-
Notifications
You must be signed in to change notification settings - Fork 37
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
230 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,230 @@ | ||
__author__ = "Yinchong Yang" | ||
__copyright__ = "Siemens AG, 2017" | ||
__licencse__ = "MIT" | ||
__version__ = "0.1" | ||
|
||
""" | ||
MIT License | ||
Copyright (c) 2017 Siemens AG | ||
Permission is hereby granted, free of charge, to any person obtaining a copy | ||
of this software and associated documentation files (the "Software"), to deal | ||
in the Software without restriction, including without limitation the rights | ||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | ||
copies of the Software, and to permit persons to whom the Software is | ||
furnished to do so, subject to the following conditions: | ||
The above copyright notice and this permission notice shall be included in all | ||
copies or substantial portions of the Software. | ||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | ||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | ||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
SOFTWARE. | ||
""" | ||
|
||
|
||
""" | ||
This script would serve as a POC of applying (TT-)RNNs for sequence classification, as well as for some quick debugging | ||
of the TT-RNN implementations. | ||
The main idea is to classify Fibonacci-, Lucas-, Padovan- and random sequences in their binary form (thus high- | ||
dimensional sequences). | ||
Out of each of the sequences, one samples at a random location a sub-sequence of random length. Such sub-sequences would | ||
funtion as the training and test data. | ||
My experiments were performed on a Intel R Xeon R E7-4850 v2 2.30GHz, and the ACC and runtime are listed as below: | ||
RNN: 0.629 00:00:51 | ||
TT-RNN: 0.765 00:00:50 | ||
GRU: 0.893 00:01:48 | ||
TT-GRU: 0.975 00:01:22 | ||
LSTM: 0.925 00:02:41 | ||
TT-LSTM: 0.935 00:01:38 | ||
The same message as with the video data: TT-GRU seems to be the best | ||
It's interesting to see that plain LSTM outperforms plain GRU. | ||
But these results involve only one experiment setting afterall. | ||
""" | ||
|
||
import numpy as np | ||
import sys | ||
import datetime | ||
import time | ||
from keras.preprocessing.sequence import pad_sequences | ||
from keras.utils.np_utils import to_categorical | ||
|
||
from keras.layers import Input, SimpleRNN, GRU, LSTM, Dense, Dropout | ||
from keras.models import Model | ||
from keras.optimizers import * | ||
from keras.regularizers import l2 | ||
from sklearn.metrics import average_precision_score, roc_auc_score, accuracy_score | ||
|
||
from TTRNN import TT_RNN, TT_GRU, TT_LSTM | ||
|
||
# Function that performs binary adding without transforming into decimal since even int64 would not suffice... | ||
def bin_add(x,y): | ||
x = ''.join(x.astype('string')) | ||
y = ''.join(y.astype('string')) | ||
|
||
# https://stackoverflow.com/questions/21420447/need-help-in-adding-binary-numbers-in-python | ||
maxlen = max(len(x), len(y)) | ||
|
||
#Normalize lengths | ||
x = x.zfill(maxlen) | ||
y = y.zfill(maxlen) | ||
|
||
result = '' | ||
carry = 0 | ||
|
||
for i in range(maxlen-1, -1, -1): | ||
r = carry | ||
r += 1 if x[i] == '1' else 0 | ||
r += 1 if y[i] == '1' else 0 | ||
|
||
result = ('1' if r % 2 == 1 else '0') + result | ||
carry = 0 if r < 2 else 1 | ||
|
||
if carry !=0 : result = '1' + result | ||
|
||
ret = result.zfill(maxlen) | ||
return np.array(list(ret)).astype('uint8') | ||
|
||
# Function that generates fibo/luc/pad/random sequences in binary form | ||
def gen_bin_seq(n=100, maxdim=512, type='fibo'): | ||
ret = np.zeros((n, maxdim), dtype='uint8') | ||
|
||
if type == 'fibo': | ||
ret[0, -1] = 1 | ||
ret[1, -1] = 1 | ||
for i in range(2, n): | ||
ret[i] = bin_add(ret[i-1], ret[i-2]) | ||
elif type == 'lucas': | ||
ret[0, -2] = 1 | ||
ret[0, -1] = 0 | ||
ret[1, -1] = 1 | ||
for i in range(2, n): | ||
ret[i] = bin_add(ret[i-1], ret[i-2]) | ||
elif type == 'padovan': | ||
ret[0, -1] = 1 | ||
ret[1, -1] = 1 | ||
ret[2, -1] = 1 | ||
for i in range(3, n): | ||
ret[i] = bin_add(ret[i-2], ret[i-3]) | ||
elif type == 'random': | ||
ret = np.random.choice([0, 1], n*maxdim, True).reshape((n, maxdim)).astype('uint8') | ||
return ret | ||
|
||
|
||
