-
Notifications
You must be signed in to change notification settings - Fork 37
/
Copy pathMNISTSeq.py
381 lines (301 loc) · 13.9 KB
/
MNISTSeq.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
__author__ = "Yinchong Yang"
__copyright__ = "Siemens AG, 2018"
__licencse__ = "MIT"
__version__ = "0.1"
"""
MIT License
Copyright (c) 2018 Siemens AG
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
"""
"""
We first sample MNIST digits to form sequences of random lengths.
The sequence is labeled as one if it contains a zero, and is labeled zero otherwise.
This simulates a high dimensional sequence classification task, such as predicting therapy decision
and survival of patients based on their historical clinical event information.
We train plain LSTM and Tensor-Train LSTM for this task.
After the training, we apply Layer-wise Relevance Propagation to identify the digit(s) that
have influenced the classification.
Apparently, we would expect the LRP algorithm would assign high relevance value to the zero(s)
in the sequence.
These experiments turn out to be successful, which demonstrates that
i) the LSTM and TT-LSTM can indeed learn the mapping from a zero to the sequence class, and that
ii) both LSTMs have no problem in storing the zero pattern over a period of time, because the
classifier is deployed only at the last hidden state, and that
iii) the implementation of the LRP algorithm, complex as it is, is also correct, in that
the zeros are assigned high relevance scores.
Especially the experiments with the plain LSTM serve as simulation study supporting our submission of
“Yinchong Yang, Volker Tresp, Marius Wunderle, Peter A. Fasching,
Explaining Therapy Predictions with Layer-wise Relevance Propagation in Neural Networks, at IEEE ICHI 2018”.
The original LRP for LSTM from the repository:
https://github.com/ArrasL/LRP_for_LSTM
which we modified and adjusted for keras models.
Feel free to experiment with the hyper parameters and suggest other sequence classification tasks.
Have fun ;)
"""
import pickle
import sys
import numpy as np
from numpy import newaxis as na
import keras
from keras.layers.recurrent import Recurrent
from keras import backend as K
from keras.engine import InputSpec
from keras import activations
from keras import initializers
from keras import regularizers
from keras import constraints
from keras.engine.topology import Layer
from TTLayer import *
from TTRNN import TT_LSTM
def make_seq(n, x, y, maxlen=32, seed=123):
np.random.seed(seed)
lens = np.random.choice(range(2, maxlen), n)
seqs = np.zeros((n, maxlen, 28**2))
labels = np.zeros(n)
digits_label = np.zeros((n, maxlen), dtype='int32')-1
ids = np.zeros((n, maxlen), dtype='int64')-1
for i in range(n):
digits_inds = np.random.choice(range(x.shape[0]), lens[i])
ids[i, -lens[i]::] = digits_inds
seqs[i, -lens[i]::, :] = x[digits_inds]
digits_label[i, -lens[i]::] = y[digits_inds]
class_inds = y[digits_inds]
if True:
# option 1: is there any 0 in the sequence?
labels[i] = (0 in class_inds)
else:
# option 2: even number of 0 -> label=0, odd number of 0 -> label=1
labels[i] = len(np.where(class_inds == 0)[0]) % 2 == 1
return [seqs, labels, digits_label, ids]
# From: https://github.com/ArrasL/LRP_for_LSTM
def lrp_linear(hin, w, b, hout, Rout, bias_nb_units, eps, bias_factor, debug=False):
"""
LRP for a linear layer with input dim D and output dim M.
Args:
- hin: forward pass input, of shape (D,)
- w: connection weights, of shape (D, M)
- b: biases, of shape (M,)
- hout: forward pass output, of shape (M,) (unequal to np.dot(w.T,hin)+b if more than one incoming layer!)
