-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathevaluate.py
216 lines (185 loc) · 8.45 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import argparse
import numpy as np
import torch
from datamodule.heart import HeartDecathlonDataModule
from datamodule.hippocampus import HippocampusDecathlonDataModule
from datamodule.iseg import ISeg2017DataModule
from datamodule.luna import LUNA16DataModule
from module.segcaps import SegCaps2D, SegCaps3D
from module.ucaps import UCaps3D
from module.mod_ucaps import ModifiedUCaps3D
from module.unet import UNetModule
from monai.data import NiftiSaver, decollate_batch
from monai.metrics import ConfusionMatrixMetric, DiceMetric, SurfaceDistanceMetric
from monai.transforms import AsDiscrete, Compose, EnsureType, MapLabelValue
from monai.utils import set_determinism
from pytorch_lightning import Trainer
from tqdm import tqdm
def print_metric(metric_name, scores, reduction="mean"):
if reduction == "mean":
scores = np.mean(scores, axis=0)
agg_score = np.mean(scores)
elif reduction == "median":
scores = np.median(scores, axis=0)
agg_score = np.mean(scores)
print("-------------------------------")
print("Validation {} score average: {:4f}".format(metric_name, agg_score))
for i, score in enumerate(scores):
print("Validation {} score class {}: {:4f}".format(metric_name, i + 1, score))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--root_dir", type=str, default="/root")
parser.add_argument("--save_image", type=int, default=0, help="Save image or not")
parser = Trainer.add_argparse_args(parser)
# Validation config
val_parser = parser.add_argument_group("Validation config")
val_parser.add_argument("--output_dir", type=str, default="/root")
val_parser.add_argument("--model_name", type=str, default="ucaps", help="ucaps / segcaps-2d / segcaps-3d / unet")
val_parser.add_argument(
"--dataset", type=str, default="iseg2017", help="iseg2017 / task02_heart / task04_hippocampus / luna16"
)
val_parser.add_argument("--fold", type=int, default=0)
val_parser.add_argument(
"--checkpoint_path", type=str, default="", help='/path/to/trained_model. Set to "" for none.'
)
# THIS LINE IS KEY TO PULL THE MODEL NAME
temp_args, _ = parser.parse_known_args()
# let the model add what it wants
if temp_args.model_name == "ucaps":
parser, model_parser = UCaps3D.add_model_specific_args(parser)
elif temp_args.model_name == "segcaps-2d":
parser, model_parser = SegCaps2D.add_model_specific_args(parser)
elif temp_args.model_name == "segcaps-3d":
parser, model_parser = SegCaps3D.add_model_specific_args(parser)
elif temp_args.model_name == "unet":
parser, model_parser = UNetModule.add_model_specific_args(parser)
elif temp_args.model_name == "modified-ucaps":
parser, model_parser = ModifiedUCaps3D.add_model_specific_args(parser)
args = parser.parse_args()
dict_args = vars(args)
print("Validation config:")
for a in val_parser._group_actions:
print("\t{}:\t{}".format(a.dest, dict_args[a.dest]))
# Improve reproducibility
set_determinism(seed=0)
# Prepare datamodule
if args.dataset == "iseg2017":
data_module = ISeg2017DataModule(
**dict_args,
)
map_label = MapLabelValue(target_labels=[0, 10, 150, 250], orig_labels=[0, 1, 2, 3], dtype=np.uint8)
elif args.dataset == "task02_heart":
data_module = HeartDecathlonDataModule(
**dict_args,
)
elif args.dataset == "task04_hippocampus":
data_module = HippocampusDecathlonDataModule(
**dict_args,
)
elif args.dataset == "luna16":
data_module = LUNA16DataModule(
**dict_args,
)
else:
pass
data_module.setup("validate")
val_loader = data_module.val_dataloader()
val_batch_size = 1
# Load trained model
if args.checkpoint_path != "":
if args.model_name == "ucaps":
net = UCaps3D.load_from_checkpoint(
args.checkpoint_path,
val_patch_size=args.val_patch_size,
sw_batch_size=args.sw_batch_size,
overlap=args.overlap,
)
elif args.model_name == "unet":
net = UNetModule.load_from_checkpoint(
args.checkpoint_path,
val_patch_size=args.val_patch_size,
sw_batch_size=args.sw_batch_size,
overlap=args.overlap,
)
elif args.model_name == "segcaps-2d":
net = SegCaps2D.load_from_checkpoint(
args.checkpoint_path,
val_patch_size=args.val_patch_size,
sw_batch_size=args.sw_batch_size,
overlap=args.overlap,
)
elif args.model_name == "segcaps-3d":
net = SegCaps3D.load_from_checkpoint(
args.checkpoint_path,
val_patch_size=args.val_patch_size,
sw_batch_size=args.sw_batch_size,
overlap=args.overlap,
)
elif args.model_name == "modified-ucaps":
net = ModifiedUCaps3D.load_from_checkpoint(
args.checkpoint_path,
val_patch_size=args.val_patch_size,
sw_batch_size=args.sw_batch_size,
overlap=args.overlap,
)
print("Load trained model!!!")
