-
Notifications
You must be signed in to change notification settings - Fork 45
/
Copy pathtim.py
73 lines (62 loc) · 3.17 KB
/
tim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import torch
import torch.nn.functional as F
from ..utils import *
from ..gradient.mifgsm import MIFGSM
import scipy.stats as st
import numpy as np
class TIM(MIFGSM):
"""
TIM Attack
'Evading Defenses to Transferable Adversarial Examples by Translation-Invariant Attacks (CVPR 2019)'(https://arxiv.org/abs/1904.02884)
Arguments:
model_name (str): the name of surrogate model for attack.
epsilon (float): the perturbation budget.
alpha (float): the step size.
epoch (int): the number of iterations.
decay (float): the decay factor for momentum calculation.
kernel_type (str): the type of kernel (gaussian/uniform/linear).
kernel_size (int): the size of kernel.
targeted (bool): targeted/untargeted attack.
random_start (bool): whether using random initialization for delta.
norm (str): the norm of perturbation, l2/linfty.
loss (str): the loss function.
device (torch.device): the device for data. If it is None, the device would be same as model
Official arguments:
epsilon=16/255, alpha=epsilon/epoch=1.6/255, epoch=10, decay=1., kernel_type='gaussian', kernel_size=15
Example script:
python main.py --attack tim --output_dir adv_data/tim/resnet18
"""
def __init__(self, model_name, epsilon=16/255, alpha=1.6/255, epoch=10, decay=1., kernel_type='gaussian', kernel_size=15, targeted=False,
random_start=False, norm='linfty', loss='crossentropy', device=None, attack='TIM', **kwargs):
super().__init__(model_name, epsilon, alpha, epoch, decay, targeted, random_start, norm, loss, device, attack)
self.kernel = self.generate_kernel(kernel_type, kernel_size)
def generate_kernel(self, kernel_type, kernel_size, nsig=3):
"""
Generate the gaussian/uniform/linear kernel
Arguments:
kernel_type (str): the method for initilizing the kernel
kernel_size (int): the size of kernel
"""
if kernel_type.lower() == 'gaussian':
x = np.linspace(-nsig, nsig, kernel_size)
kern1d = st.norm.pdf(x)
kernel_raw = np.outer(kern1d, kern1d)
kernel = kernel_raw / kernel_raw.sum()
elif kernel_type.lower() == 'uniform':
kernel = np.ones((kernel_size, kernel_size)) / (kernel_size ** 2)
elif kernel_type.lower() == 'linear':
kern1d = 1 - np.abs(np.linspace((-kernel_size+1)//2, (kernel_size-1)//2, kernel_size)/(kernel_size**2))
kernel_raw = np.outer(kern1d, kern1d)
kernel = kernel_raw / kernel_raw.sum()
else:
raise Exception("Unspported kernel type {}".format(kernel_type))
stack_kernel = np.stack([kernel, kernel, kernel])
stack_kernel = np.expand_dims(stack_kernel, 1)
return torch.from_numpy(stack_kernel.astype(np.float32)).to(self.device)
def get_grad(self, loss, delta, **kwargs):
"""
Overridden for TIM attack.
"""
grad = torch.autograd.grad(loss, delta, retain_graph=False, create_graph=False)[0]
grad = F.conv2d(grad, self.kernel, stride=1, padding='same', groups=3)
return grad