'.format(train_path, task_id))
train_data = BatchGen(BatchGen.load(train_path, True, pairwise=pw_task, maxlen=args.max_seq_len),
batch_size=batch_size,
dropout_w=args.dropout_w,
gpu=args.cuda,
task_id=task_id,
maxlen=args.max_seq_len,
pairwise=pw_task,
data_type=data_type,
task_type=task_type)
train_data_list.append(train_data)
opt['answer_opt'] = decoder_opts
opt['tasks_dropout_p'] = dropout_list
args.label_size = ','.join([str(l) for l in nclass_list])
logger.info(args.label_size)
dev_data_list = []
test_data_list = []
for dataset in args.test_datasets:
prefix = dataset.split('_')[0]
task_id = tasks_class[DATA_META[prefix]] if args.mtl_opt > 0 else tasks[prefix]
task_type = TASK_TYPE[prefix]
pw_task = False
if prefix in opt['pw_tasks']:
pw_task = True
assert prefix in DATA_TYPE
data_type = DATA_TYPE[prefix]
dev_path = os.path.join(data_dir, '{}_dev.json'.format(dataset))
dev_data = None
if os.path.exists(dev_path):
dev_data = BatchGen(BatchGen.load(dev_path, False, pairwise=pw_task, maxlen=args.max_seq_len),
batch_size=args.batch_size_eval,
gpu=args.cuda, is_train=False,
task_id=task_id,
maxlen=args.max_seq_len,
pairwise=pw_task,
data_type=data_type,
task_type=task_type)
dev_data_list.append(dev_data)
test_path = os.path.join(data_dir, '{}_test.json'.format(dataset))
test_data = None
if os.path.exists(test_path):
test_data = BatchGen(BatchGen.load(test_path, False, pairwise=pw_task, maxlen=args.max_seq_len),
batch_size=args.batch_size_eval,
gpu=args.cuda, is_train=False,
task_id=task_id,
maxlen=args.max_seq_len,
pairwise=pw_task,
data_type=data_type,
task_type=task_type)
test_data_list.append(test_data)
logger.info('#' * 20)
logger.info(opt)
logger.info('#' * 20)
all_iters = [iter(item) for item in train_data_list]
all_lens = [len(bg) for bg in train_data_list]
num_all_batches = args.epochs * sum(all_lens)
if len(train_data_list) > 1 and args.ratio > 0:
num_all_batches = int(args.epochs * (len(train_data_list[0]) * (1 + args.ratio)))
model_path = args.init_checkpoint
state_dict = None
if os.path.exists(model_path):
state_dict = torch.load(model_path, map_location='cpu')
config = state_dict['config']
config['attention_probs_dropout_prob'] = args.bert_dropout_p
config['hidden_dropout_prob'] = args.bert_dropout_p
opt.update(config)
else:
logger.error('#' * 20)
logger.error('Could not find the init model!\n Exit application!')
logger.error('#' * 20)
try:
shutil.rmtree(output_dir)
except Exception as e:
print(e)
exit(1)
model = MTDNNModel(opt, state_dict=state_dict, num_train_step=num_all_batches)
####model meta str
headline = '############# Model Arch of MT-DNN #############'
###print network
logger.info('\n{}\n{}\n'.format(headline, model.network))
# dump config
config_file = os.path.join(output_dir, 'config.json')
with open(config_file, 'w', encoding='utf-8') as writer:
writer.write('{}\n'.format(json.dumps(opt)))
writer.write('\n{}\n{}\n'.format(headline, model.network))
logger.info("Total number of params: {}".format(model.total_param))
if args.freeze_layers > 0:
model.network.freeze_layers(args.freeze_layers)
if args.cuda:
model.cuda()
best_F1_macro = -1.0
for epoch in range(0, args.epochs):
logger.warning('At epoch {}'.format(epoch))
for train_data in train_data_list:
train_data.reset()
start = datetime.now()
all_indices=[]
if len(train_data_list)> 1 and (args.ratio > 0 or args.reduce_first_dataset_ratio > 0):
main_indices =[0] * (int(args.reduce_first_dataset_ratio*len(train_data_list[0])) if args.reduce_first_dataset_ratio > 0 else len(train_data_list[0]))
extra_indices=[]
for i in range(1, len(train_data_list)):
extra_indices += [i] * len(train_data_list[i])
if args.ratio > 0:
random_picks=int(min(len(train_data_list[0]) * args.ratio, len(extra_indices)))
extra_indices = np.random.choice(extra_indices, random_picks, replace=False).tolist()
if args.mix_opt > 0:
extra_indices = extra_indices
random.shuffle(extra_indices)