# Prediction
trainer = Trainer.from_argparse_args(args)
outputs = trainer.predict(net, dataloaders=val_loader)
# Calculate metric and visualize
n_classes = net.out_channels
post_pred = Compose([EnsureType(), AsDiscrete(argmax=True, to_onehot=True, n_classes=n_classes)])
save_pred = Compose([EnsureType(), AsDiscrete(argmax=True, to_onehot=False, n_classes=n_classes)])
post_label = Compose([EnsureType(), AsDiscrete(to_onehot=True, n_classes=n_classes)])
pred_saver = NiftiSaver(
output_dir=args.output_dir,
output_postfix=f"{args.model_name}_prediction",
resample=False,
data_root_dir=args.root_dir,
output_dtype=np.uint8,
)
dice_metric = DiceMetric(include_background=False, reduction="none", get_not_nans=False)
precision_metric = ConfusionMatrixMetric(
include_background=False, metric_name="precision", compute_sample=True, reduction="none", get_not_nans=False
)
sensitivity_metric = ConfusionMatrixMetric(
include_background=False, metric_name="sensitivity", compute_sample=True, reduction="none", get_not_nans=False
)
asd_metric = SurfaceDistanceMetric(include_background=False, reduction="none", get_not_nans=False)
for i, data in enumerate(tqdm(val_loader)):
labels = data["label"]
val_outputs = outputs[i].cpu()
if args.save_image:
if args.dataset == "iseg2017":
pred_saver.save_batch(
map_label(torch.stack([save_pred(i) for i in decollate_batch(val_outputs)]).cpu()),
meta_data={
"filename_or_obj": data["label_meta_dict"]["filename_or_obj"],
"original_affine": data["label_meta_dict"]["original_affine"],
"affine": data["label_meta_dict"]["affine"],
},
)
else:
pred_saver.save_batch(
torch.stack([save_pred(i) for i in decollate_batch(val_outputs)]),
meta_data={
"filename_or_obj": data["label_meta_dict"]["filename_or_obj"],
"original_affine": data["label_meta_dict"]["original_affine"],
"affine": data["label_meta_dict"]["affine"],
},
)
val_outputs = [post_pred(val_output) for val_output in decollate_batch(val_outputs)]
labels = [post_label(label) for label in decollate_batch(labels)]
dice_metric(y_pred=val_outputs, y=labels)
precision_metric(y_pred=val_outputs, y=labels)
sensitivity_metric(y_pred=val_outputs, y=labels)
asd_metric(y_pred=val_outputs, y=labels)
if args.dataset == "iseg2017":
reduction = "mean"
else:
reduction = "median"
print_metric("dice", dice_metric.aggregate().cpu().numpy(), reduction=reduction)
print_metric("precision", precision_metric.aggregate()[0].cpu().numpy(), reduction=reduction)
print_metric("sensitivity", sensitivity_metric.aggregate()[0].cpu().numpy(), reduction=reduction)
print_metric("ASD", asd_metric.aggregate().cpu().numpy(), reduction=reduction)
print("Finished Evaluation")