- Rout: relevance at layer output, of shape (M,)
- bias_nb_units: number of lower-layer units onto which the bias/stabilizer contribution is redistributed
- eps: stabilizer (small positive number)
- bias_factor: for global relevance conservation set to 1.0, otherwise 0.0 to ignore bias redistribution
Returns:
- Rin: relevance at layer input, of shape (D,)
"""
sign_out = np.where(hout[na, :] >= 0, 1., -1.) # shape (1, M)
numer = (w * hin[:, na]) + \
((bias_factor * b[na, :] * 1. + eps * sign_out * 1.) * 1. / bias_nb_units) # shape (D, M)
denom = hout[na, :] + (eps * sign_out * 1.) # shape (1, M)
message = (numer / denom) * Rout[na, :] # shape (D, M)
Rin = message.sum(axis=1) # shape (D,)
# Note: local layer relevance conservation if bias_factor==1.0 and bias_nb_units==D
# global network relevance conservation if bias_factor==1.0 (can be used for sanity check)
if debug:
print("local diff: ", Rout.sum() - Rin.sum())
return Rin
def sigmoid(x):
x = x.astype('float128')
return 1. / (1. + np.exp(-x))
# Modified from https://github.com/ArrasL/LRP_for_LSTM
def lstm_lrp(l, d, train_data = True):
if train_data:
x_l = X_tr[l]
y_l = Y_tr[l]
z_l = Z_tr[l]
# d_l = d_tr[l]
else:
x_l = X_te[l]
y_l = Y_te[l]
z_l = Z_te[l]
# d_l = d_te[l]
# calculate the FF pass in LSTM for every time step
pre_gates = np.zeros((MAXLEN, d*4))
gates = np.zeros((MAXLEN, d * 4))
h = np.zeros((MAXLEN, d))
c = np.zeros((MAXLEN, d))
for t in range(MAXLEN):
z = np.dot(x_l[t], Ws)
if t > 0:
z += np.dot(h[t-1], Us)
z += b
pre_gates[t] = z
z0 = z[0:d]
z1 = z[d:2*d]
z2 = z[2*d:3*d]
z3 = z[3 * d::]
i = sigmoid(z0)
f = sigmoid(z1)
c[t] = f * c[t-1] + i * np.tanh(z2)
o = sigmoid(z3)
h[t] = o * np.tanh(c[t])
gates[t] = np.concatenate([i, f, np.tanh(z2), o])
# check: z_l[12] / h[-1][12]
Rh = np.zeros((MAXLEN, d))
Rc = np.zeros((MAXLEN, d))
Rg = np.zeros((MAXLEN, d))
Rx = np.zeros((MAXLEN, 28**2))
bias_factor = 0
Rh[MAXLEN-1] = lrp_linear(hin=z_l,
w=Dense_w,
b=np.array(Dense_b),
hout=np.dot(z_l, Dense_w)+Dense_b,
Rout=np.array([y_l]),
bias_nb_units=len(z_l),
eps=eps,
bias_factor=bias_factor)
for t in reversed(range(MAXLEN)):
# t = MAXLEN-1
# print t
Rc[t] += Rh[t]
# Rc[t] = Rh[t]
if t > 0:
Rc[t-1] = lrp_linear(gates[t, d: 2 * d] * c[t - 1], # gates[t , 2 *d: 3 *d ] *c[ t -1],
np.identity(d),
np.zeros((d)),
c[t],
Rc[t],
2*d,
eps,
bias_factor,
debug=False)
Rg[t] = lrp_linear(gates[t, 0:d] * gates[t, 2*d:3*d], # h_input: i + g
np.identity(d), # W
np.zeros((d)), # b
c[t], # h_output
Rc[t], # R_output
2 * d,
eps,
bias_factor,
debug=False)
# foo = np.dot(x_l[t], Ws[:,2*d:3*d]) + np.dot(h[t-1], Us[:, 2*d:3*d]) + b[2*d:3*d]
Rx[t] = lrp_linear(x_l[t],
Ws[:,2*d:3*d],
b[2*d:3*d],
pre_gates[t, 2*d:3*d],
Rg[t],
d + 28 ** 2,
eps,
bias_factor,
debug=False)
if t > 0:
Rh[t-1] = lrp_linear(h[t-1],
Us[:,2*d:3*d],
b[2*d:3*d],
pre_gates[t, 2 * d:3 * d],
Rg[t],
d + 28**2,
eps,
bias_factor,
debug=False)
# hin, w, b, hout, Rout, bias_nb_units, eps, bias_factor, debug=False
# Rx[np.where(d_l==-1.)[0]] *= 0
return Rx
from keras.datasets import mnist
from keras.utils import to_categorical
from keras.models import Model, Input
from keras.layers import Dense, GRU, LSTM, Dropout, Masking
from keras.optimizers import *
from keras.regularizers import l2
from sklearn.metrics import *
# Script configurations ###################################################################
seed=111111
use_TT = True # whether use Tensor-Train or plain RNNs
# Prepare the data ########################################################################
# Load the MNIST data and build sequences:
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = x_train.reshape(x_train.shape[0], -1)
x_test = x_test.reshape(x_test.shape[0], -1)
MAXLEN = 32 # max length of the sequences