all_indices = extra_indices + main_indices
else:
all_indices = main_indices + extra_indices
logger.info("Main batches loaded (first dataset in list): {}".format(len(main_indices)))
logger.info("Extra batches loaded (all except first dataset in list): {}".format(len(extra_indices)))
else: # shuffle the index of the train sets whose batches will be trained on in the order: e.g. if train_set[1] is large, it will get trained on more often
for i in range(1, len(train_data_list)):
all_indices += [i] * len(train_data_list[i])
if args.mix_opt > 0:
random.shuffle(all_indices)
all_indices += [0] * len(train_data_list[0])
if args.mix_opt < 1:
random.shuffle(all_indices)
for i in range(len(all_indices)):
task_id = all_indices[i]
batch_meta, batch_data= next(all_iters[task_id])
model.update(batch_meta, batch_data)
if (model.updates) % args.log_per_updates == 0 or model.updates == 1:
logger.info('Task [{0:2}] updates[{1:6}] train loss[{2:.5f}] remaining[{3}]'.format(task_id,
model.updates, model.train_loss.avg,
str((datetime.now() - start) / (i + 1) * (len(all_indices) - i - 1)).split('.')[0]))
temp_dev_F1s = []
dev_dump_list = []
test_dump_list = []
for idx, dataset in enumerate(args.test_datasets):
prefix = dataset.split('_')[0]
label_dict = GLOBAL_MAP.get(prefix, None)
dev_data = dev_data_list[idx]
if dev_data is not None:
dev_metrics, dev_predictions, scores, golds, dev_ids, premises, hypotheses = eval_model(model, dev_data, dataset=prefix,
use_cuda=args.cuda)
for key, val in dev_metrics.items():
if not isinstance(val, dict):
logger.warning("Task {0} -- epoch {1} -- Dev {2}: {3:.3f}".format(dataset, epoch, key, val))
score_file = os.path.join(output_dir, '{}_dev_scores_{}.json'.format(dataset, epoch))
results = {'metrics': dev_metrics, 'predictions': dev_predictions, 'uids': dev_ids, 'scores': scores, 'golds': golds,
'premises': premises, 'hypotheses': hypotheses}
dump(score_file, results)
official_score_file = os.path.join(output_dir, '{}_dev_scores_{}.tsv'.format(dataset, epoch))
submit(official_score_file, results, label_dict)
# for checkpoint
temp_dev_F1s.append(dev_metrics['F1_macro'])
dev_dump_list.append({
"output_dir": output_dir,
"dev_metrics": dev_metrics,
"dev_predictions": dev_predictions,
"golds": golds,
"opt": opt,
"dataset": dataset
})
# test eval
test_data = test_data_list[idx]
if test_data is not None:
test_metrics, test_predictions, scores, golds, test_ids, premises, hypotheses = eval_model(model, test_data, dataset=prefix,
use_cuda=args.cuda, with_label=True)
score_file = os.path.join(output_dir, '{}_test_scores_{}.json'.format(dataset, epoch))
results = {'metrics': test_metrics, 'predictions': test_predictions, 'uids': test_ids, 'scores': scores, 'golds': golds,
'premises': premises, 'hypotheses': hypotheses}
dump(score_file, results)
official_score_file = os.path.join(output_dir, '{}_test_scores_{}.tsv'.format(dataset, epoch))
submit(official_score_file, results, label_dict)
logger.info('[new test scores saved.]')
# for checkpoint
test_dump_list.append({
"output_dir": output_dir,
"test_metrics": test_metrics,
"test_predictions": test_predictions,
"golds": golds,
"opt": opt,
"dataset": dataset
})
# save checkpoint
if np.average(temp_dev_F1s) > best_F1_macro:
print("Save new model! Current best F1 macro over all dev sets: " + "{0:.2f}".format(best_F1_macro) + ". New: " + "{0:.2f}".format(np.average(temp_dev_F1s)))
best_F1_macro = np.average(temp_dev_F1s)
# override current dump file
for l in dev_dump_list:
dump_result_files(l['dataset'])(l['output_dir'], epoch, l['dev_metrics'], str(l['dev_predictions']),
str(l['golds']), "dev", l['opt'], l['dataset'])
for l in test_dump_list:
dump_result_files(l['dataset'])(l['output_dir'], epoch, l['test_metrics'], str(l['test_predictions']),
str(l['golds']), "test", l['opt'], l['dataset'])
# save model
model_file = os.path.join(output_dir, 'model.pt')
model.save(model_file)
if __name__ == '__main__':
main()