forked from haochenglouis/SelfSup_NoisyLabel
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathGCE_C100.py
252 lines (194 loc) · 8.35 KB
/
GCE_C100.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
#!/usr/bin/env python
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import sys
import argparse
import builtins
import os
import random
import shutil
import time
import warnings
from PIL import Image
import torch
import torch.nn as nn
from torch.autograd import Variable
import torch.nn.functional as F
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.optim
import torch.multiprocessing as mp
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
import torchvision.models as models
from torchvision.datasets import CIFAR100
from cifar_noisy import CIFAR100_noisy
from sklearn import manifold
from model import Model
import numpy as np
from loss import RkdDistance, RKdAngle,Info_NCE
np.random.seed(0)
parser = argparse.ArgumentParser(description='Cross Entropy')
parser.add_argument('--model_path', type=str, default='results/128_0.5_200_512_1000_model.pth',
help='The pretrained model path')
parser.add_argument('--batch_size', type=int, default=256, help='Number of images in each mini-batch')
parser.add_argument('--lr', type = float, default = 0.001)
parser.add_argument('--epochs', type=int, default=150, help='Number of sweeps over the dataset to train')
parser.add_argument('--warmup_base', type=int, default=20, help='Number of sweeps over the dataset to train')
parser.add_argument('--warmup_reg', type=int, default=22, help='Number of sweeps over the dataset to train')
parser.add_argument('--num_classes', type=int, default=100, help='Number of classes')
parser.add_argument('--noise_rate', type = float, help = 'corruption rate, should be less than 1', default = 0.6)
parser.add_argument('--noise_type', type = str, help='[pairflip, symmetric,instance]', default='symmetric')
parser.add_argument('--reg', type = str, default='rkd_dis')
parser.add_argument('--alpha', type = float, default=1.0)
parser.add_argument('--simclr_pretrain', action='store_true')
parser.add_argument('--base', action='store_true')
args = parser.parse_args()
class Net(nn.Module):
def __init__(self, num_class, pretrained_path):
super(Net, self).__init__()
# encoder
self.f = Model().f
# classifier
self.g = Model().g
self.fc = nn.Linear(512, num_class, bias=True)
if pretrained_path is not None:
self.load_state_dict(torch.load(pretrained_path, map_location='cpu'), strict=False)
def forward(self, x):
x = self.f(x)
feature = torch.flatten(x, start_dim=1)
g_out = self.g(feature)
out = self.fc(feature)
return g_out, out
if args.simclr_pretrain:
model = Net(num_class=args.num_classes, pretrained_path=args.model_path).cuda()
else:
model = Net(num_class=args.num_classes, pretrained_path=None).cuda()
train_cifar100_transform = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.5071, 0.4867, 0.4408), (0.2675, 0.2565, 0.2761)),
])
train_cifar100_strong_transform = transforms.Compose([
transforms.RandomResizedCrop(32),
transforms.RandomHorizontalFlip(p=0.5),
transforms.RandomApply([transforms.ColorJitter(0.4, 0.4, 0.4, 0.1)], p=0.8),
transforms.RandomGrayscale(p=0.2),
transforms.ToTensor(),
transforms.Normalize((0.5071, 0.4867, 0.4408), (0.2675, 0.2565, 0.2761))])
test_cifar100_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5071, 0.4867, 0.4408), (0.2675, 0.2565, 0.2761)),
])
class CIFAR100_noisy_3img(CIFAR100_noisy):
def __init__(self,root,indexes = None,
train=True,
transform = None,
strong_transform = None,
noise_type='symmetric',noise_rate=0.6, random_state=0):
super(CIFAR100_noisy_3img, self).__init__(root, indexes=indexes, train=train,
transform=transform,noise_type=noise_type,noise_rate = noise_rate,random_state=random_state)
self.strong_transform = strong_transform
def __getitem__(self, index):
"""
Args:
index (int): Index
Returns:
tuple: (image, target) where target is index of the target class.
"""
label = self.train_noisy_labels[index]
true_label = self.true_labels[index]
img = self.train_data[index]
img = Image.fromarray(img)
img1 = self.transform(img)
img2 = self.strong_transform(img)
img3 = self.strong_transform(img)
return img1,img2,img3,label,true_label,index
train_dataset = CIFAR100_noisy_3img(root='./data/',indexes = None,
train=True,
transform = train_cifar100_transform,
strong_transform = train_cifar100_strong_transform,
noise_type=args.noise_type,noise_rate=args.noise_rate, random_state=0)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size = args.batch_size,
num_workers=32,drop_last=True,
shuffle=True,pin_memory=True)
test_dataset = CIFAR100(root='data', train=False, transform=test_cifar100_transform, download=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size = args.batch_size,
num_workers=32,
shuffle=False,pin_memory=True)
model.cuda()
reg_factory = {'rkd_dis':RkdDistance(),'rkd_angle':RKdAngle()}
#base_loss = nn.CrossEntropyLoss()
self_criterion = Info_NCE()
reg_criterion = reg_factory[args.reg]
criterion_ce = nn.CrossEntropyLoss().cuda()
def lq_loss(outputs, target):
# loss = (1 - h_j(x)^q) / q
loss = 0
q = 0.7
for i in range(outputs.size(0)):
loss += (1.0 - (outputs[i][target[i]]) ** q) / q
loss = loss / outputs.size(0)
return loss
base_loss = lq_loss
if args.simclr_pretrain:
alpha_plan = [0.001] * args.epochs
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
else:
alpha_plan = [0.001] * args.epochs
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
def adjust_learning_rate(optimizer, epoch,alpha_plan):
for param_group in optimizer.param_groups:
param_group['lr']=alpha_plan[epoch]
best_acc = [0]
def validate(val_loader, model):
model.eval()
correct = 0
total = 0
with torch.no_grad():
for i, (images, labels) in enumerate(val_loader):
images = Variable(images).cuda()
# compute output
features, logits = model(images)
outputs = F.softmax(logits, dim=1)
_, pred = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (pred.cpu() == labels).sum()
acc = 100*float(correct)/float(total)
return acc
for epoch in range(args.epochs):
model.train()
adjust_learning_rate(optimizer, epoch, alpha_plan)
for i, (images1, images2,images3,labels,true_labels,indexes) in enumerate(train_loader):
images1 = Variable(images1).cuda()
images2 = Variable(images2).cuda()
images3 = Variable(images3).cuda()
labels = Variable(labels).cuda()
features1, output1 = model(images1)
features2, output2 = model(images2)
features3, output3 = model(images3)
if args.base:
if epoch<=args.warmup_base:
loss = criterion_ce(output1,labels)
else:
loss = base_loss(F.softmax(output1, dim=1), labels)
else:
if epoch<=args.warmup_base:
loss = criterion_ce(output1,labels)
elif epoch <=args.warmup_reg:
loss = base_loss(F.softmax(output1, dim=1), labels)
else:
loss = args.alpha * base_loss(F.softmax(output1, dim=1), labels) + self_criterion(features2,features3) + reg_criterion(output1,features1)
optimizer.zero_grad()
loss.backward()
optimizer.step()
acc1 = validate(test_loader, model)
if acc1 > best_acc[0]:
best_acc[0] = acc1
print('current epoch',epoch)
print('best acc',best_acc[0])
print('last acc', acc1)