np.random.seed(11111986) | ||
|
||
# Experiment settings | ||
model_type = 0 # 0 for RNN, 1 for GRU, 2 for LSTM | ||
use_TT = 1 # 0 for non-TT, 1 for TT | ||
rank = 3 # tt ranks | ||
|
||
|
||
# Generate data | ||
seq_length = 400 # the first k fib/luc/pad/rand numbers | ||
fib_bin = gen_bin_seq(seq_length, maxdim=512, type='fibo') | ||
luc_bin = gen_bin_seq(seq_length, maxdim=512, type='lucas') | ||
pad_bin = gen_bin_seq(seq_length, maxdim=512, type='padovan') | ||
rand_bin = gen_bin_seq(seq_length, maxdim=512, type='random') | ||
|
||
N = 300 # number of training samples | ||
T = 30 # number of time steps | ||
d = fib_bin.shape[1] | ||
|
||
X_fib = [None]*N | ||
X_luc = [None]*N | ||
X_pad = [None]*N | ||
X_ran = [None]*N | ||
|
||
for i in range(N): | ||
this_len = np.random.choice(range(3, T+1), 1)[0] | ||
this_start = np.random.choice(range(0, seq_length-this_len), 1)[0] | ||
X_fib[i] = fib_bin[this_start:this_start+this_len] | ||
|
||
this_len = np.random.choice(range(3, T+1), 1)[0] | ||
this_start = np.random.choice(range(0, seq_length - this_len), 1)[0] | ||
X_luc[i] = luc_bin[this_start:this_start+this_len] | ||
|
||
this_len = np.random.choice(range(3, T+1), 1)[0] | ||
this_start = np.random.choice(range(0, seq_length - this_len), 1)[0] | ||
X_pad[i] = pad_bin[this_start:this_start + this_len] | ||
|
||
this_len = np.random.choice(range(3, T + 1), 1)[0] | ||
this_start = np.random.choice(range(0, seq_length - this_len), 1)[0] | ||
X_ran[i] = rand_bin[this_start:this_start + this_len] | ||
|
||
X_fib = pad_sequences(X_fib) | ||
X_luc = pad_sequences(X_luc) | ||
X_pad = pad_sequences(X_pad) | ||
X_ran = pad_sequences(X_ran) | ||
|
||
X = np.concatenate([X_fib, X_luc, X_pad, X_ran], 0) | ||
Y = np.concatenate([np.repeat([0], N), np.repeat([1], N), np.repeat([2], N), np.repeat([3], N)], ) | ||
Y = to_categorical(Y) | ||
|
||
r = rank | ||
tt_input_shape = [16, 32] | ||
tt_output_shape = [8, 8] | ||
tt_ranks = [1, r, 1] | ||
|
||
input = Input(shape=(T, d)) | ||
if model_type == 0: | ||
if use_TT: | ||
rnn_layer = TT_RNN(tt_input_shape=tt_input_shape, tt_output_shape=tt_output_shape, tt_ranks=tt_ranks, | ||
return_sequences=False, debug=True, | ||
dropout=.25, recurrent_dropout = .25, activation='tanh', ) | ||
else: | ||
rnn_layer = SimpleRNN(units=np.prod(tt_output_shape), | ||
return_sequences=False, | ||
dropout=.25, recurrent_dropout=.25, activation='tanh',) | ||
elif model_type == 1: | ||
if use_TT: | ||
rnn_layer = TT_GRU(tt_input_shape=tt_input_shape, tt_output_shape=tt_output_shape, tt_ranks=tt_ranks, | ||
return_sequences=False, debug=True, | ||
dropout=.25, recurrent_dropout=.25, activation='tanh', ) | ||
else: | ||
rnn_layer = GRU(units=np.prod(tt_output_shape), | ||
return_sequences=False, | ||
dropout=.25, recurrent_dropout=.25, activation='tanh', ) | ||
elif model_type == 2: | ||
if use_TT: | ||
rnn_layer = TT_LSTM(tt_input_shape=tt_input_shape, tt_output_shape=tt_output_shape, tt_ranks=tt_ranks, | ||
return_sequences=False, debug=True, | ||
dropout=.25, recurrent_dropout=.25, activation='tanh', ) | ||
else: | ||
rnn_layer = LSTM(units=np.prod(tt_output_shape), | ||
return_sequences=False, | ||
dropout=.25, recurrent_dropout=.25, activation='tanh', ) | ||
|
||
h = rnn_layer(input) | ||
output = Dense(units=4, activation='softmax')(h) | ||
model = Model(input, output) | ||
model.compile(optimizer=Adam(1e-3), loss='categorical_crossentropy', metrics=['categorical_accuracy']) # | ||
|
||
shuffle = np.random.choice(range(X.shape[0]), X.shape[0], False) | ||
X = X[shuffle] | ||
Y = Y[shuffle] | ||
|
||
X_train = X[0:(3*N/2)] | ||
Y_train = Y[0:(3*N/2)] | ||
|
||
X_test = X[(3*N/2)::] | ||
Y_test = Y[(3*N/2)::] | ||
|
||
maxIter = 100 | ||
test_acc = np.zeros((maxIter,)) | ||
|
||
# just to have the model compiled in advance | ||
model.fit(X_train, Y_train, epochs=1, batch_size=16, verbose=2, validation_data=[X_test, Y_test]) | ||
|
||
start = datetime.datetime.now() | ||
for l in range(maxIter): | ||
print l | ||
history = model.fit(X_train, Y_train, epochs=1, batch_size=16, verbose=2, validation_data=[X_test, Y_test]) | ||
test_acc[l] = history.history['val_categorical_accuracy'][0] | ||
stop = datetime.datetime.now() | ||
|
||
print stop - start | ||
print model.evaluate(X_test, Y_test) |