-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest_MTGP.m
41 lines (33 loc) · 1.05 KB
/
test_MTGP.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
clear all;
rng('shuffle');
load MTGP_toy_dataset
covfun = @cov_SAM;
numParams = 2;
numTasks = 2;
gp = GP(covfun, numParams);
mtgp1 = MTGP(covfun, numParams, numTasks);
mtgp2 = MTGP(covfun, numParams, numTasks,1); %correlated noise
idx = ~isnan(ytrain(:,1));
gp.train_multistart(Xtrain(idx,:),ytrain(idx,1), 30);
[mpred, vpred] = gp.predict(Xtest);
disp("GP:")
mdl = fitlm(ytest(:,1), mpred);
disp(sprintf("R2= %.4f", mdl.Rsquared.Ordinary));
rmse = sqrt(mean((ytest(:,1)-mpred).^2));
disp(sprintf("RMSE= %.4f", rmse));
mtgp1.train_multistart(Xtrain,ytrain, 30);
[mpred, vpred] = mtgp1.predict(Xtest);
mpred = mpred(:,1);
disp("MTGP1:")
mdl = fitlm(ytest(:,1), mpred);
disp(sprintf("R2= %.4f", mdl.Rsquared.Ordinary));
rmse = sqrt(mean((ytest(:,1)-mpred).^2));
disp(sprintf("RMSE= %.4f", rmse));
mtgp2.train_multistart(Xtrain,ytrain, 30);
[mpred, vpred] = mtgp2.predict(Xtest);
mpred = mpred(:,1);
disp("MTGP2:")
mdl = fitlm(ytest(:,1), mpred);
disp(sprintf("R2= %.4f", mdl.Rsquared.Ordinary));
rmse = sqrt(mean((ytest(:,1)-mpred).^2));
disp(sprintf("RMSE= %.4f", rmse));