X_tr, Y_tr, d_tr, idx_tr = make_seq(n=10000, x=x_train, y=y_train, maxlen=MAXLEN, seed=seed)
X_te, Y_te, d_te, idx_te = make_seq(n=1000, x=x_test, y=y_test, maxlen=MAXLEN, seed=seed+1)
# Define the model ######################################################################
if use_TT:
# TT settings
tt_input_shape = [7, 7, 16]
tt_output_shape = [4, 4, 4]
tt_ranks = [1, 4, 4, 1]
rnn_size = 64
X = Input(shape=X_tr.shape[1::])
X_mask = Masking(mask_value=0.0, input_shape=X_tr.shape[1::])(X)
if use_TT:
Z = TT_LSTM(tt_input_shape=tt_input_shape, tt_output_shape=tt_output_shape, tt_ranks=tt_ranks,
return_sequences=False, recurrent_dropout=.5)(X_mask)
Out = Dense(units=1, activation='sigmoid', kernel_regularizer=l2(1e-2))(Z)
else:
Z = LSTM(units=rnn_size, return_sequences=False, recurrent_dropout=.5)(X_mask) # dropout=.5,
Out = Dense(units=1, activation='sigmoid', kernel_regularizer=l2(1e-2))(Z)
rnn_model = Model(X, Out)
rnn_model.compile(optimizer=Adam(1e-3), loss='binary_crossentropy',
metrics=['accuracy'])
# Train the model and save the results ######################################################
rnn_model.fit(X_tr, Y_tr, epochs=50, batch_size=32, validation_split=.2, verbose=2)
Y_hat = rnn_model.predict(X_tr, verbose=2).reshape(-1)
train_acc = (np.round(Y_hat) == Y_tr).mean()
Y_pred = rnn_model.predict(X_te, verbose=2).reshape(-1)
(np.round(Y_pred) == Y_te).mean()
pred_acc = (np.round(Y_pred) == Y_te).mean()
# Collect all hidden layers ################################################################
if use_TT:
# Reconstruct the fully connected input-to-hidden weights:
from keras.initializers import constant
_tt_output_shape = np.copy(tt_output_shape)
_tt_output_shape[0] *= 4
fc_w = rnn_model.get_weights()[0]
fc_layer = TT_Layer(tt_input_shape=tt_input_shape, tt_output_shape=_tt_output_shape, tt_ranks=tt_ranks,
kernel_initializer=constant(value=fc_w), use_bias=False)
fc_input = Input(shape=(X_tr.shape[2],))
fc_output = fc_layer(fc_input)
fc_model = Model(fc_input, fc_output)
fc_model.compile('sgd', 'mse')
fc_recon_mat = fc_model.predict(np.identity(X_tr.shape[2]))
# Reconstruct the entire LSTM:
fc_Z = LSTM(units=np.prod(tt_output_shape), return_sequences=False, dropout=.5, recurrent_dropout=.5,
weights=[fc_recon_mat, rnn_model.get_weights()[2], rnn_model.get_weights()[1]])(X_mask)
else:
fc_Z = LSTM(units=rnn_size, return_sequences=False, dropout=.5, recurrent_dropout=.5,
weights=rnn_model.get_weights()[0:3])(X_mask)
fc_Out = Dense(units=1, activation='sigmoid', kernel_regularizer=l2(1e-3),
weights=rnn_model.get_weights()[3::])(fc_Z)
fc_rnn_model = Model(X, fc_Out)
fc_rnn_model.compile(optimizer=Adam(1e-3), loss='binary_crossentropy',
metrics=['accuracy'])
fc_rnn_model.evaluate(X_te, Y_te, verbose=2)
# Calculate the LRP: #########################################################################
fc_Z_model = Model(X, fc_Z)
fc_Z_model.compile('sgd', 'mse')
Y_hat_fc = fc_rnn_model.predict(X_tr)
Y_pred_fc = fc_rnn_model.predict(X_te)
Ws = fc_rnn_model.get_weights()[0]
Us = fc_rnn_model.get_weights()[1]
b = fc_rnn_model.get_weights()[2]
Dense_w = fc_rnn_model.get_weights()[3]
Dense_b = fc_rnn_model.get_weights()[4]
Z_tr = fc_Z_model.predict(X_tr)
Z_te = fc_Z_model.predict(X_te)
eps = 1e-4
is_number_flag = np.where(d_te != -1)
# All relevance scores of the test sequences
lrp_te = np.vstack([lstm_lrp(i, rnn_size, False).sum(1) for i in range(X_te.shape[0])])
lrp_auroc = roc_auc_score((d_te == 0).astype('int')[is_number_flag].reshape(-1),
lrp_te[is_number_flag].reshape(-1))
lrp_auprc = average_precision_score((d_te == 0).astype('int')[is_number_flag].reshape(-1),
lrp_te[is_number_flag].reshape(-1))
# The reported results:
print pred_acc
print lrp_auroc
print lrp_auprc