-
Notifications
You must be signed in to change notification settings - Fork 45
/
Copy pathifgsm.py
35 lines (29 loc) · 1.42 KB
/
ifgsm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import torch
from ..utils import *
from ..attack import Attack
class IFGSM(Attack):
"""
I-FGSM Attack
'Adversarial Examples in the Physical World (ICLR 2017)'(https://arxiv.org/abs/1607.02533)
Arguments:
model_name (str): the name of surrogate model for attack.
epsilon (float): the perturbation budget.
alpha (float): the step size.
epoch (int): the number of iterations.
targeted (bool): targeted/untargeted attack
random_start (bool): whether using random initialization for delta.
norm (str): the norm of perturbation, l2/linfty.
loss (str): the loss function.
device (torch.device): the device for data. If it is None, the device would be same as model
Official arguments:
epsilon=16/255, alpha=epsilon/epoch=1.6/255, epoch=10
Example script:
python main.py --input_dir ./path/to/data --output_dir adv_data/ifgsm/resnet18 --attack ifgsm --model=resnet18
python main.py --input_dir ./path/to/data --output_dir adv_data/ifgsm/resnet18 --eval
"""
def __init__(self, model_name, epsilon=16/255, alpha=1.6/255, epoch=10, targeted=False, random_start=False,
norm='linfty', loss='crossentropy',device=None, attack='I-FGSM', **kwargs):
super().__init__(attack, model_name, epsilon, targeted, random_start, norm, loss, device)
self.alpha = alpha
self.epoch = epoch
self.decay = 0