-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathval.py
208 lines (180 loc) · 7.51 KB
/
val.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
"""
import argparse
import SimpleITK as sitk
import torch
from common import *
from medpy.metric.binary import *
from monai.data import NiftiSaver
from monai.inferers import sliding_window_inference
from monai.metrics import compute_meandice
from monai.transforms import (
AddChanneld,
AsChannelFirstd,
AsDiscrete,
Compose,
MapLabelValue,
NormalizeIntensityd,
Rotated,
ToTensord,
)
#############################
# Read Nii/hdr file using stk
#############################
def read_med_image(file_path, dtype):
img_stk = sitk.ReadImage(file_path)
img_np = sitk.GetArrayFromImage(img_stk)
img_np = img_np.astype(dtype)
return img_np, img_stk
def convert_label(label_img):
label_processed = np.zeros(label_img.shape[0:]).astype(np.uint8)
for i in range(label_img.shape[2]):
label_slice = label_img[:, :, i]
label_slice[label_slice == 10] = 1
label_slice[label_slice == 150] = 2
label_slice[label_slice == 250] = 3
label_processed[:, :, i] = label_slice
return label_processed
net = DenseNet(num_init_features=32, growth_rate=16, block_config=(4, 4, 4, 4), num_classes=4)
parser = argparse.ArgumentParser()
parser.add_argument("--test_path", type=str, default="/home/ubuntu/domainA_val")
parser.add_argument("--gpu", type=int, default=0, help="Gpu index")
parser.add_argument("--save_image", type=int, default=0, help="Save image or not")
# Validation config
val_parser = parser.add_argument_group("Validation config")
val_parser.add_argument("--output_dir", type=str, default="/home/ubuntu")
val_parser.add_argument(
"--patch_size", nargs="+", type=int, default=[32, 32, 32], help="Patch size using to validate model"
)
val_parser.add_argument("--mode", type=str, default="constant", help="constant or gaussian")
val_parser.add_argument("--sigma_scale", type=float, default=0.25)
val_parser.add_argument("--sw_batch_size", type=int, default=1)
val_parser.add_argument("--overlap", type=float, default=0.25)
val_parser.add_argument("--rotate_angle", type=int, default=0)
val_parser.add_argument("--axis", type=str, default="z", help="z/y/x or all")
if __name__ == "__main__":
args = parser.parse_args()
dict_args = vars(args)
print("Validation config:")
for a in val_parser._group_actions:
print("\t{}:\t{}".format(a.dest, dict_args[a.dest]))
# -----------------------Testing-------------------------------------
# -----------------------Load the checkpoint (weights)---------------
checkpoint = "checkpoints/20000_model_3d_denseseg_v1.pth"
print("Checkpoint: ", checkpoint)
device = torch.device(f"cuda:{args.gpu}" if torch.cuda.is_available() else "cpu")
saved_state_dict = torch.load(checkpoint, map_location="cpu")
net.load_state_dict(saved_state_dict)
net.to(device)
net.eval()
# -----------------------Load testing data----------------------------
test_path = args.test_path
subject_id = 9
subject_name = "subject-%d-" % subject_id
f_T1 = os.path.join(test_path, subject_name + "T1.hdr")
f_T2 = os.path.join(test_path, subject_name + "T2.hdr")
f_l = os.path.join(test_path, subject_name + "label.hdr")
inputs_T1, img_T1_itk = read_med_image(f_T1, dtype=np.float32)
inputs_T2, img_T2_itk = read_med_image(f_T2, dtype=np.float32)
label, label_img_itk = read_med_image(f_l, dtype=np.uint8)
label = label.astype(np.uint8)
label = convert_label(label)
mask = inputs_T1 > 0
mask = mask.astype(np.bool)
# # ======================normalize to 0 mean and 1 variance====
# # Normalization
subtrahend = [inputs_T1[mask].mean(), inputs_T2[mask].mean()]
divisor = [inputs_T1[mask].std(), inputs_T2[mask].std()]
normalize_transform = NormalizeIntensityd(
keys=["image"], subtrahend=subtrahend, divisor=divisor, channel_wise=True
)
inputs_T1 = inputs_T1[:, :, :, None]
inputs_T2 = inputs_T2[:, :, :, None]
inputs = np.concatenate((inputs_T1, inputs_T2), axis=3)
rotate_angle = args.rotate_angle * np.pi / 180
if args.axis == "z":
rotate_transform = Rotated(
keys=["image", "label"], angle=(rotate_angle, 0, 0), keep_size=False, mode=("bilinear", "nearest")
)
elif args.axis == "y":
rotate_transform = Rotated(
keys=["image", "label"], angle=(0, rotate_angle, 0), keep_size=False, mode=("bilinear", "nearest")
)
elif args.axis == "x":
rotate_transform = Rotated(
keys=["image", "label"], angle=(0, 0, rotate_angle), keep_size=False, mode=("bilinear", "nearest")
)
elif args.axis == "all":
rotate_transform = Rotated(
keys=["image", "label"],
angle=(rotate_angle, rotate_angle, rotate_angle),
keep_size=False,
mode=("bilinear", "nearest"),
)
val_transforms = Compose(
[
AddChanneld(keys=["label"]),
AsChannelFirstd(keys=["image"]),
rotate_transform,
normalize_transform,
ToTensord(keys=["image", "label"]),
AddChanneld(keys=["image", "label"]),
]
)
sample = val_transforms({"image": inputs, "label": label})
map_label = MapLabelValue(target_labels=[0, 10, 150, 250], orig_labels=[0, 1, 2, 3], dtype=np.uint8)
image_saver = NiftiSaver(
output_dir=args.output_dir,
output_postfix=f"{args.rotate_angle}_degree_{args.axis}_axis",
resample=False,
data_root_dir=args.test_path[:-13],
)
label_saver = NiftiSaver(
output_dir=args.output_dir,
output_postfix=f"{args.rotate_angle}_degree_{args.axis}_axis",
resample=False,
data_root_dir=args.test_path[:-13],
output_dtype=np.uint8,
)
pred_saver = NiftiSaver(
output_dir=args.output_dir,
output_postfix=f"{args.rotate_angle}_degree_{args.axis}_axis_prediction",
resample=False,
data_root_dir=args.test_path[:-13],
output_dtype=np.uint8,
)
image_saver.save_batch(sample["image"].permute(0, 1, 4, 3, 2), meta_data={"filename_or_obj": [f_T1]})
label_saver.save_batch(map_label(sample["label"].permute(0, 1, 4, 3, 2)), meta_data={"filename_or_obj": [f_l]})
inputs, label = sample["image"], sample["label"]
image = inputs.permute(0, 1, 2, 4, 3)
label = label.permute(0, 1, 2, 4, 3)
image = image.to(device)
label = label.to(device)
print(image.size())
with torch.no_grad():
outputs = sliding_window_inference(
image,
roi_size=args.patch_size,
sw_batch_size=args.sw_batch_size,
predictor=net.forward,
overlap=args.overlap,
sigma_scale=args.sigma_scale,
mode=args.mode,
device=torch.device("cpu"),
)
post_pred = AsDiscrete(argmax=True, to_onehot=True, n_classes=4)
save_pred = AsDiscrete(argmax=True, to_onehot=False, n_classes=4)
post_label = AsDiscrete(to_onehot=True, n_classes=4)
pred_saver.save_batch(map_label(save_pred(outputs.permute(0, 1, 3, 4, 2))), meta_data={"filename_or_obj": [f_l]})
dice_value = compute_meandice(y_pred=post_pred(outputs), y=post_label(label).cpu(), include_background=False)
dice_scores = dice_value.mean(dim=0).cpu().numpy()
mean_dice_score = np.mean(dice_scores)
print("Validation dice score: %.4f" % mean_dice_score)
print(
{
"Validation Dice Score CSF": dice_scores[0],
"Validation Dice Score GM": dice_scores[1],
"Validation Dice Score WM": dice_scores[2],
}
)
print("Finished Evaluation")
"""